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On the norm of a projection onto the space

of compact operators

by

Joosep Lippus and Eve Oja (Tartu)

Abstract. Let X and Y be Banach spaces and let A(X,Y ) be a closed subspace
of L(X, Y ), the Banach space of bounded linear operators from X to Y , containing the
subspace K(X,Y ) of compact operators. We prove that if Y has the metric compact
approximation property and a certain geometric property M∗(a, B, c), where a, c ≥ 0
and B is a compact set of scalars (Kalton’s property (M∗) = M∗(1, {−1}, 1)), and if
A(X, Y ) 6= K(X,Y ), then there is no projection from A(X, Y ) onto K(X,Y ) with norm
less than max |B|+ c. Since, for given λ with 1 < λ < 2, every Y with separable dual can
be equivalently renormed to satisfy M∗(a, B, c) with max |B| + c = λ, this implies and
improves a theorem due to Saphar.

1. Introduction. Let X and Y be Banach spaces over the same, either
real or complex, field K. We denote by L(X, Y ) the Banach space of bounded
linear operators from X to Y and by K(X, Y ) its subspace of compact
operators.

A classical long-standing open question is the following (see, e.g., [11],
[13], [14] for results and references): is it true that either L(X, Y ) = K(X, Y ),
or there is no bounded linear projection from L(X, Y ) onto K(X, Y )?

The answer is positive in some special cases; for instance, when Y has
an unconditional basis, as was proven by Tong and Wilken [26] already in
1971. In 1999, the following result was established by Saphar [25].

Theorem (Saphar). Let Y be a real Banach space whose dual space

Y ∗ is separable and has the approximation property. If λ is a scalar with

1 < λ < 2, then Y can be equivalently renormed so that , for any real Banach

space X with L(X, Y ) 6= K(X, Y ), there is no projection from L(X, Y ) onto

K(X, Y ) with norm less than λ.
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Throughout this paper, B ⊂ K will be a compact set and a, c ≥ 0. We
say that a Banach space Y has property M∗(a, B, c) if

lim sup
ν

‖ay∗ν + by∗ + cz∗‖ ≤ lim sup
ν

‖y∗ν‖ ∀b ∈ B

whenever (y∗ν) is a bounded net converging weak∗ to y∗ in Y ∗ and ‖z∗‖ ≤
‖y∗‖. Property M∗(a, B, c) was introduced and studied in [22] (see also [21])
by the second-named author.

The following theorem is the main result of this paper.

Theorem 1. Let Y be a Banach space satisfying property M∗(a, B, c)
with max |B|+c > 1 and having the metric compact approximation property.

Let X be a Banach space and let A(X, Y ) be a closed subspace of L(X, Y )
containing K(X, Y ). If A(X, Y ) 6= K(X, Y ), then there is no projection from

A(X, Y ) onto K(X, Y ) with norm less than max |B| + c.

In [22, Proposition 1.2], it is proved, relying on Zippin’s theorem [29],
that if 0 < r < 1, then any Banach space Y with separable dual can be
equivalently renormed to have property M∗(1, B, 0) with B = {b : |b + 1|
≤ r}. In this case, max |B| + c = 1 + r.

On the other hand, it is a well-known result, due to Grothendieck [7],
that the approximation property of separable Y ∗ implies the metric approx-
imation property of Y ∗, which in turn implies the metric approximation
property of Y . Therefore Theorem 1 implies Saphar’s theorem, giving also
some insight into it.

Let us fix more notation and terminology. We denote the unit sphere of
a Banach space X by SX and the closed unit ball by BX . A Banach space
X is considered, without special notation, as a subspace of its bidual X∗∗.
We denote by IX the identity operator on X.

A net (Kα) of finite-rank operators on X is called an approximation of

the identity provided Kα → IX strongly (i.e. Kαx → x for any x ∈ X). If
the operators Kα are allowed to be compact, then (Kα) is called a compact

approximation of the identity. If moreover, K∗
α → IX∗ strongly, then (Kα) is

called shrinking (this notion can be regarded as a generalization of shrinking
bases).

If there is an approximation of the identity (respectively, compact ap-
proximation of the identity) (Kα) with sup ‖Kα‖ ≤ 1, then X is said to
have the metric approximation property (respectively, the metric compact

approximation property). In this case, we shall say that (Kα) is a metric

approximation of the identity (respectively, metric compact approximation

of the identity). If, moreover, (Kα) happens to be shrinking, then X∗ is said
to have the metric approximation property with conjugate operators (respec-
tively, the metric compact approximation property with conjugate operators).
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2. Proof of Theorem 1. We shall develop ideas also used in the proof
of Saphar’s theorem [25]. However, unlike in [25], we shall not apply the
method of generalized Godun sets. Instead, we shall rely on the following
result established in [22]. Moreover, results from [3] and [18] enable us to
consider the more general situation of the metric compact approximation
property instead of the metric approximation property.

Theorem 2 (see [22, Theorem 3.5]). Suppose that max |B|+c > 1. Then

the following assertions are equivalent for a Banach space Y.

1o Y has the metric (respectively , the metric compact) approximation

property and property M∗(a, B, c).
2o For any S ∈ BK(Y,Y ), there exists a shrinking metric (respectively , a

shrinking metric compact) approximation of the identity (Kα) satis-

fying

lim sup
α

‖aIY + bKα + cS‖ ≤ 1 ∀b ∈ B.

Let X be a Banach space and V a subspace of X∗. Recall that the
characteristic r(V ) of V is defined by

r(V ) = inf
x∈SX

sup
x∗∈BV

|x∗(x)|

(cf. [2, Theorem 7]). Obviously r(V ) ≤ 1. On the other hand, if V = ker f
for some f ∈ X∗∗, then we have the following estimate from below, which is
probably known.

Lemma 3. Let X be a Banach space, f ∈ X∗∗, and ̺ ≥ 0. Suppose that

‖x + λf‖X∗∗ ≥ ̺ for all x ∈ SX and λ ∈ K. Then r(ker f) ≥ ̺.

Proof. Set V = ker f . Using the canonical identification V ∗ = X∗∗/V ⊥,
we have, for all x ∈ SX ⊂ X∗∗,

sup
x∗∈BV

|x∗(x)| = ‖x|V ‖V ∗ = ‖x + V ⊥‖X∗∗/V ⊥ .

But V ⊥ = span{f}, since V = span{f}⊥. Therefore

sup
x∗∈BV

|x∗(x)| = inf
λ∈K

‖x + λf‖ ≥ ̺

and hence also r(V ) ≥ ̺.

Proof of Theorem 1. First note that, according to Theorem 2 (take,
e.g., S = 0 in 2o), Y ∗ has the metric compact approximation property
with conjugate operators and, by [22, Corollary 1.6], the Radon–Nikodým
property.

Let us consider the trace mapping τ from the projective tensor product
X∗∗ ⊗̂ Y ∗ to (K(X, Y ))∗, defined by

(τv)(S) = trace(S∗∗v), v ∈ X∗∗ ⊗̂ Y ∗, S ∈ K(X, Y );
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that is, if v =
∑∞

n=1 x∗∗
n ⊗ y∗n, then

(τv)(S) =
∞∑

n=1

(S∗∗x∗∗
n )(y∗n) =

∞∑

n=1

x∗∗
n (S∗y∗n), S ∈ K(X, Y ).

Since Y ∗ has the metric compact approximation property with conjugate
operators, by [18, Theorem 3.8, (a)⇒(b′)], there exists an into isometry U :
L(X, Y ∗∗) → (K(X, Y ))∗∗ such that τ∗(U(T )) = T ∗∗ for all T ∈ L(X, Y ),
and, moreover, U(S) = S for all S ∈ K(X, Y ).

As Y ∗ has the Radon–Nikodým property, by the description of (K(X, Y ))∗

due to Feder and Saphar [3, Theorem 1], τ is a quotient mapping; more
precisely, for all ϕ ∈ (K(X, Y ))∗ there exists v ∈ X∗∗ ⊗̂Y ∗ such that ϕ = τv
and ‖ϕ‖ = ‖v‖π.

Finally, recall (see, e.g., [1, p. 230] or [24, p. 24]) that (X∗∗ ⊗̂ Y ∗)∗ and
L(X∗∗, Y ∗∗) are canonically isometrically isomorphic under the duality

〈v, A〉 = trace(Av) =

∞∑

n=1

(Ax∗∗
n )(y∗n),

v =

∞∑

n=1

x∗∗
n ⊗ y∗n ∈ X∗∗ ⊗̂ Y ∗, A ∈ L(X∗∗, Y ∗∗).

Therefore, for all v ∈ X∗∗ ⊗̂ Y ∗,

〈v, T ∗∗〉 = 〈v, τ∗(U(T ))〉 = (U(T ))(τv), T ∈ L(X, Y ),

and

〈v, S∗∗〉 = (τv)(S), S ∈ K(X, Y ).

Let now P be a bounded linear projection from A(X, Y ) onto K(X, Y ).
Then kerP 6= {0}, since A(X, Y ) 6= K(X, Y ). To show that

‖P‖ ≥ max |B| + c,

let T ∈ ker P with ‖T‖ = 1. Define

V = ker(U(T )) ⊂ (K(X, Y ))∗.

Since for all ϕ ∈ (K(X, Y ))∗ there exists v ∈ X∗∗ ⊗̂ Y ∗ such that ϕ = τv,
we have

V = {τv : v ∈ X∗∗ ⊗̂ Y ∗, 〈v, T ∗∗〉 = 0}.
Obviously, S = P (S + λT ) for all S ∈ SK(X,Y ) and λ ∈ K. Therefore

1/‖P‖ ≤ ‖S +λT‖ = ‖U(S +λT )‖ = ‖S +λU(T )‖ ∀S ∈ SK(X,Y ), ∀λ ∈ K.

Hence, by Lemma 3,

1/‖P‖ ≤ r(V ).
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So, to complete the proof, we need to show that

r(V ) ≤ 1

max |B| + c
.

Let |b| = max |B| = b sign b for some b ∈ B and let 0 < ε < 1. (Here
sign b is defined to be |b|/b if b 6= 0 and 1 if b = 0.) First, choose x ∈ BX

such that ‖Tx‖ ≥ ε. Then choose y∗ ∈ Y ∗ such that ‖y∗‖ = 1/‖Tx‖ and
y∗(Tx) = 1. Now consider the rank one operator

S =
1

sign b
y∗ ⊗ Tx.

Obviously, S ∈ SK(Y,Y ). Notice that

‖bT + cST‖ ≥ ‖bTx + cSTx‖ =

∥∥∥∥bTx +
c

sign b
y∗(Tx)Tx

∥∥∥∥

=

∣∣∣∣b +
c

sign b

∣∣∣∣‖Tx‖ ≥ (|b| + c)ε.

Using Theorem 2 again, we find, for the operator S, a shrinking metric
approximation of the identity (Kα) that satisfies

lim sup
α

‖aIY + bKα + cS‖ ≤ 1

and therefore also

lim sup
α

‖aT + bKαT + cST‖ ≤ 1.

Since

〈x∗∗ ⊗ y∗, KαT 〉 = x∗∗(T ∗K∗
αy∗)→

α
x∗∗(T ∗y∗) = 〈x∗∗ ⊗ y∗, T 〉

for all x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗, and the net (KαT ) is bounded,

KαT →
α

T

in the weak∗ topology of L(X∗∗, Y ∗∗) induced by the duality with X∗∗ ⊗̂Y ∗.

By the definition of the characteristic, we have, for all α,

r(V ) ≤ sup
τv∈BV

∣∣∣∣(τv)

(
bKαT + cST

‖bKαT + cST‖

)∣∣∣∣

= sup
τv∈BV

∣∣∣∣

〈
v,

bK∗∗
α T ∗∗ + cS∗∗T ∗∗

‖bKαT + cST‖

〉∣∣∣∣

= sup
τv∈BV

∣∣∣∣

〈
v,

aT ∗∗ + bK∗∗
α T ∗∗ + cS∗∗T ∗∗

‖bKαT + cST‖

〉∣∣∣∣

= sup
τv∈BV

∣∣∣∣

(
U

(
aT + bKαT + cST

‖bKαT + cST‖

))
(τv)

∣∣∣∣

≤ ‖aT + bKαT + cST‖
‖bKαT + cST‖ .
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Since bKαT + cST →α bT + cST in the weak∗ topology of L(X∗∗, Y ∗∗), by
the weak∗ lower semicontinuity of conjugate norms, we have

lim inf
α

‖bKαT + cST‖ ≥ ‖bT + cST‖ ≥ (|b| + c)ε.

Therefore

r(V ) ≤ lim supα ‖aT + bKαT + cST‖
lim infα ‖bKαT + cST‖ ≤ 1

(|b| + c)ε
.

This inequality holds for every positive ε < 1, so r(V ) ≤ 1/(|b| + c) as
desired.

Remark. In the special case when Y ∗ has the metric approximation
property, we need not use [18, Theorem 3.8] and [3, Theorem 1], but some
Grothendieck’s classics instead. In fact, the proof begins by applying the
“metric” part, instead of the “metric compact” part, of Theorem 2. We find
that Y ∗ has the metric approximation property and the Radon–Nikodým
property. Therefore, by Grothendieck’s classics (see [1, p. 247] or [24, p. 114]),
the trace mapping τ is already an isometric isomorphism between X∗∗ ⊗̂ Y ∗

and (K(X, Y ))∗. Also, (K(X, Y ))∗∗ = (X∗∗ ⊗̂ Y ∗)∗ and L(X∗∗, Y ∗∗) are
canonically isometrically isomorphic, and L(X, Y ) is canonically embedded
in (K(X, Y ))∗∗ = L(X∗∗, Y ∗∗) under the isometry T 7→ T ∗∗.

3. Applications

3.1. Saphar’s theorem. The following result contains Saphar’s theorem
(see the Introduction) giving also its extension to the complex case and
compact approximation properties.

Theorem 4. Let Y be a Banach space whose dual is separable and has

the compact approximation property with conjugate operators. If λ is a scalar

with 1 < λ < 2, then Y can be equivalently renormed so that , for any Banach

space X and for any closed subspace A(X, Y ) of L(X, Y ) containing K(X, Y )
with A(X, Y ) 6= K(X, Y ), there is no projection from A(X, Y ) onto K(X, Y )
with norm less than λ.

Proof. It is known (this is an extension of Grothendieck’s classics) that
whenever a dual space has the Radon–Nikodým property (in particular, is
separable) and the compact approximation property with conjugate opera-
tors, it also has the metric compact approximation property with conjugate
operators (see [5, Corollary 1.6 and its proof] or, for an alternative proof,
[17, Corollary 5.3]). Therefore, any equivalent renorming of Y has the metric
compact approximation property, and the claim follows from [22, Proposi-
tion 1.2] and Theorem 1, as was indicated in the Introduction.

Concerning hypotheses of Saphar’s theorem and Theorem 4, let us recall
that if Y ∗ has the approximation property, then it has the approximation
property with conjugate operators (this is clear from the principle of local
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reflexivity). By an example due to Grønbæk and Willis [6, Example 4.3],
the compact approximation property of Y ∗ does not imply the compact
approximation property with conjugate operators (even if Y ∗ is separable).

Theorem 4 applies (but Saphar’s theorem does not) to the separable
reflexive Banach space of Willis [27] which has the metric compact approx-
imation property, but fails the approximation property. There also exists
a non-reflexive Banach space Y such that its odd duals Y ∗, Y ∗∗∗, . . . are
separable and have the compact approximation property with conjugate
operators, but fail the approximation property (see [23, Theorem 3.6]).

3.2. Properties (M∗) and (wM∗). All Banach spaces that have a sepa-
rable dual can be equivalently renormed to have property M∗(1, B, 0) with
B = {b : |b+1| ≤ r} whenever 0 < r < 1 (see the Introduction). On the other
hand, property M∗(a, B, c) does not even imply separability. For example,
the spaces c0(Γ ) and ℓp(Γ ), 1 < p < ∞, where Γ is an uncountable set, are
not separable. But they have property M∗(1, {−2}, 0). This is clear from
Theorem 2, 2o ⇒ 1o, if one takes finite subsets of Γ , ordered by inclusion,
to be the indices α, and the corresponding natural projections to be Kα.

It can easily be seen that M∗(1, {−1}, 1) is precisely property (M∗) intro-
duced by Kalton [15], M∗(1, {−2}, 0) is property (wM∗) introduced by Lima
[16], and M∗(1, {b : |b+1| = 1}, 0) is the complex version of (wM∗) (see [22]).
It is straightforward to verify that (M∗) implies M∗(1, {b : |b+1| ≤ 1−c}, c)
for any c ∈ [0, 1]. In particular, (M∗) implies (wM∗).

As we saw, the spaces c0(Γ ) and ℓp(Γ ), 1 < p < ∞, have property
(wM∗). In fact, they have property (M∗), but the Lorentz sequence spaces
d(w, p) do not (this well-known fact is clear, for example, from [9, Proposi-
tion 4.24 and Theorem 4.17, (i)⇔(vii)]). On the other hand (as was noticed
in [22, p. 2804]), it is straightforward to verify that d(w, p), 1 < p < ∞,
has property M∗(a, B, c) for any fixed a, c > 0 such that ap + cp ≤ 1 and
B = {b : |b+a| ≤ (1−ap)1/p− c}. The Lorentz sequence spaces d(w, p) and,
more generally, Banach spaces with a shrinking 1-unconditional basis enjoy
property (wM∗) and, in the case of complex scalars, its complex version
(this results from Theorem 2, 2o ⇒ 1o).

An immediate conclusion from Theorem 1 follows.

Corollary 5. Let X be a Banach space and let Y be a Banach space

having the metric compact approximation property and property (wM∗) (its
complex version included). Let A(X, Y ) be a closed subspace of L(X, Y )
containing K(X, Y ). If A(X, Y ) 6= K(X, Y ), then there is no projection from

A(X, Y ) onto K(X, Y ) with norm less than 2.

Next, we point out an application to M -ideals of compact operators,
a class of compact operators which has been extensively studied by many
authors (see, e.g., the monograph [9] for results and references).
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Let X be a Banach space and let A(X, X) be a closed subspace of
L(X, X) containing K(X, X). Recall that K(X, X) is an M -ideal in A(X, X)
if there exists a projection P on (A(X, X))∗ with ker P = (K(X, X))⊥ ={
f ∈ (A(X, X))∗ : f |K(X,X) = 0

}
such that ‖Pf‖ + ‖f − Pf‖ = ‖f‖ for all

f ∈ (A(X, X))∗.
If K(X, X) is an M -ideal in A(X, X) which also contains IX , then X

has the metric compact approximation property (see [8] or [9, p. 299]) and
property (M∗) (see [15] and [20], or [9, p. 299]). Therefore the next result is
immediate from Corollary 5.

Corollary 6. Let X be a Banach space. Let A(X, X) be a closed sub-

space of L(X, X) containing K(X, X) and IX . If K(X, X) is an M -ideal

in A(X, X), then there is no projection from A(X, X) onto K(X, X) with

norm less than 2.

3.3. Projection constants. If K is a closed subspace of a Banach space
A, then the relative projection constant λ(K,A) is defined by

λ(K,A) = inf{‖P‖ : P is a projection from A onto K}.
Proposition 7 (Garling–Gordon [4]). Let K be a closed subspace of a

Banach space A and let codimK = n in A, for some n ∈ N. Then λ(K,A) ≤√
n + 1.

See, for example, [28, p. 117] for a proof.

Corollary 8. Let X be a Banach space and let Y be a Banach space

having the metric compact approximation property and property (wM∗) (its
complex version included). Let A(X, Y ) be a closed subspace of L(X, Y )
containing K(X, Y ). If codimK(X, Y ) = n in A(X, Y ), for some n ∈ N, then

2 ≤ λ(K(X, Y ),A(X, Y )) ≤ √
n + 1. In particular , if codimK(X, Y ) = 1,

then λ(K(X, Y ),A(X, Y )) = 2.

Proof. By Corollary 5, ‖P‖ ≥ 2 for any projection P from A(X, Y ) onto
K(X, Y ), thus λ(K(X, Y ),A(X, Y )) ≥ 2. The second inequality is immediate
from Proposition 7.

In Corollaries 5 and 8, in particular, one may take Y equal to any of the
spaces c0(Γ ), ℓp(Γ ), 1 < p < ∞, or to any Banach space with a shrinking
1-unconditional basis (like d(w, p), 1 < p < ∞). The latter include those
Banach spaces with a 1-unconditional basis that contain no subspace iso-
morphic to ℓ1 (by a well-known result of James [10]; see [19, Theorem 1.c.9]);
in particular, all reflexive Banach spaces with a 1-unconditional basis.

Finally, in Corollary 10 below, we see that the projection constant
λ(K(X, Y ),A(X, Y )) = 2 in Corollary 8 can be attained. To this end, we
need the following result, which is surely well known. We present its proof
for completeness.
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Proposition 9. Let X be a Banach space and let A(X, X) = K(X, X)⊕
span{IX}. If P is the projection from A(X, X) onto K(X, X) with kerP =
span{IX}, then ‖P‖ ≤ 2.

Proof. We have

‖P‖ ≤ ‖IA(X,X) − P‖ + ‖IA(X,X)‖ = 1 + ‖IA(X,X) − P‖.
Since ‖K + IX‖ ≥ 1 for every K ∈ K(X, X) (otherwise K would be invert-
ible), it follows that ‖K + λIX‖ ≥ |λ| for every K ∈ K(X, X) and λ ∈ K.
Therefore,

‖IA(X,X) − P‖ = sup
‖K+λIX‖=1

‖(IA(X,X) − P )(K + λIX)‖

= sup
‖K+λIX‖=1

‖λIX‖ ≤ 1.

Corollary 10. Let X be a Banach space having the metric compact

approximation property and property (wM∗) (its complex version included).
If P is the projection from K(X, X)⊕ span{IX} onto K(X, X) with kerP =
span{IX}, then ‖P‖ = 2.

Proof. This is immediate from Corollary 8 and Proposition 9.

Acknowledgements. The authors are grateful to the referee for call-
ing their attention to the paper [12] by John. This paper provides another
approach to Saphar’s theorem based on an easy deduction of Saphar’s esti-
mate of the norm of the projection in the case when a Banach space Y has
a compact approximation of the identity (Kα) satisfying

lim sup
α

‖IY − λKα‖ ≤ 1.
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