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A remark on the topological entropies

of covers and partitions

by

Pierre-Paul Romagnoli (Santiago)

Abstract. We study if the combinatorial entropy of a finite cover can be computed
using finite partitions finer than the cover. This relates to an unsolved question in [R]
for open covers. We explicitly compute the topological entropy of a fixed clopen cover
showing that it is smaller than the infimum of the topological entropy of all finer clopen
partitions.

1. Introduction. We consider a topological dynamical system (TDS)
(X, T ) to be a continuous invertible map T : X → X on a compact metric
space X. In this work we focus our attention on the notion of topological
entropy for TDS that was first introduced in [AKMc]. Topological entropy
is formally defined for finite open covers but the same definition applies for
any finite cover as a combinatorial notion.

Let CX be the set of finite covers of X and U ,V ∈ CX . Then U is finer
than V (U � V) if for every U ∈ U there exists V ∈ V such that U ⊆ V .
The refinement of U and V is defined as U ∨ V = {U ∩ V : U ∈ U , V ∈ V}.

For U ∈ CX by standard subadditivity arguments the combinatorial en-
tropy of U with respect to T exists and is defined as:

(1.1) h(U , T ) = lim
N→∞

1

N
logN (UN−1

0 ) = inf
N∈N

1

N
logN (UN−1

0 ).

Here N (U) is the minimal cardinality of a subcover of U and UN−1
0 =

∨N−1
n=0 T−nU . When U ∈ CX is a partition (we write U ∈ PX) then N (U) is

just the cardinality |U|, making the computations far easier.
In this work we study if the combinatorial entropy of a finite cover can be

computed using finite partitions finer than the cover. This can be stated as:

(1.2) h(U , T ) = inf
α�U

α∈PX

h(α, T ) ?

2000 Mathematics Subject Classification: Primary 37B40; Secondary 37B10, 37A35.
Key words and phrases: topological entropy, symbolic dynamics, local variational prin-

ciple, total domination.

[273] c© Instytut Matematyczny PAN, 2007



274 P.-P. Romagnoli

From this moment on we restrict ourselves to a particular class of TDS
called shift dynamical systems. Given an alphabet D of D symbols we con-
sider the space XD = DZ of two-sided sequences {xn}n∈Z (the full shift

space over D). This is a compact metric space in the product topology. The
shift map σD : XD → XD defined as σD({xn}n∈Z) = {xn+1}n∈Z is a bi-
continuous function. So (XD, σD) is an invertible 0-dimensional TDS. Here
“0-dimensional” means a space with a countable base of open-closed sets.
From here on, when no confusion can arise, we shall denote σD simply by σ.

We do not prove or disprove equation (1.2), but we prove that for the
TDS (XD, σ) and the cover U1 (see (3.4) for definition) we have

(1.3) h(U1, σ) < inf
α�U

α∈Pc

XD

h(α, σ),

where Pc
XD

is the set of finite clopen partitions of XD. In the case of open cov-
ers the combinatorial entropy is also called topological entropy and equality
(1.2) was stated as an open question in [R]. This question relates, as many
others, to an analogous result for measure-theoretical entropy.

The equality (1.2) in question is motivated by a measure-theoretical
equality regarding measure-theoretical entropy first defined by Kolmogorov
in [K] in the setting of measurable partitions. A local variational principle
was established in [BGH]. Following this idea in [R] two notions of measure-
theoretical entropy for open covers were developed and the equality between
them was left as an open question. A consequence of [HMRY] and another
variational principle established in [GW] is that these two notions are one
and the same.

More precisely, for any open cover U and a T -invariant measure µ,

(1.4) h−
µ (U , T ) := inf

N∈N

inf
α�UN−1

0

α∈PX

1

N
Hµ(α) = inf

α�U
α∈PX

hµ(α, T ) =: h+
µ (U , T ).

Here Hµ(α) = −
∑

A∈α µ(A) log µ(A) (with 0 · log 0 = 0) and hµ(α, T ) =

infN∈N N−1Hµ(αN−1
0 ).

It is a simple exercise to see that

∀U ∈ CX , N (U) = min
α�U

α∈PX

|α|

and thus

(1.5) h(U , T ) = inf
N∈N

min
α�U

α∈PX

1

N
log |αN−1

0 |.

Notice that h−
µ (U , T ) is obtained as the combinatorial entropy simply by

replacing log |α| with Hµ(α) in equation (1.5). A similar replacement in the
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definition of h+
µ (U , T ) gives the following combinatorial definition:

(1.6) h+(U , T ) = inf
α�U

α∈PX

inf
N∈N

1

N
log |αN−1

0 | = inf
α�U

α∈PX

h(α, T ).

So question (1.2) can be restated as:

(1.7) ∀U ∈ CX , h+(U , T ) = h(U , T ) ?

Notice that the equalities (1.1) and (1.6) coincide for partitions and
h(U , T ) ≤ h+(U , T ).

In the 0-dimensional case, by standard approximation arguments, (1.4)
implies that for every clopen cover U ,

(1.8) h−
µ (U , T ) = inf

α�U
α∈Pc

X

hµ(α, T ).

The main result in this paper proves that the topological equivalent of
equation (1.8) is false in general:

Theorem 1.1. For any D ∈ N and (XD, σ) we have

h(U1, σ) = log

(

D

D − 1

)

< inf
α�U1

α∈Pc

XD

h(α, σ) = log 2,

where U1 = {U1, . . . , UD} and Ud = {{xn}n∈Z ∈ XD : x0 6= d}.

2. Preliminaries. Since entropy is an increasing function on the set
of partitions endowed with the partial order �, the following topological
version of Lemma 3 in [HMRY] will be extremely useful in our calculations.
For U = {U1, . . . , UM} ∈ CX define

(2.1) U∗ = {{A1, . . . , AM} ∈ PX : ∀m ∈ {1, . . . , M}, Am ⊆ Um}.

Here Am can be empty for some values of m and so |α| ≤ |U| for α ∈ U∗.

Lemma 2.1. Let (X, T ) be a TDS , M ∈ N and U = {U1, . . . , UM} ∈ CX .

For every function G : PX → R such that α � β implies that G(α) ≥ G(β)
one has

inf
α�U

α∈PX

G(α) = inf
α∈U∗

G(α).

Proof. (≤) Just notice that α ∈ U∗ implies α � U .

(≥) Consider N ∈ N and β = {B1, . . . , BN} � U . By definition for every
n ∈ {1, . . . , N} there exists jn ∈ {1, . . . , M} such that Bn ⊆ Ujn

.

There exist K ≤ M and {i1, . . . , iK} such that {i1, . . . , iK}= {j1, . . . , jN}
and ik 6= il if k 6= l ∈ {1, . . . , K}.
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Define α = {A1, . . . , AM} as follows:

Aik =
⋃

n∈{1,...,N}
jn=ik

Bn for k ∈ {1, . . . , K},

Am = ∅ for m ∈ {1, . . . , M} \ {i1, . . . , iK}.

By construction Am ⊆ Um for all m ∈ {1, . . . , M} and β � α so one has
G(β) ≥ G(α).

Remark. Actually this result is stronger since we can assume that if
given {A1, . . . , AM} ∈ U∗ there exists k ∈ {1, . . . , M} \ {m} such that
Am ⊆ Uk then we can eliminate Am and replace Ak by Am ∪ Ak ⊆ Uk

obtaining a coarser partition in U∗. However, we will not be needing this
stronger result.

A basis for the product topology are cylinder sets. For M ∈ N denote by
DM the set of M -words u on the alphabet D, that is, u = u1 . . . uM where
um ∈ D for all m ∈ {1, . . . , M}.

The k-coordinate cylinder set corresponding to u ∈ DM is defined as

[u]k = {{xn}n∈Z ∈ XD : xk . . . xM+k−1 = u1 . . . uM}.

Given u, v ∈ DM we say that u overlaps v (u � v) iff u2 . . . uM =
v1 . . . vM−1.

Let G = (V, E) be a simple undirected connected graph that consists of
a finite set V of vertices (or states) together with a finite set E of symmetric
subsets of V × V called edges. The order of the graph is |V |. The degree of
a vertex is the number of edges using that vertex, and the minimal degree

of G is the minimal degree of a vertex.
A set S ⊆ V is dominant for G if for each v ∈ V \ S there exists u ∈ S

such that (u, v) ∈ E. The domination number of G, denoted by γ(G), is the
minimal cardinality of a dominant set for G. A set S ⊆ V is total dominant

for G if for each v ∈ V there exists u ∈ S such that (u, v) ∈ E. As before the
total domination number of G, denoted by γt(G), is the minimal cardinality
of a total dominant set for G.

We state the following upper bound for the domination number, sufficient
for our purposes.

Lemma 2.2 (see [AS]). If G is a simple undirected graph of order n and

minimum degree δ, then

γ(G) ≤
1

δ + 1
(1 + log(δ + 1))n.

3. Entropy of cylinder covers. On the full shift space (XD, σ), for
M ∈ N, let CM be the algebra generated by the set of cylinders of length M .
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Notice that for N ≤ M we have CN ⊆ CM since every N -cylinder is a finite
disjoint union of M -cylinders.

U ∈ CXD
is an M -cylinder cover if U ∈ CM for every U ∈ U . Denote the

set of M -cylinder covers by CM
XD

, and let PM
XD

be the subset of M -cylinder
partitions.

For U ∈ CXD
and M ∈ N, define

(3.1) hM (U , σ) = min
α�U

α∈PM

XD

h(α, σ).

Clearly for all U ∈ CXD
and M ∈ N, hM+1(U , σ) ≤ hM (U , σ), and

(3.2) h+
c (U , σ) := min

M∈N

hM (U , σ) ≥ h+(U , σ).

Given M ∈ N denote by LM
D the set of M -labellings of D, that is, func-

tions L : DM → {1, . . . , D}.
For α = {A1, . . . , AD} ∈ PM

XD
define Lα ∈ LM

D by Lα(x1 . . . xM ) = d iff

[x1 . . . xM ]0 ∈ Ad. For any L ∈ LM
D define αL = {A1, . . . , AD} ∈ PM

XD
by

Ad =
⋃

x∈DM

L(x)=d

[x]0 for d ∈ {1, . . . , D}.

Clearly there is a one-to-one correspondence between LM
D and parti-

tions in PM
XD

with at most D atoms. To be explicit, α(Lα) = α for α =

{A1, . . . , AD} ∈ PM
XD

, and L(αL) = L for L ∈ LM
D .

Lemma 3.1. For all M ∈ N, and α = {A1, . . . , AD} ∈ PM
XD

and N ∈ N,

|αN−1
0 | = |{Lα(u1) . . .Lα(uN ) : u1, . . . , uN ∈ DM

for un � un+1 and 0 ≤ n ≤ N − 1, |}.

Proof. Fix N ∈ N.
(≤) For any ∅ 6= A ∈ αN−1

0 , there are unique d1 . . . dN ∈{1, . . . , D}N and

x0 . . . xN+M−2 ∈DN+M−1 such that [x0 . . . xN+M−2]0 ∈ A =
⋂N

n=1 σ−nAdn
.

So [xn−1 . . . xn+M−2]0 ∈ Adn
for all n ∈ {1, . . . , N}.

By definition then

Lα(x0 . . . xM−1) . . .Lα(xN−1 . . . xN+M−2) = d1 . . . dN .

(≥) Consider u1, . . . , uN ∈ DM such that un � un+1 for 0 ≤ n ≤ N − 1.
Define x = x1 . . . xN+M−1 ∈ DN+M−1 by

xn =

{

un
0 , n ∈ {1, . . . , N − 1},

uN
n−N+1, n ∈ {N, N + M − 1}.

By definition of Lα, for all n ∈ {1, . . . , N}, [xn . . . xn+M−1]0 ∈ ALα(un) and

so [x1 . . . xN+M−1]0 ∈
⋂N−1

n=0 σ−nALα(un).
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Given L ∈ LM
D define iL : DM → P({1, . . . , D}) as

(3.3) iL(u) = {L(v) : v ∈ DM , v � u}.

In the following lemma we establish a simple combinatorial condition for
a partition in PM

XD
with at most D atoms to have entropy greater than log 2.

Lemma 3.2. For L ∈ LM
D , if {u ∈ DM : |iL(u)| = 1} = ∅ then for all

N ∈ N,

|{L(u1) . . .L(uN ) : u1, . . . , uN ∈ DM

and un � un+1 for 0 ≤ n ≤ N − 1}| ≥ 2N .

Proof. Start with u0 ∈ DM . There exist u0,1, u0,2 ∈ iL(u0) such that
L(u0,1) 6= L(u0,2). This proves the case of N = 1.

As before for i = {1, 2}, there are u0,i,1, u0,i,2 ∈ iL(u0,i) such that
L(u0,i,1) 6=L(u0,i,2). This proves the case of N = 2 using {u0,1,1u0,1, u0,1,2u0,1,
u0,2,1u0,2, u0,2,2u0,2}. The same argument works for larger N .

The cover U1 defined in Theorem 1.1 can be rewritten as

(3.4) U1 = {[d]c0 : d ∈ D}.

Using the previous lemmas we prove the following theorem.

Theorem 3.3. For all N ∈ N and D (with D > 1), h+
c (U1, σ) = log 2.

Proof. Fix M ∈ N. By Lemma 2.1 to compute hM (U1, σ) we consider
only partitions in U∗

1 . For any α = {A1, . . . , AD} ∈ U∗
1 ∩ PM

XD
and u ∈ DM

we have |iLα
(u)| ≥ 2 and so {u ∈ DM : |iLα

(u)| = 1} = ∅. From Lemmas 3.1
and 3.2 we conclude that |αN−1

0 | ≥ 2N for all N ∈ N.

Consider α = {Ai, Aj} ∈ U∗
1 ∩PM

XD
with i, j ∈ {1, . . . , D}, i 6= j. Clearly

|αN−1
0 | ≤ 2N and so for such α we have |αN−1

0 | = 2N .

By (3.1) this proves that for every M ∈ N, hM (U1, σ) = log 2.

4. Topological entropy of U1. In this section we compute the topo-
logical entropy of the cover U1.

For N ∈ N, k ∈ Z and u ∈ DN define

[u]∗k =
N−1
⋂

n=0

[un+1]
c
n+k.

We state the following simple lemma without proof.

Lemma 4.1. For all k ∈ Z, M ∈ N and u, v ∈ DM ,

[u]k ∩ [v]∗k =

{

[u]k if um+k 6= vm+k for all m ∈ {1, . . . , M},

∅ if um+k = vm+k for some m ∈ {1, . . . , M}.
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Proof. Left to the reader.

Notice that UN := (U1)
N−1
0 = {[u]∗0 : u ∈ DN} for all N ∈ N. In Lemma

4.3 we compute a lower bound for N (UN ) by a simple counting argument,
and an upper bound by translating the problem to finding the minimal
cardinality of a total dominant set for a finite undirected graph.

For N ∈ N we define the simple undirected graph GN = (VN , EN ) by
setting VN = DN and given u, v ∈ DN , (u, v) ∈ EN ⇔ ∀n ∈ {1, . . . , N},
un 6= vn.

Lemma 4.2. For each N ∈ N, S ⊆ VN is a total dominant set if and

only if {[u]∗0 : u ∈ S} is a subcover of UN .

Proof. (⇒) Given v ∈ DN , since S is a total dominant set there exists
u ∈ S with (u, v) ∈ EN . By Lemma 4.1 we have [v]0 ∩ [u]∗0 = [v] and so
{[u]∗0 : u ∈ S} is a subcover.

(⇐) Take any v ∈ DN . Assume that S is not a total dominant set. Then
there exists v ∈ DN such that (u, v) /∈ EN for all u ∈ S. Once again by
Lemma 4.1 we have [v]0 ∩ [u]∗0 = ∅ and so {[u]∗0 : u ∈ S} is not a subcover.

Lemma 4.3. For all N ∈ N,
(

D

D − 1

)N

≤ N (UN ) ≤ 2(1 + N log D)

(

D

D − 1

)N

.

Proof. (≥) Given N ∈ N the number of words of length N is DN . The
total number of different words that belong to any U ∈ UN is (D − 1)N . So
at least ⌈DN/(D − 1)N⌉ elements of UN are needed to obtain a subcover.

(≤) From Lemma 4.2 we know that N (UN ) = γt(GN ). It is clear that
|VN | = DN and every node has degree (D − 1)N . From Lemma 2.2 and the
fact that γt(G) ≤ 2γ(G) for any graph G (just add one neighbour to each
element of a dominant set and you obtain a total dominant set), we have

γt(GN ) ≤
2

(D − 1)N + 1
(1 + log((D − 1)N + 1))DN

≤ 2(1 + N log D) ·

(

D

D − 1

)N

.

Now we are ready to prove the main result.

Proof of Theorem 1.1. For D ∈ N, D > 2, consider (XD, σ) and the
cover U1. From Lemma 4.3 and Theorem 3.3,

h(U1, σ) = log

(

D

D − 1

)

< log 2 = h+
c (U1, σ).



280 P.-P. Romagnoli

5. Conclusions and open questions. Theorem 1.1 shows that it is not
possible to compute the topological entropy of clopen covers by just using
finer clopen partitions. Since in the 0-dimensional case it is not clear that
the combinatorial entropy of any measurable partition can be approximated
using clopen partitions, this does not answer question (1.7). However, it is
interesting that both in the measure and topological setting h and h−

µ are

computed over a set of partitions with atoms in the σ-fields UN−1
0 with

N ∈ N. That is, given U ∈ CX and N ∈ N let PN
U be the set of partitions

with atoms in the σ-field generated by UN−1
0 . A consequence of the work

done in [R] is that

h(U , T ) = inf
N∈N

inf
α�UN−1

0

α∈PN

U

1

N
log |α|,

h−
µ (U , T ) = inf

N∈N

inf
α�UN−1

0

α∈PN

U

1

N
Hµ(α).

In the topological case Theorem 1.1 proves that this is false for h+ since
the σ-fields (U1)

N−1
0 with N ∈ N generate the topology. It is natural to ask

if this is also false in the measure-theoretical setting. This can be stated as
the following question:

(5.1) h+
µ (U , T ) = inf

N∈N

inf
α�U

α∈PN

U

hµ(α, T ) ?
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