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Loal ompleteness of loally pseudoonvexspaes and Borwein�Preiss variational priniplebyJ. H. Qiu (Suzhou) and S. Rolewiz (Warszawa)Abstrat. The notion of loal ompleteness is extended to loally pseudoonvexspaes. Then a general version of the Borwein�Preiss variational priniple in loally om-plete loally pseudoonvex spaes is given, where the perturbation is an in�nite suminvolving di�erentiable real-valued funtions and subadditive funtionals. From this, somepartiular versions of the Borwein�Preiss variational priniple are derived. In partiular,a version with respet to the Minkowski gauge of a bounded losed onvex set in a loallyonvex spae is presented. In loally onvex spaes it an be shown that the relevant per-turbation only onsists of a single summand if and only if the bounded losed onvex sethas the quasi-weak drop property if and only if it is weakly ompat. From this, a newdesription of re�exive loally onvex spaes is obtained.1. Introdution. Borwein and Preiss gave a smooth variational prini-ple in Banah spaes, whih has many appliations in nonsmooth analysisand optimization (see [1℄ and [9℄). In terms of Φ-subgradient, Pallashkeand Rolewiz presented a general version of the Borwein�Preiss variationalpriniple in omplete metri spaes and gave its interesting appliations (see[7, Chapter 2℄). In this paper, we �rst extend the notion of loal ompletenessto loally pseudoonvex spaes. Then we give an extension of the Borwein�Preiss variational priniple to loally omplete loally pseudoonvex spaes,where the perturbation is an in�nite sum involving di�erentiable real-valuedfuntions and subadditive funtionals. From the extension, we dedue sev-eral versions of the Borwein�Preiss variational priniple in various kinds ofloally omplete loally pseudoonvex spaes. Any losed onvex set in aloally onvex spae yields a subadditive funtional, the Minkowski gaugeof the set (or of some translation of it). In partiular, we give a version ofthe variational priniple with respet to the Minkowski gauge of a bounded2000 Mathematis Subjet Classi�ation: 46A55, 49J45.Key words and phrases: loally pseudoonvex spae, variational priniple, quasi-weakdrop property, weakly ompat set, re�exivity.Researh of J. H. Qiu supported by the National Natural Siene Foundation of China(10571035). [99℄ © Instytut Matematyzny PAN, 2007



100 J. H. Qiu and S. Rolewizlosed onvex set in a loally onvex spae. We onsider the problem: underwhih onditions an the perturbation appearing in the priniple onsist ofa single summand only? In the framework of quasi-omplete loally onvexspaes, we show that this happens exatly when the bounded losed onvexset is weakly ompat, or equivalently, has the quasi-weak drop property (onquasi-weak drop property, see [12, 13℄). From this we obtain a harateriza-tion of re�exive loally onvex spaes by using the Borwein�Preiss variationalpriniple.2. Loally omplete loally pseudoonvex spaes. In this paper,all the spaes X are assumed to be real Hausdor� topologial linear spaes(brie�y alled topologial linear spaes). Let A be a nonempty subset of thespae X. We say that A is starlike if for all x ∈ A and 0 < t ≤ 1, tx ∈ A.The modulus of onavity (see [15℄) of a starlike set A is de�ned by c(A) =
inf{s > 0 : A + A ⊂ sA}, with the onvention that the in�mum of an emptyset is equal to +∞. Obviously c(A) ≥ 2 and for a onvex set A, c(A) = 2.A starlike set A with a �nite modulus of onavity, c(A) < ∞, is alledpseudoonvex.A topologial linear spae X is alled loally pseudoonvex if there is abasis {Uα} of neighborhoods of zero onsisting of pseudoonvex sets. Let
0 < p ≤ 1. We say that a set A ⊂ X is absolutely p-onvex if for all x, y ∈ Aand 0 ≤ |s|p + |t|p ≤ 1, tx + sy ∈ A (see [6℄). If p = 1, then A is alledabsolutely onvex. Obviously, any intersetion of absolutely p-onvex sets isstill absolutely p-onvex. The absolutely p-onvex hull Γp(A) of a set A isthe intersetion of all the absolutely p-onvex sets ontaining A. We ob-serve that Γp(A) onsists of all the elements of the form ∑n

i=1 tixi, where
n ∈ N, xi ∈ A for i = 1, . . . , n, and ∑n

i=1 |ti|
p ≤ 1 (see [16, p. 298℄).It is easy to see that if A is absolutely p-onvex and 0 < p′ < p ≤ 1,then A is automatially absolutely p′-onvex; and hene for any set A,

Γp′(A) ⊂ Γp(A). For a losed (or open) balaned absorbing set U in X, U isabsolutely p-onvex if and only if ‖ ‖U is a p-homogeneous F -pseudonorm,where ‖x‖U := inf{λ > 0 : x ∈ λ1/pU} for all x ∈ X. It an be shown (seefor example [16, pp. 90�93℄) that for a loally pseudoonvex spae X, thereis a family {‖ ‖α} of pα-homogeneous F -pseudonorms, whih determines atopology equivalent to the original one on X. Thus the sets of the form
U =

⋂n
i=1{x ∈ X : ‖x‖αi

≤ ri} onstitute a basis of neighborhoods of zeroin X, where n ∈ N, ‖ ‖αi
is a pαi

-homogeneous F -pseudonorm, 0 < pαi
≤ 1and ri > 0 for i = 1, . . . , n. Sine the set {x ∈ X : ‖x‖αi

≤ ri} is abso-lutely pαi
-onvex, it is also absolutely min{pα1

, . . . , pαn
}-onvex and hene

U =
⋂n

i=1{x ∈ X : ‖x‖αi
≤ ri} is absolutely min{pα1

, . . . , pαn
}-onvex.Thus for a topologial linear spae X, the following statements are equiva-lent:



Loal ompleteness spaes and Borwein�Preiss priniple 101(i) X is loally pseudoonvex.(ii) There is a basis {Uα} of neighborhoods of zero onsisting of abso-lutely pα-onvex sets, where 0 < pα ≤ 1.(iii) There is a family {‖ ‖α} of pα-homogeneous F -pseudonorms whihdetermines a topology equivalent to the original one on X.Let the spae X be loally pseudoonvex and let {Uα} be a basis ofneighborhoods of zero whih onsists of absolutely pα-onvex sets. If p :=
inf{pα} > 0, then every Uα is absolutely p-onvex. We say that the spae Xis loally p-onvex if there is a basis of neighborhoods of zero onsisting of ab-solutely p-onvex sets for some �xed p, 0 < p ≤ 1. In partiular, if p = 1, then
X is alled loally onvex . For a loally onvex spae X, we always denoteby X∗ the topologial dual of X. As is well known, for loally onvex spaesthere are various kinds of ompleteness, for example, ompleteness, quasi-ompleteness, sequential ompleteness, ∑-ompleteness, l∞-ompleteness,loal ompleteness and so on; for details, we refer to [8, pp. 164�165℄ and [10℄.Up to now, loal ompleteness is the weakest known kind of omplete-ness.Now we extend the notion of loal ompleteness to loally pseudoon-vex spaes (onerning loal ompleteness of loally onvex spaes, see, forexample, [8, Chapter 5℄) .Definition 2.1. A subset B of the spae X is alled a p-dis (0 < p ≤ 1)if it is bounded and absolutely p-onvex. We denote by EB the linear spanof B, span[B], endowed with the topology indued by the gauge qB of B,where qB(x) = inf{λ > 0 : x ∈ λ1/pB} for all x ∈ span[B]. If EB is omplete,we all the p-dis B a self-omplete p-dis. A sequene (xn) in X is alleda loally Cauhy sequene if there is a p ∈ (0, 1] and a p-dis B in X suhthat (xn) is a Cauhy sequene in EB. A sequene (xn) in X is said to beloally onvergent to a point x0 if there is a p ∈ (0, 1] and a p-dis B suhthat xn → x0 in EB. It is easy to see that (xn) is loally onvergent to x0 ifand only if (xn−x0) is loally onvergent to zero. A point x0 is alled a loallimit point of a set A in X if there is a sequene (xn) in A suh that (xn) isloally onvergent to x0. The set A is alled loally losed if every loal limitpoint of A belongs to A. Obviously every sequentially losed set is loallylosed, but the onverse is not true (for an example, see [11, Example 3.1℄).Proposition 2.1. Let X be a loally pseudoonvex spae. Then the fol-lowing statements are equivalent :(i) For eah p ∈ (0, 1] and any p-dis A, there is a p′ ∈ (0, 1] and aself-omplete p′-dis B suh that A ⊂ B.(ii) Every loally Cauhy sequene is loally onvergent.(iii) For eah p ∈ (0, 1], every losed p-dis is a self-omplete p-dis.



102 J. H. Qiu and S. RolewizProof. (i)⇒(ii). Let (xn) be a loally Cauhy sequene. Then there is a
p ∈ (0, 1] and a p-dis A suh that (xn) ⊂ span[A] and (xn) is a Cauhysequene in EA. By (i), there is a p′ ∈ (0, 1] and a self-omplete p′-dis Bsuh that A ⊂ B. For any ε > 0, put ε1 = εp/p′ . Then there is n0 ∈ N suhthat xn − xm ∈ ε

1/p
1 A for all m, n ≥ n0. Sine A ⊂ B, we have xn − xm ∈

ε
1/p
1 B = ε1/p′B for all m, n ≥ n0. That is, (xn) is a Cauhy sequene in EB.Sine EB is omplete, there exists x0 ∈ EB suh that xn → x0 in EB , so

(xn) is loally onvergent.(ii)⇒(iii). Let p ∈ (0, 1] and A be a losed p-dis and let (xn) be aCauhy sequene in EA. By (ii), (xn) is loally onvergent to some x0. Clearly
xn → x0 in X. For any ε > 0, there is n0 ∈ N suh that xn − xm ∈ ε1/pAfor all m, n ≥ n0. If m → ∞, then xm → x0 in X. And sine A is losed, wehave xn − x0 ∈ ε1/pA for all n ≥ n0. This means that xn → x0 in EA andhene A is a self-omplete p-dis.(iii)⇒(i). Let A be a p-dis. Then A is also a p-dis. By (iii), A is aself-omplete p-dis. By taking B = A, we omplete the proof.Definition 2.2. A loally pseudoonvex spae X is alled loally om-plete if one of the three equivalent statements in Proposition 2.1 is satis�ed.Let X be a loally p-onvex spae (0 < p ≤ 1). Then a sequene (xn) in
X loally onverges to zero if and only if there is an inreasing unboundedsequene (αn) of positive real numbers suh that (αnxn) onverges to zeroin X (the proof is similar to that of [8, Proposition 5.1.3℄). Moreover, X isloally omplete if and only if for every bounded set A in X there is a self-omplete p-dis B suh that A ⊂ B. We also observe that most statements(exept for those involving topologial duals) onerning loally ompleteloally onvex spaes an be extended to loally omplete loally p-onvexspaes. Here we do not disuss this in detail.Next we onsider loal ompleteness of loally pseudoonvex spaes (notonly loally p-onvex spaes).We start with the following obviousLemma 2.1. Let (X, ‖ ‖) be an F ∗-spae, i.e., a linear spae with anF-norm ‖ ‖ (see [16, p. 5℄). Let (xn) be a sequene in X onvergent to zero.Then there is a sequene (bn) of positive reals tending to in�nity suh that
(bnxn) is onvergent to zero.Proof. Without loss of generality we may assume that xn 6= 0. We put
bn = E(1/

√

‖xn‖), where E(t) denotes the greatest integer not greaterthan t. Then by the triangle inequality, (bn) has the required property.Corollary 2.1. Let X be a topologial linear spae. Let (xn) be a se-quene in X loally onvergent to zero. Then there is a sequene (bn) of



Loal ompleteness spaes and Borwein�Preiss priniple 103positive reals tending to in�nity suh that (bnxn) is loally onvergent tozero.Proof. Sine (xn) is loally onvergent to 0, there is a p ∈ (0, 1] and a
p-dis B suh that (xn) is onvergent to 0 with respet to the p-homogeneousnorm ‖ ‖B indued by B. Thus by Lemma 2.1 there is a sequene (bn), bn > 0,tending to in�nity suh that (bnxn) is onvergent to 0 with respet to the
p-homogeneous norm ‖ ‖B. Thus, by de�nition, (bnxn) is loally onvergentto 0.Proposition 2.2. A loally pseudoonvex F-spae (i.e. omplete metriz-able spae) X is loally omplete.Proof. Let (xn) be a loally Cauhy sequene in X. Then there is a
p ∈ (0, 1] and a losed p-dis B suh that (xn) is a Cauhy sequene in
EB = (span[B], qB). That is, for any ε > 0, there is nε ∈ N suh that
xn − xm ∈ εB for all n, m > nε. Sine B is bounded in X, (xn) is also aCauhy sequene in X. And sine X is omplete, (xn) is onvergent to some
x0 in X. Letting m → ∞ shows that xn − x0 ∈ εB for all n > nε. Thismeans that (xn) is onvergent to x0 in EB , hene (xn) is loally onvergentto x0 and X is loally omplete.It is of interest to know whether Proposition 2.2 an be reversed. We areable to do it only in loally p-onvex spaes.Proposition 2.3. A loally omplete loally p-onvex F ∗-spae (X, ‖ ‖)is omplete, i.e. it is an F -spae.Proof. Let (xn) be a Cauhy sequene in X and let U1 ⊃ U2 ⊃ · · · bea 0-neighborhood basis onsisting of absolutely p-onvex sets. There is asequene n1 < n2 < · · · suh that

xni+1
− xni

∈
1

2i
Ui for all i ∈ N.Obviously the sequene (2i(xni+1

− xni
))i∈N is onvergent to 0 in X. Let Bbe the losed absolutely p-onvex hull of the bounded set

{xn1
, 2(xn2

− xn1
), . . . , 2i(xni+1

− xni
), . . .}.Then B is a losed p-dis, {xn1

, xn2
, . . .} ⊂ span[B] and xni+1

− xni
∈ 2−iB.Observe that

xni+k
− xni

= (xni+k
− xni+k−1

) + · · · + (xni+1
− xni

)

∈
1

2i+k−1
B + · · · +

1

2i
B ⊂

[(

1

2i+k−1

)p

+ · · · +

(

1

2i

)p]1/p

B

=
1

2i
·

(

1 − (1/2p)k

1 − 1/2p

)1/p

B ⊂
1

2i
·

2

(2p − 1)1/p
B.



104 J. H. Qiu and S. RolewizSine p > 0, (xni
)i∈N is a Cauhy sequene in EB = (span[B], qB). By thehypothesis that (X, ‖ ‖) is loally omplete, EB is omplete. Hene there is apoint x0 in EB suh that (xni

) is onvergent to x0 in EB; then learly (xni
) isonvergent to x0 in (X, ‖ ‖). Combining this with the assumption that (xn)is a Cauhy sequene in (X, ‖ ‖), we onlude that (xn) is onvergent to x0in (X, ‖ ‖), i.e. (X, ‖ ‖) is omplete.Unfortunately this proof does not work in loally pseudoonvex F ∗-spaesas the following example shows.Example 2.1. Let

X = L1[0, 1] × L1/2[0, 1] × · · · × L1/n[0, 1] × · · ·with topology given by pseudonorms
‖x‖n = ‖{x1(t), . . . , xn(t), . . .}‖n =

n
∑

i=1

1\
0

|xi(t)|
1/i dt.Take arbitrary p, 0 < p < 1. In a similar way to the proof that there is noontinuous linear funtional on Lp[0, 1] for p < 1 we an onstrut a sequene

(xn)n∈N ⊂ X onverging to 0 suh that its absolute p-onvex hull ontainsthe subspae
Xn = {0} × · · · × {0} × L1/n[0, 1] × L1/(n+1)[0, 1] × · · ·provided 1/n < p. Of ourse Xn is not bounded.Thus we propose the following open problem to end this setion.Problem 2.1. Is every loally omplete loally pseudoonvex F ∗-spae

X omplete?3. A version of the Borwein�Preiss priniple in loally pseudo-onvex spaes. Let X be a loally pseudoonvex spae. For any funtion
f : X → (−∞,∞], we always assume that dom f = {x ∈ X : f(x) 6= ∞}is nonempty. A funtion f : X → (−∞,∞] is alled lower semiontinuous(respetively, sequentially lower semiontinuous) if for any net (xn) onverg-ing to a (respetively, for any sequene (xn) onverging to a) in X, we have
f(a) ≤ lim infn f(xn) (see [5, p. 40℄ and [18, pp. 149�151℄).As in [14℄, we all a funtion f : X → (−∞,∞] loally lower semion-tinuous if for any r ∈ R, the set {x ∈ X : f(x) ≤ r} is loally losed in X.This is equivalent to the ondition that for any sequene (xn) loally on-verging to a, f(a) ≤ lim infn→∞ f(xn). Obviously every (sequentially) lowersemiontinuous funtion is loally lower semiontinuous, and the onverseis not true. We denote by Φ0 the lass of all stritly inreasing, ontinuousfuntions ϕ : [0,∞) → [0,∞) suh that ϕ(0) = 0, and by Φ1 the lass ofall funtions ϕ : [0,∞) → [0,∞) suh that ϕ(0) = ϕ′(0) = 0, ϕ′(t) exists



Loal ompleteness spaes and Borwein�Preiss priniple 105and ϕ′(t) > 0 on (0,∞). Clearly Φ1 ⊂ Φ0. Moreover ϕ(∞) always means
limt→∞ ϕ(t) (learly, it may be ∞). By modifying the proof of Borweinand Preiss (see [1℄ or [9, pp. 66�69℄), we �rst give a general version of theBorwein�Preiss variational priniple in loally pseudoonvex spaes.Theorem 3.1. Let X be a loally omplete loally pseudoonvex spae,and p0(·) ≤ p1(·) ≤ p2(·) ≤ · · · be a sequene of loally lower semiontinuous,subadditive, nonnegative funtions on X with pi(0) = 0 suh that whenevera sequene (xn) in X satis�es pi(xm − xn) → 0 (m ≥ n → ∞) for eah i,then (xn) is a loally Cauhy sequene in X. Let g : X → (−∞,∞] be aloally lower semiontinuous funtion, bounded below , and let x0 ∈ dom g,
ε > g(x0)− inf g(X), λ > 0 and {ϕi : i = 0, 1, 2, . . .} ⊂ Φ0. Then there exista sequene (vn) loally onverging to some v in X and 0 < µ < 1 suh that(a) g(x) +

ε

ϕ0(λ)
θ(x) ≥ g(v) +

ε

ϕ0(λ)
θ(v), ∀x ∈ X,where θ(x) =

∑

∞

n=0 µn(1 − µ)ϕn(pn(x − vn)) and v0 = x0;(b) p0(v − v0) ≤ λ, p0(vn − v0) ≤ λ, pn(v − vn) ≤ λ for all n ∈ N, and
pn(v − vn) → 0;() g(v) < ε + inf g(X).Proof. Choose ε1 > 0 suh that

0 ≤ g(x0) − inf g(X) < ε1 < ε.(1)Choose µ > 0 suh that
0 < µ < 1 − ε1/ε, equivalently, 0 < ε1/ε < 1 − µ.(2)Put

δ =
(1 − µ)ε

ϕ0(λ)
.(3)From (2) and (3), we know that

ε1/δ < ϕ0(λ) < ε/δ.For k = 1, 2, . . . , hoose γk, 0 < γk < µ, suh that
∞

∑

k=1

ϕ−1
k

(

γ1 · · · γk

µk
·
ε1

δ

)

< λ − ϕ−1
0

(

ε1

δ

)

.(4)Put g0 = g and v0 = x0. De�ne g1(x) = g0(x) + δϕ0(p0(x − v0)), x ∈ X.Clearly, g1(x0) = g(x0) < ε + inf g(X) < ∞, hene dom g1 6= ∅. If g(x0) =
g1(x0) = inf g1(X), then we set v1 = v0. If g(x0) = g1(x0) > inf g1(X), then
γ1 g(x0) + (1 − γ1) inf g1(X) > inf g1(X). Hene there exists v1 ∈ X suhthat g1(v1) < γ1g(x0) + (1 − γ1) inf g1(X). Thus in any ase, there exists
v1 ∈ X suh that

g1(v1) ≤ γ1g(x0) + (1 − γ1) inf g1(X).



106 J. H. Qiu and S. RolewizIn general, de�ne
gn+1(x) = gn(x) + δµnϕn(pn(x − vn)), x ∈ X.(5)Clearly gn+1(vn) = gn(vn) < ∞, hene dom gn+1 6= ∅. Choose vn+1 ∈ Xsuh that

gn+1(vn+1) ≤ γn+1gn(vn) + (1 − γn+1) inf gn+1(X).(6)Put sn = inf gn(X) and an = gn(vn). Then
an+1 = gn+1(vn+1) ≤ γn+1gn(vn) + (1 − γn+1) inf gn+1(X)(7)

≤ γn+1gn(vn) + (1 − γn+1)gn+1(vn)

= γn+1gn(vn) + (1 − γn+1)gn(vn)

= gn(vn) = an.Obviously gn ≤ gn+1, hene
sn ≤ sn+1 ≤ an+1 = gn+1(vn+1) ≤ γn+1gn(vn) + (1 − γn+1) inf gn+1(X)

= γn+1an + (1 − γn+1)sn+1.From this, we have
0 ≤ an+1 − sn+1 ≤ γn+1(an − sn+1) ≤ γn+1(an − sn) ≤ · · ·(8)

≤ γn+1γn · · · γ1(a0 − s0) < γn+1γn · · · γ1ε1.Taking x = vn+1 in (5), we have
an+1 = gn+1(vn+1) = gn(vn+1) + δµnϕn(pn(vn+1 − vn))(9)

≥ sn + δµnϕn(pn(vn+1 − vn)).From (7)�(9), we obtain
δµnϕn(pn(vn+1 − vn)) ≤ an+1 − sn ≤ an − sn < γnγn−1 · · · γ1ε1.Therefore,

pn(vn+1 − vn) ≤ ϕ−1
n

(

γ1 · · · γn

µn
·
ε1

δ

)

.For eah i ∈ N, n ≥ i and j ∈ N, we have
pi(vn+j − vn) ≤ pn(vn+j − vn)(10)

≤ pn(vn+j − vn+j−1) + · · · + pn(vn+1 − vn)

≤ pn+j−1(vn+j − vn+j−1) + · · · + pn(vn+1 − vn)

<

∞
∑

k=n

ϕ−1
k

(

γ1 · · · γk

µk
·
ε1

δ

)

.Combining this with (4), we onlude that for eah i ∈ N, pi(vm − vn) → 0when m ≥ n → ∞. This implies that (vn) is a loally Cauhy sequene in X.Sine X is loally omplete, there exists v ∈ X suh that (vn) is loally



Loal ompleteness spaes and Borwein�Preiss priniple 107onvergent to v. Letting j → ∞ on the left of (10) shows that (vn+j)j isloally onvergent to v; and sine every pi is loally lower semiontinuous,we have
pn(v − vn) ≤

∞
∑

k=n

ϕ−1
k

(

γ1 · · · γk

µk
·
ε1

δ

)

< λ − ϕ−1
0

(

ε1

δ

)

, ∀n ∈ N.(11)
From (11), we obtain

pn(v − vn) < λ and pn(v − vn) → 0 (n → ∞).(12)Sine
δϕ0(p0(v1 − v0)) = g1(v1) − g0(v1)

≤ g1(v1) − inf g(X) = a1 − s0 ≤ a0 − s0 < ε1,we have
p0(v1 − v0) < ϕ−1

0 (ε1/δ).(13)From (11) and (13), we dedue that
p0(v−v0) ≤ p0(v−v1) + p0(v1−v0) ≤ p1(v−v1) + p0(v1−v0)(14)

< λ − ϕ−1
0 (ε1/δ) + ϕ−1

0 (ε1/δ) = λ.Taking n = i = 1 in (10), for any j ∈ N we get
p1(v1+j − v1) <

∞
∑

k=1

ϕ−1
k

(

γ1 · · · γk

µk
·
ε1

δ

)

< λ − ϕ−1
0

(

ε1

δ

)

.From this, we have
p0(v1+j − v0) ≤ p0(v1+j − v1) + p0(v1 − v0)(15)

≤ p1(v1+j − v1) + p0(v1 − v0)

< λ − ϕ−1
0 (ε1/δ) + ϕ−1

0 (ε1/δ) = λ.By (13)�(15), we onlude that
p0(vn − v0) ≤ λ and p0(v − v0) ≤ λ.Combining this with (12), we see that (b) holds.From (7), a0 ≥ a1 ≥ a2 ≥ · · ·. Sine an = gn(vn) ≥ inf gn(X) > −∞, weinfer that limn→∞ an exists and is �nite. By (8),

0 ≤ an − sn < γ1 · · · γnε1 < µnε1 → 0 (n → ∞),hene limn→∞ sn = limn→∞ an exists and is �nite. Put
θ(x) =

∞
∑

n=0

µn(1 − µ)ϕn(pn(x − vn)).



108 J. H. Qiu and S. RolewizThen for any x ∈ dom g, we have
g(x) +

ε

ϕ0(λ)
θ(x) = g(x) +

ε(1 − µ)

ϕ0(λ)

∞
∑

n=0

µnϕn(pn(x − vn))(16)

= g(x) + δ
∞
∑

n=0

µnϕn(pn(x − vn))

= sup
n

gn(x) ≥ lim
n→∞

sn = lim
n→∞

an = lim
n→∞

gn(vn).Let α = supm lim infn gm(vn). Then for any η > 0, there exists m ∈ N suhthat lim infn gm(vn) > α − η. Hene there are n1 < n2 < · · · suh that
gm(vni

) > α − η. Take i large enough so that ni ≥ m. Then
gni

(vni
) ≥ gm(vni

) > α − η.Also, limn→∞ an = limn→∞ gn(vn) exists, so we have limn→∞ gn(vn) ≥ α.From this and (16), we obtain
g(x) +

ε

ϕ0(λ)
θ(x) ≥ α = sup

m
lim inf

n
gm(vn).(17)Sine gm is loally lower semiontinuous and (vn) is loally onvergent to v, itfollows that lim infn gm(vn) ≥ gm(v). Combining this with (17), we onludethat

g(x) +
ε

ϕ0(λ)
θ(x) ≥ sup

m
gm(v) = g(v) +

ε

ϕ0(λ)
θ(v),i.e. (a) holds.Finally, we show that () holds. Sine g0(v0) = g(x0) < ε1 + inf g(X),

g1(v1) ≤ γ1g(x0) + (1 − γ1) inf g1(X)

≤ γ1g(x0) + (1 − γ1)g1(x0) = g(x0) < ε1 + inf g(X).By (7), (an) is dereasing, hene for any n ∈ N,
an = gn(vn) ≤ a1 < ε1 + inf g(X).Therefore

g(v) ≤ g(v) +
ε

ϕ0(λ)
θ(v) = sup

m
gm(v)

≤ sup
m

lim inf
n

gm(vn) = α ≤ lim
n→∞

gn(vn) < ε1 + inf g(X).As we have seen in Setion 2, in a metrizable loally p-onvex spae(0 < p ≤ 1), a sequene is onvergent if and only if it is loally onvergent.Hene a funtion de�ned on the spae is (sequentially) lower semiontinuousif and only if it is loally lower semiontinuous. Moreover by Proposition 2.2,a omplete metrizable loally pseudoonvex spae is loally omplete. Nowlet X be a omplete metrizable loally pseudoonvex spae and ‖ ‖0 ≤ ‖‖1 ≤
‖‖2 ≤ · · · be a sequene of pn-homogeneous F -pseudonorms determining the



Loal ompleteness spaes and Borwein�Preiss priniple 109topology of X (see [16, pp. 90�95℄). By substituting the sequene ‖ ‖0 ≤
‖‖1 ≤ ‖‖2 ≤ · · · for the sequene p0 ≤ p1 ≤ p2 ≤ · · · in Theorem 3.1, weimmediately obtain the following result, whih may be useful in studying thedi�erentiability of perturbations.Corollary 3.1. Let X be a omplete metrizable loally pseudoonvexspae with the topology generated by an inreasing sequene ‖ ‖0 ≤ ‖‖1 ≤
‖‖2 ≤ · · · of pn-homogeneous F -pseudonorms. Let g : X → (−∞,∞] be alower semiontinuous funtion bounded below , let x0, ε > 0, and λ > 0 beas in Theorem 3.1, and let {ϕn : n = 0, 1, 2, . . .} ⊂ Φ0. Then there exist asequene (vn) onverging to v in X and 0 < µ < 1 suh that(a) g(x) +

ε

ϕ0(λ)
θ(x) ≥ g(v) +

ε

ϕ0(λ)
θ(v), ∀x ∈ X,where θ(x) =

∑

∞

n=0 µn(1 − µ)ϕn(‖x − vn‖n) and v0 = x0;(b) ‖v − v0‖0 ≤ λ, ‖vn − v0‖0 ≤ λ, ‖v − vn‖n ≤ λ for all n ∈ N, and
‖v − vn‖n → 0;() g(v) < ε + inf g(X).Let B ⊂ X be a p-onvex set (i.e. sB + tB ⊂ B for all s, t ≥ 0 suh that

sp + tp = 1) with 0 ∈ B (0 < p ≤ 1). Then B indues in X a Minkowskigauge qB : X → [0,∞] as follows:
qB(x)=

{

inf{λ > 0 : x∈ λ1/pB} if there exists λ > 0 suh that x∈ λ1/pB;
∞ else.The Minkowski gauge qB is positive p-homogeneous and subadditive.Corollary 3.2. Let X be a loally omplete loally p-onvex spae(0 < p ≤ 1), and B ⊂ X be a loally losed bounded p-onvex set with

0 ∈ B. Let g : X → (−∞,∞] be a loally lower semiontinuous funtionbounded below and let x0 ∈ dom g, ε > g(x0) − inf g(X), λ > 0 and ϕ ∈ Φ0.Then there exist a sequene (vn) loally onverging to v in X and 0 < µ < 1suh that(a) g(x) +
ε

ϕ(λ)
θ(x) ≥ g(v) +

ε

ϕ(λ)
θ(v), ∀x ∈ X,where θ(x) =

∑

∞

n=0 µn(1 − µ)ϕ(qB(x − vn)) and v0 = x0;(b) qB(v − v0) ≤ λ, qB(vn − v0) ≤ λ, qB(v − vn) ≤ λ for all n ∈ N, and
qB(v − vn) → 0;() g(v) < ε + inf g(X).Proof. Clearly, the Minkowski gauge qB of the loally losed bounded

p-onvex set B is loally lower semiontinuous and subadditive. Denote theabsolutely p-onvex hull of B by D; it is a p-dis. Thus if a sequene (xn)



110 J. H. Qiu and S. Rolewizin X satis�es qB(xm − xn) → 0 (m ≥ n → ∞), then qD(xm − xn) → 0
(m ≥ n → ∞). That is to say, (xn) is a loally Cauhy sequene in X. Nowapplying Theorem 3.1, we immediately obtain the result.As a speial ase of Corollary 3.2, we have the following:Corollary 3.3. Let X be a quasi-omplete (or sequentially omplete,or loally omplete) loally onvex spae and B ⊂ X a bounded losed onvexset with 0 ∈ B. Let g : X → (−∞,∞] be a lower semiontinuous funtionbounded below , and let x0 ∈ dom g, ε > g(x0)− inf g(X), λ > 0 and ϕ ∈ Φ0.Then there exist a sequene (vn) onverging to v in X and 0 < µ < 1 suhthat (a)�() in Corollary 3.2 hold.In fat, in view of [7℄ we see that in Theorem 3.1 and Corollaries 3.1�3.3,the funtion

−
ε

ϕ0(λ)
θ(x) or −

ε

ϕ(λ)
θ(x)is a Φ-subgradient of g at the point v, where Φ denotes the appropriate lassof funtions aording to di�erent ases.4. Perturbation only onsisting of a single summand and re�ex-ivity of loally onvex spaes. As mentioned in [9, p. 71℄, even in theframework of Banah spaes, it is not always possible to assume that theperturbation funtion θ used in the variational priniple onsists of a singlesummand. Borwein and Preiss [1℄ have shown that this is possible in re�ex-ive Banah spaes and that these are the only spaes with this property.In this setion, we onsider the following problem: under whih ondition,an θ appearing in Corollary 3.3 onsist of a single summand only? Thisproblem will be solved in the framework of quasi-omplete loally onvexspaes. We shall see that this happens exatly when B is weakly ompat.From this we obtain a riterion for re�exivity of loally onvex spaes. In thissetion we denote by Φ2 the lass of all funtions ϕ : [0,∞) → [0,∞) suhthat ϕ(0) = ϕ′(0) = 0, ϕ′(t) exists and stritly inreases on [0,∞). Clearly

Φ2 ⊂ Φ1 ⊂ Φ0.Theorem 4.1. Let X be a loally onvex spae and B ⊂ X be a boundedlosed onvex set with 0 ∈ B. If for any lower semiontinuous onvex fun-tion g : X → (−∞,∞] bounded below , any x0 ∈ dom g, any ε > g(x0) −
inf g(X) and any λ > 0, there exist ϕ ∈ Φ2 and v ∈ X suh that
g(x) +

ε

ϕ(λ)
ϕ(qB(x − x0)) ≥ g(v) +

ε

ϕ(λ)
ϕ(qB(v − x0)) for all x ∈ X,then for any x∗ ∈ X∗, there exists u ∈ B suh that 〈x∗, u〉 = sup〈x∗, B〉.Proof. For any �xed x∗ ∈ X∗, if 〈x∗, B〉 ≤ 0, we may take u = 0. If not,there exists b ∈ B suh that 〈x∗, b〉 > 0. Sine 〈x∗, B〉 is bounded, there exists
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α > 0 suh that |〈x∗, B〉| ≤ α. Without loss of generality, we may assumethat α < 1, or else we may onsider kx∗, where k > 0 is small enough. Put
U := {x ∈ X : |〈x∗, x〉| ≤ 1}. Then U is a 0-neighborhood in X and B ⊂ U i,where U i denotes the interior of U . De�ne

g(x) =

{

−〈x∗, x〉 if x ∈ U ,
∞ if x 6∈ U .Clearly, g : X → (−∞,∞] is a lower semiontinuous onvex funtion,bounded below. Set x0 = 0, ε = 1. Then

ε = 1 > α ≥ g(x0) − inf g(X).By hypothesis, for λ = 1, there exist ϕ ∈ Φ2 and v ∈ X suh that qB(v−x0) =
qB(v) ≤ 1 and

g(x) +
1

ϕ(1)
ϕ(qB(x)) ≥ g(v) +

1

ϕ(1)
ϕ(qB(v)), x ∈ X.(18)It is also lear that x 7→ 1

ϕ(1)ϕ(qB(x)) is a lower semiontinuous onvex fun-tion, bounded below, and g is ontinuous at x = 0. By (18) and the Moreau�Rokafeller theorem (for example, see [18, Theorem 47.B, pp. 389�390℄),
0 ∈ ∂

(

g +
1

ϕ(1)
ϕ(qB(·))

) ∣

∣

∣

∣

v

⊂ ∂g|v +
1

ϕ(1)
∂ϕ(qB(·))|v.(19)Let z∗ ∈ ∂g|v. Then for any x ∈ X,

〈z∗, x〉 − 〈z∗, v〉 ≤ g(x) − g(v).In partiular, when x ∈ U , we have
〈z∗, x〉 − 〈z∗, v〉 ≤ −〈x∗, x〉 + 〈x∗, v〉.That is,

〈z∗ + x∗, x − v〉 ≤ 0, ∀x ∈ U.(20)Sine qB(v) ≤ 1, we have v ∈ B, whih implies that v ∈ U i. Thus U − v is a0-neighborhood in X. Sine the 0-neighborhood U − v ontains a balaned0-neighborhood, ombining this and (20), we onlude that z∗ + x∗ = 0, i.e.
z∗ = −x∗. Hene ∂g|v = {−x∗}. Thus (19) beomes

0 ∈ {−x∗} +
1

ϕ(1)
∂ϕ(qB(·))|v.From this,

x∗ ∈
1

ϕ(1)
∂ϕ(qB(·))|v.Hene for any t > 0, we have

〈x∗, tb〉 = 〈x∗, v + tb〉 − 〈x∗, v〉 ≤
1

ϕ(1)
[ϕ(qB(v + tb)) − ϕ(qB(v))].
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〈x∗, b〉 ≤

1

ϕ(1)
·
ϕ(qB(v + tb)) − ϕ(qB(v))

t
.(21)If qB(v) = 0, then v = 0 sine B is bounded. Thus (21) beomes

〈x∗, b〉 ≤
1

ϕ(1)
·
ϕ(qB(tb)) − ϕ(qB(0))

t

=
1

ϕ(1)
·
ϕ(qB(tb))

t
=

1

ϕ(1)
·
ϕ(qB(tb))

qB(tb)
· qB(b).If t → 0+, then

ϕ(qB(tb))

qB(tb)
→ ϕ′(0) = 0.Thus we have

〈x∗, b〉 ≤
1

ϕ(1)
ϕ′(0)qB(b) = 0,whih ontradits the assumption that 〈x∗, b〉 > 0. Hene we onlude that

qB(v) > 0. For any y ∈ B, if there exists t1 > 0 suh that qB(v+t1y) = qB(v),then
〈x∗, y〉 =

〈x∗, t1y + v〉 − 〈x∗, v〉

t1
≤

1

ϕ(1)
·
ϕ(qB(v + t1y)) − ϕ(qB(v))

t1
= 0.If not, we have

〈x∗, y〉 ≤
1

ϕ(1)
·
ϕ(qB(v + ty)) − ϕ(qB(v))

t

≤
1

ϕ(1)
·
ϕ(qB(v + ty)) − ϕ(qB(v))

qB(v + ty) − qB(v)
· qB(y)

≤
1

ϕ(1)
·
ϕ(qB(v + ty)) − ϕ(qB(v))

qB(v + ty) − qB(v)

→
1

ϕ(1)
ϕ′(qB(v)) as t → 0+.In any ase, we have

〈x∗, y〉 ≤
1

ϕ(1)
ϕ′(qB(v)), ∀y ∈ B.(22)On the other hand, for 0 < t < 1, we have

〈x∗,−v〉 ≤
1

ϕ(1)
·
ϕ(qB(v − tv)) − ϕ(qB(v))

t

=
1

ϕ(1)
·
ϕ(qB(v − tv)) − ϕ(qB(v))

qB(v − tv) − qB(v)
· (−qB(v)).
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〈x∗, v〉 ≥

ϕ′(qB(v))

ϕ(1)
· qB(v).Put u = v/qB(v). Then u ∈ B and

〈x∗, u〉 ≥
ϕ′(qB(v))

ϕ(1)
.Combining the above with (22), we onlude that 〈x∗, u〉 = sup〈x∗, B〉.Theorem 4.2. Let X be a loally onvex spae and B ⊂ X be a weaklyompat onvex set with 0 ∈ B. Then for any lower semiontinuous onvexfuntion g : X → (−∞,∞] bounded below , any x0 ∈ dom g, any ε >

g(x0) − inf g(X), any ϕ ∈ Φ2 and any λ > 0, there exists v ∈ X suh that
qB(v − x0) ≤ λ and
g(x) +

ε

ϕ(λ)
ϕ(qB(x − x0)) ≥ g(v) +

ε

ϕ(λ)
ϕ(qB(v − x0)) for all x ∈ X.Proof. It is easy to verify that x 7→ g(x) + ε

ϕ(λ)ϕ(qB(x − x0)) is a lowersemiontinuous onvex funtion. Sine x0 + λB is weakly ompat, thereexists v ∈ x0 + λB suh that
g(x) +

ε

ϕ(λ)
ϕ(qB(x−x0)) ≥ g(v) +

ε

ϕ(λ)
ϕ(qB(v−x0)), ∀x ∈ x0 + λB.When x 6∈ x0 + λB, we have qB(x − x0) > λ. For those x, we have

g(x)+
ε

ϕ(λ)
ϕ(qB(x−x0)) > inf g(E)+ε > g(x0) ≥ g(v)+

ε

ϕ(λ)
ϕ(qB(v−x0)).Thus we see that there exists v ∈ X suh that qB(v − x0) ≤ λ and for every

x ∈ X,
g(x) +

ε

ϕ(λ)
ϕ(qB(x − x0)) ≥ g(v) +

ε

ϕ(λ)
ϕ(qB(v − x0)).For onveniene, if a bounded losed onvex set B with 0 ∈ B satis�es thehypothesis in Theorem 4.1, i.e. the perturbation θ(x) in the Borwein�Preisspriniple with respet to qB only onsists of a single summand, then B is saidto have the simpli�ed Borwein�Preiss priniple property (brie�y, the s.b.p.property). The notion an be extended to general bounded losed onvexsets. A bounded losed onvex set B is said to have the s.b.p. property if forsome b ∈ B, B − b has the s.b.p. property.For a loally onvex spae X, we denote by (X, τ(X, X∗)) the assoi-ated Makey spae ([5, pp. 260�262℄). By the James theorem (see [2, p. 77℄or [4℄), for any τ(X, X∗)-omplete, bounded losed onvex set B, every

x∗ ∈ X∗ attains its supremum on B if and only if B is weakly om-pat. Thus in a quasi-omplete loally onvex spae (i.e., one where eah



114 J. H. Qiu and S. Rolewizbounded losed set is omplete, see for example [5, p. 210℄), a boundedlosed onvex set has the s.b.p. property if and only if it is weakly om-pat.This prompts us to reall another property of bounded losed onvexsets, namely the drop property. Sine Rolewiz [17℄ began the study of thedrop property for losed unit balls of Banah spaes, various drop propertieshave been introdued and studied. For example, Giles and Kutzarova [3℄ de-�ned a bounded losed onvex set B to have the weak drop property if forevery weakly sequentially losed set A disjoint from B there exists a point
x0 ∈ A suh that D(x0, B) ∩ A = {x0}, where D(x0, B) denotes the onvexhull of {x0} ∪ B. In [12℄, we de�ned a bounded losed onvex set B to havethe quasi-weak drop property if for any weakly losed set A disjoint from Bthere exists x0 ∈ A suh that D(x0, B) ∩ A = {x0}. Later we investigatedthe relationship between the quasi-weak drop property and weak ompat-ness in the framework of loally onvex spaes (for details, see [13℄). Now,ombining Theorem 4.1, Theorem 4.2 and [13, Theorem 3.2℄ we have thefollowing.Theorem 4.3. Let X be a quasi-omplete loally onvex spae (or , let
(X, τ(X, X∗)) be quasi-omplete), and B ⊂ X be a bounded losed onvexset. Then the following statements onerning B are equivalent :(i) B is weakly ompat.(ii) For any x∗ ∈ X∗, there exists u ∈ B suh that 〈x∗, u〉 = sup〈x∗, B〉.(iii) B has the s.b.p. property.(iv) B has the quasi-weak drop property.From Theorem 4.3 we an dedue the following equivalent desriptionsof semire�exivity and re�exivity of loally onvex spaes (onerning semire-�exive, re�exive and quasi-barrelled spaes, we refer to [5, �23℄).Theorem 4.4. Let X be a quasi-omplete loally onvex spae. Then thefollowing statements are equivalent :(i) X is semire�exive.(ii) Every bounded losed onvex set in X has the quasi-weak drop prop-erty.(iii) Every bounded losed onvex set in X has the s.b.p. property.Theorem 4.5. Let X be a quasi-omplete quasi-barrelled spae. Thenthe following statements are equivalent :(i) X is re�exive.(ii) Every bounded losed onvex set in X has the quasi-weak drop prop-erty.(iii) Every bounded losed onvex set in X has the s.b.p. property.
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