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Variable exponent trace spaces

by

Lars Diening (Freiburg) and Peter Hästö (Oulu)

Abstract. The trace space of W 1,p(·)(Rn
× [0,∞)) consists of those functions on

R
n that can be extended to functions of W 1,p(·)(Rn

× [0,∞)) (as in the fixed-exponent
case). Under the assumption that p is globally log-Hölder continuous, we show that the
trace space depends only on the values of p on the boundary. In our main result we
show how to define an intrinsic norm for the trace space in terms of a sharp-type opera-
tor.

1. Introduction. In this article we present a simple approach to trace
spaces. Our philosophy is to move away as little as possible from the defi-
nition of trace space as consisting of those functions which can be extended
to the whole space. The motivation for pursuing this line of investigation
is that it provides us with more robust results and methods. We are es-
pecially interested in Sobolev spaces with variable exponent. What makes
variable exponent spaces stand apart particularly in the current context is
that they are not translation invariant, in contrast to their classical coun-
terparts. A glance at the classical approaches (due to Lions, Peetre and
others, see, e.g., [3, Section 7], [4, Section 7] and references therein) shows
that translation invariance is in many situations at the heart of the matter,
starting with the idea that we can define a norm as a Bochner integral of a
function from the real line to a Banach space. We believe that our approach
can be used also when dealing with other non-translation invariant general-
izations of Sobolev spaces, such as other variants of Orlicz–Musielak spaces
[32], or spaces with variable smoothness [29].

On an intuitive level we get the variable exponent space by replacing the
energy (modular)
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Ω

|f(x)|p dx with
\
Ω

|f(x)|p(x) dx,

where p(x) is some function. Exact definitions are given below. Let us review
some of the major reasons for why variable exponent spaces have attracted
quite a bit of attention lately (see [13] for a bibliography of over a hundred
titles on this topic from the last five years). Variable exponent spaces are
connected to variational integrals with non-standard growth and coercivity
conditions [2, 39]. These non-standard variational problems are related to
modeling of so-called electrorheological fluids [1, 35] and also appear in a
model for image restoration [5]. Another reason for the recent interest is that
the “right” framework for variable exponent spaces was discovered: the log-
Hölder continuity condition was found to be sufficient for many regularity
properties of the spaces, starting with the local boundedness of the maximal
operator [9].

Obviously, the study of trace spaces is of great importance for the the-
ory of partial differential equations. Indeed, a partial differential equation is
in many cases solvable if and only if the boundary values are in the corre-
sponding trace space (see e.g. [16]). The first appearance of trace spaces in
the context of Sobolev spaces with variable exponent W 1,p(·) is in [14, 15],
where the solvability of the Laplace equation −∆u = f on the half-space
with given boundary values is studied. The definition of trace spaces by Die-
ning and Růžička [14, 15] matches ours in Section 3. However, they avoided
studying trace spaces, considering them instead as abstract objects. To de-
scribe these spaces, especially by an intrinsic norm, is the purpose of this
article.

We now get back to characterizing variable exponent trace spaces. A more
concrete form of the problems related to translation non-invariance can be
found by looking at the well-known intrinsic characterization of the fixed-
exponent trace space ofW 1,p(H), where H is the open half-space R

n×(0,∞):
f is in the trace space if and only if\

Rn

\
Rn

|f(x) − f(y)|p

|x− y|n+p−1
dy dx <∞.

We would like to have the exponent vary with the location in the space,
but clearly p in the previous formula can be replaced by neither p(x) nor
p(y). There are similar difficulties with generalizing the formulae of other
fractional order spaces, such as Besov spaces or Nikol’skĭı spaces. In this ar-
ticle we present an alternative conceptualization of the trace space problem.
We try to present our approach in as simple a form as possible, in order
to convey the main ideas, and hopefully to allow others to adapt them to
different settings.
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The main results of this paper are summarized in the following theo-
rem (1).

Theorem 1.1. Let p : H → [1,∞) be a variable exponent with 1 <
inf p ≤ sup p < ∞ which is globally log-Hölder continuous, i.e. assume that

there exist c > 0 and p∞ > 1 such that

|p(x) − p(y)| ≤
c

log(e+ 1/|x− y|)
and |p(x) − p∞| ≤

c

log (e+ |x|)

for all points x, y ∈ H. Then the function f belongs to the trace space

TrW 1,p(·)(H) if and only if\
Rn

|f(x)|p(x)dx+

1\
0

\
Rn

(
1

r
M ♯

Bn(x,r)
f

)p(x)

dx dr <∞,

where M ♯
Bn(x,r) denotes the sharp operator ,

M ♯
Bn(x,r)f =

<
Bn(x,r)

∣∣∣f(y) −
<

Bn(x,r)

f(z) dz
∣∣∣ dy.

It follows that the trace space depends only on the value of the exponent on

the boundary.

We prove this result in a piece-meal fashion. We start in Section 2 by in-
troducing some standard notation and defining the variable exponent spaces.
In Section 3 we define the trace space and show that it only depends on the
value of the exponent on the boundary, provided the exponent is log-Hölder
continuous. In Section 4 we derive the formula for the intrinsic norm of the
trace space relying on a well-chosen extension of the exponent.

Many open questions still remain regarding trace theory in variable expo-
nent spaces. We consider only extensions from R

n to the closed half-space H.
In the fixed exponent case traces have been studied in many other settings
than the half-space (see e.g. [20, 21, 27]). Also, we consider only the critical
smoothness, 1 − 1/p(x). In classical notation, the spaces we consider are
denoted by W 1−1/p(·),p(·)(Rn). A future endeavor, then, is to consider also
other spaces with variable smoothness on more general domains, i.e. spaces
of the type W s(·),p(·)(Ω) (2).

2. Preliminaries. We will be considering the space H = R
n × (0,∞),

its closure H, and R
n, which we view as the subspace R

n × {0} of H. An

(1) After the completion and circulation of this paper we found out that trace spaces
have been characterized by means of oscillations (see [38]). This characterization is remi-
niscent of ours, but has also not been previously considered in this context.

(2) Added in proof: Embeddings of variable exponent trace spaces have recently been
investigated by X.-L. Fan; see [17] for details.
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analogous convention holds for arguments of functions, e.g. for x ∈ R
n we

will sometimes write p(x) instead of p(x, 0). For x ∈ R
n and r > 0 we denote

by Bn(x, r) the open ball in R
n with center x and radius r. By Bn we denote

the unit ball Bn(0, 1). We use c as a generic constant, i.e. a constant whose
values may change from appearance to appearance. By χA we denote the
characteristic function of the set A. We use the convention that χAF = 0
at all points outside A, regardless of whether F is defined there or not.

We denote the mean value of the integrable function f , defined on a set
A of finite non-zero measure, by

〈f〉A =
<
A

f(x) dx =
1

|A|

\
A

f(x) dx.

For convenience we use a short-hand notation for the average over a ball:

〈f〉nx,r = 〈f〉Bn(x,r).

The Hardy–Littlewood maximal operator M is defined on L1
loc(R

n) by

Mf(x) = sup
r>0

〈|u|〉nx,r.

When there is a possibility of misunderstanding, we will indicate the dimen-
sion of the underlying balls, writing M(n) or M(n+1).

Let Ω ⊂ R
n be an open set. Let p : Ω → [1,∞) be a measurable bounded

function, called a variable exponent on Ω, and write p+ = ess sup p(x) and
p− = ess inf p(x). We define the variable exponent Lebesgue space Lp(·)(Ω)
to consist of all measurable functions f : Ω → R for which the modular

̺Lp(·)(Ω)(f) =
\
Ω

|f(x)|p(x) dx

is finite. We define the Luxemburg norm on this space by

‖f‖Lp(·)(Ω) = inf{λ > 0 : ̺Lp(·)(Ω)(f/λ) ≤ 1},

which is the Minkowski functional of the absolutely convex set

{f ∈ Lp(·)(Ω) : ̺Lp(·)(Ω)(f) ≤ 1}.

In the case when Ω = R
n we replace the Lp(·)(Rn) in subscripts simply by

p(·), i.e. ‖f‖p(·) stands for ‖f‖Lp(·)(Rn), etc. The variable exponent Sobolev

space W 1,p(·)(Ω) is the subspace of Lp(·)(Ω) of functions f whose distribu-
tional gradient exists and satisfies |∇f | ∈ Lp(·)(Ω). The norm

‖f‖W 1,p(·)(Ω) = ‖f‖Lp(·)(Ω) + ‖∇f‖Lp(·)(Ω)

makes W 1,p(·)(Ω) a Banach space.
For fixed exponent spaces we of course have a very simple relationship

between norm and modular. In the variable exponent case this is not so.
However, we nevertheless have the following useful property: ̺p(·)(f) ≤ 1 if
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and only if ‖f‖p(·) ≤ 1. This and many other basic results were proven in
[19, 28].

We say that the exponent p is (locally) log-Hölder continuous if there
exists a constant Clog > 0 so that

|p(x) − p(y)| ≤
Clog

log(e+ 1/|x− y|)

for all points x, y. Some other names that have been used for these func-
tions are 0-Hölder continuous, Dini–Lipschitz continuous and weak Lipschitz
continuous. We say that the exponent p is globally log-Hölder continuous if
it is locally log-Hölder continuous and there exist constants Clog > 0 and
p∞ ∈ [1,∞) such that for all points x we have

|p(x) − p∞| ≤
Clog

log(e+ |x|)
.

Let us denote by P(Ω) the class of globally log-Hölder continuous variable
exponents on Ω ⊂ R

n with 1 < p− ≤ p+ <∞. By [8, Theorem 1.5] we know
that

M : Lp(·)(Rn) → Lp(·)(Rn)(2.1)

is bounded if p ∈ P(Rn). Global log-Hölder continuity is the best possible
modulus of continuity to imply the boundedness of the maximal operator
(see [8, 34]). For other, weaker results see [11, 30, 33]. If the maximal operator
is bounded, then it follows easily that C∞

0 (Rn) is dense in W 1,p(·)(Rn). In
general, however, the latter condition is much weaker (see [18, 25, 40]).

3. The definition of trace spaces. Recall the definition of the trace
of a W 1,1 function: if F ∈W 1,1(H)∩C(H), then TrF := F |Rn and it follows
that ‖TrF‖L1(Rn) ≤ c‖F‖W 1,1(H). Having defined a bounded linear operator

Tr on a dense subset of W 1,1 we extend it to all of W 1,1 continuously.
Consider next a function F ∈ W 1,p(·)(H). Then F ∈ W 1,1

loc (H). Thus
by the previous paragraph TrF is defined as a function in L1

loc(R
n). Note

that if F ∈ W 1,p(·)(H) ∩ C(H), then we still have TrF = F |Rn . The trace

space TrW 1,p(·)(H) consists of the traces of all functions F ∈ W 1,p(·)(H).
Notice that the elements of TrW 1,p(·)(H) are functions defined on R

n—to
emphasize this we will always use lowercase letters for functions on R

n,
whereas uppercase letters will be used for functions in H and R

n+1. The
quotient norm

‖f‖Tr W 1,p(·)(H) = inf
{
‖F‖W 1,p(·)(H) : F ∈W 1,p(·)(H) and TrF = f

}

makes TrW 1,p(·)(H) a Banach space. The main purpose of this paper is to
provide an intrinsic norm for the trace space, i.e. a norm which is defined
only in terms of f and not in terms of its extension F .
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Intuitively we would expect that this intrinsic norm only depends on
p|Rn and not on p on the whole space H. Nevertheless, the definition of
TrW 1,p(·)(H) above is dependent on the values of p on all of H. It has often
been the case that log-Hölder continuity of the exponent p is a sufficient
condition for variable exponent spaces to behave in a very nice way. This
also turns out to hold for trace spaces:

Theorem 3.1. Let p1, p2∈P(H) with p1|Rn =p2|Rn. Then TrW 1,p1(·)(H)
= TrW 1,p2(·)(H) with equivalent norms.

We will give the proof of this theorem using an extension from W 1,p(·)(H)
to W 1,p(·)(Rn+1). In the following proofs we also need the lower half-space
−H = R

n × (−∞, 0), its closure −H, and R
n+1
6=0 = R

n × (R \ {0}).

Definition 3.2. Let us call φ a standard mollifier (on R
n) if φ ∈

C∞(Rn) with φ ≥ 0,
T
φdξ = 1 and suppφ ⊂ Bn(0, 1). We call {φt} a

standard mollifier family (on R
n) if φ is a standard mollifier and φt(ξ) =

t−nφ(ξ/t).

Note that if p ∈ P(Rn) and {φt} is a standard mollifier family, then
φt ∗ f → f in W 1,p(·)(Ω) for all f ∈W 1,p(·)(Ω) (see [6, 9, 36, 37]).

Theorem 3.3. Let p ∈ P(Rn+1). Then there exists a bounded , linear

extension operator E : W 1,p(·)(H) →W 1,p(·)(Rn+1).

Proof. Let F ∈ W 1,p(·)(H). It follows from p ∈ P(Rn+1) that C∞
0 (H) is

dense in W 1,p(·)(H), hence it suffices to prove the claim for F ∈ C∞(H). Let
{φt} be a standard mollifier family on R

n+1. Then we define EF : R
n+1 → R

by

EF (x, t) :=

{
F (x, t) for t ≥ 0,

(φ|t| ∗ F )(x, |t|) for t < 0.

We have to show that EF ∈ W 1,p(·)(Rn+1) with bounded norm. Obviously,
EF ∈ C∞(−H). In the following we write ξ := (x, t) ∈ −H and ξ′ := (x, |t|).
We directly estimate

|(EF )(ξ)| = |(φ|t| ∗ F )(ξ′)| ≤ c(φ)M(n+1)(χHF )(ξ′),

|∇x(EF )(ξ)| = |(φ|t| ∗ ∇xF )(ξ′)| ≤ c(φ)M(n+1)(χH∇xF )(ξ′).

For the t-derivative we need a slightly more involved calculation: for all
ξ ≡ (x, t) ∈ −H and a ∈ R we have

∂t(EF )(ξ) =
∂

∂t
(φ|t| ∗ F )(ξ′) =

∂

∂t
(φ|t| ∗ (F − a))(ξ′)

=
\

Rn+1

[
n+ 1

|t|
φ|t|(ξ

′ − η) +
1

|t|2
(∇φ)|t|(ξ

′ − η) · (ξ′ − η)

]
(F (η) − a) dη,
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where (∇φ)r(η) := r−n−1∇φ(η/r) for r > 0. Setting a = 〈F 〉n+1
ξ′,|t|

we find

that

|∂t(EF )(ξ)|

≤
\

Bn+1(ξ′,|t|)

(
n+ 1

|t|n+2
‖φ‖∞ +

1

|t|n+3
‖∇φ‖∞|ξ′ − η|

)
|F (η) − 〈F 〉n+1

ξ′,|t|
| dη

≤ |t|−n−2((n+ 1)‖φ‖∞ + ‖∇φ‖∞)
\

Bn+1(ξ′,|t|)

|F (η) − 〈F 〉n+1
ξ′,|t|| dη

=
c(φ)

t

<
Bn+1(ξ′,|t|)

|F (η) − 〈F 〉n+1
ξ′,|t|| dη.

Then the Poincaré inequality implies that

|∂t(EF )(ξ)| ≤ c(φ)〈|∇F |〉n+1
ξ′,|t| ≤ c(φ)M(n+1)(χH∇F )(ξ′).

Overall, we have shown that

|(EF )(ξ)| ≤ cM(n+1)(χHF )(ξ′), |∇(EF )(ξ)| ≤ cM(n+1)(χH∇F )(ξ′)

for all ξ ≡ (x, t) ∈ −H. Since M(n+1) is continuous from Lp(·)(Rn+1) to

Lp(·)(Rn+1), this pointwise inequality implies that

‖EF‖W 1,p(·)(−H) ≤ c‖M(n+1)F‖Lp(·)(H) + c‖M(n+1)(χH∇F )‖Lp(·)(H)

≤ c‖F‖W 1,p(·)(H).

It remains to show that EF has a distributional gradient in R
n+1, which, by

[41, Theorem 2.1.4], follows once we show that EF is absolutely continuous
on lines (ACL). Recall that this means (by definition) that the set of values
x ∈ R

n for which the function t 7→ EF (x, t) is not absolutely continuous on R

has n-measure zero, and similarly for all the other co-ordinate directions.
We easily see that EF ∈ C(Rn+1), and that EF is ACL on both H and −H,
from which it directly follows that EF ∈ ACL(Rn+1), so ∇EF exists in the
distributional sense in the whole space.

We now show how Theorem 3.3 implies Theorem 3.1.

Proof of Theorem 3.1. Define q(x, t) := p1(x, t) for t ≥ 0 and q(x, t) :=
p2(x,−t) for t < 0. Then q ∈ P(Rn+1). By Theorem 3.3 there exist bounded,
linear extensions

E1 : W 1,q(·)(H) →W 1,q(·)(Rn+1),

E2 : W 1,q(·)(−H) →W 1,q(·)(Rn+1).

This directly implies TrW 1,q(·)(−H) = TrW 1,q(·)(H) with equivalence of
norms. The identities TrW 1,q(·)(H) = TrW 1,p(·)(H) and TrW 1,q(·)(−H) =
TrW 1,p(·)(H) (by reflection) conclude the proof of the theorem.



134 L. Diening and P. Hästö

Remark 3.4. The first author has previously proven an extension the-
orem for variable exponent spaces (see [10, Theorem 4.2]). The difference
between that result and Theorem 3.3 is the following: in Theorem 3.3 the
exponent p is already given outside of H while in [10] the exponent p had to
be extended from H to R

n+1 in a special way.

Recall the definition of the Sobolev space of functions with zero boundary

value: the spaceW
1,p(·)
0 (H) is the completion of C∞

0 (H) inW 1,p(·)(H). (Other
definitions are better when smooth functions are not dense; see [21–23].) We

next characterize W
1,p(·)
0 (H) in terms of traces.

Theorem 3.5. Suppose that p ∈ P(H) and let F ∈ W 1,p(·)(H). Then

F ∈W
1,p(·)
0 (H) if and only if TrF = 0.

Proof. Suppose first that F ∈W 1,p(·)(H) with TrF = 0. We extend p to

−H by reflection. Since W 1,p(·)(H) →֒W 1,1
loc (H), it follows by classical theory

that F extended by 0 to the lower half-space −H is differentiable in the sense
of distributions in R

n+1, and hence F is in W 1,p(·)(Rn+1). Now let φ be a
standard mollifier with support in Bn+1(en+1/2, 1/3), where en+1 denotes
the (n+1)st unit vector. Then φr∗(FχBn+1(0,1/r)) has compact support in H

and is smooth. Since p ∈ P(Rn+1), it follows that φr ∗ (FχBn+1(0,1/r)) → F

in W 1,p(·)(Rn+1) as r → 0, so F ∈W
1,p(·)
0 (H).

For the converse, if F ∈ W
1,p(·)
0 (H), then, by definition, F = limφi in

W 1,p(·)(H), where φi ∈ C∞
0 (H). Since Trφi = φi|Rn ≡ 0, the claim follows

by continuity of Tr : W 1,p(·)(H) → TrW 1,p(·)(H).

Remark 3.6. The previous theorem also holds under the weaker as-
sumption that the exponent is such that smooth functions are dense in the
Sobolev space. The proof is, however, more complicated, and we refer the
reader to [12] for details.

The following simple result was proven recently in [7, Lemma 4.3]. We
include the proof for completeness, since our proof is much shorter than that
in [7].

Proposition 3.7. Let X ⊂ R
n. If p ∈ P(X), then there exists an ex-

tension p̃ ∈ P(Rn) with the same log-Hölder constant and the same upper

and lower bounds.

Proof. Let Clog > 0 and p∞ ≥ 1 be such that

|p(x) − p(y)| ≤
Clog

log(e+ 1/|x− y|)
and |p(x) − p∞| ≤

Clog

log(e+ |x|)

for all points x, y ∈ X.
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Since t 7→ 1/log(e+1/t) is concave on (0,∞), we can use a McShane-type
maximal extension [31] of p. More precisely, we define

p(y) = sup
x∈X

(
p(x) −

Clog

log(e+ 1/|x− y|)

)

for y ∈ R
n. Then we truncate p(x) from above and below by

min

{
p+

X , p∞ +
Clog

log(e+ |x|)

}
and max

{
p−X , p∞ −

Clog

log(e+ |x|)

}
,

respectively. Since the constant function and x 7→ (log(e+ |x|))−1 both have
log-Hölder constant less than one, we see that the truncation does not affect
the local log-Hölder constant of p. Therefore the truncated p is the exponent
p̃ we are looking for.

The above proposition and Theorem 3.1 imply that the following defini-
tion is sensible (up to equivalence of norms).

Definition 3.8. Let p ∈ P(Rn) and let q ∈ P(H) be an arbitrary
extension of p. Then we define an intrinsic trace space by

(TrW 1,p(·))(Rn) := TrW 1,q(·)(H).

Remark 3.9. When p ∈ P(Rn), Theorem 3.1 simplifies studying the
space (TrW 1,p(·))(Rn) significantly. Indeed, for x ∈ R

n and t ∈ [0, 2] define
q(x, t) := p(x). Then q is globally log-Hölder continuous on R

n × [0, 2] with
1 < q− ≤ q+ < ∞. As in Lemma 3.7 we can extend q to the set H so
that q ∈ P(H). We have (TrW 1,p(·))(Rn) = TrW 1,q(·)(H). So we can always
assume that the exponent q(x, t) is independent of t when t ∈ [0, 2].

4. Intrinsic characterization of the trace space. For a function
f ∈ L1

loc(R
n) we define the sharp operator by

M ♯
Bn(x,r)f =

<
Bn(x,r)

|f(y) − 〈f〉nx,r| dy.

Using the triangle inequality it is easy to show that

M ♯
Bn(x,r)f ≤

<
Bn(x,r)

<
Bn(x,r)

|f(y) − f(z)| dy dz ≤ 2M ♯
Bn(x,r)f.(4.1)

We define the trace modular ̺Tr,p(·) by

̺Tr,p(·)(f) =
\

Rn

|f(x)|p(x) dx+

1\
0

\
Rn

(
1

r
M ♯

Bn(x,r)f

)p(x)

dx dr.

Obviously, ̺Tr,p(·) is convex. Thus

‖f‖Tr,p(·) := inf{λ > 0 : ̺Tr,p(·)(f/λ) ≤ 1}
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is a norm, since it is the Minkowski functional of the absolutely convex set
{f : ̺Tr,p(·)(f) ≤ 1}.

The following theorem characterizes the traces of W 1,p(·)(H)-functions
and completes the proof of Theorem 1.1.

Theorem 4.2. Let p ∈ P(H) and let f ∈ L1
loc(R

n). Then f belongs to

TrW 1,p(·)(H) if and only if ‖f‖Tr,p(·) <∞, or , equivalently ,\
Rn

|f(x)|p(x) dx+

1\
0

\
Rn

(
1

r
M ♯

Bn(x,r)f

)p(x)

dx dr <∞,

where p(x) := p(x, 0). Moreover , ‖f‖Tr,p(·) is equivalent to the quotient norm

‖f‖Tr W 1,p(·)(H).

To prove the theorem we have to show two things. First, for F ∈W 1,p(·)(H)
and f := TrF we have to show that ‖f‖Tr,p(·) ≤ c‖f‖TrW 1,p(·)(H). Therefore,

we have to estimate |f | and M ♯
Bn(x,t)f in terms of |F | and |∇F |. Second, for

f ∈ TrW 1,p(·)(H) we have to show the existence of some F ∈W 1,p(·)(H) with
TrF = f and ‖F‖W 1,p(·)(H) ≤ c ‖f‖Tr,p(·). We will define the extension F by

F (x, t) := (φt ∗ f)(x) for x ∈ R
n and t > 0, where (φt) is a standard mollifier

family in R
n. In order to estimate ‖F‖W 1,p(·)(H) we need to estimate |F | and

|∇F | in terms of |f | and M ♯
Bn(x,t)f . The following two lemmas provide these

estimates.

Lemma 4.3. There exists a constant c1 > 0 so that

M ♯
Bn(z,r) TrF ≤ c1r

<
Bn+1((z,0),r)

χH(ξ)|∇F (ξ)| dξ

for all z ∈ R
n, r > 0 and F ∈W 1,1(Bn+1((z, 0), r)).

Proof. Since smooth functions are dense in W 1,1(Bn+1(z, r)) it suffices
to prove the claim for smooth F . As usual we write f = TrF = F |Rn . Let
us estimate |f(x) − f(y)| for x, y ∈ R

n by integrating the gradient over the
path γζ = [x, ζ] ∪ [ζ, y] for ζ ∈ H:

|f(x) − f(y)| ≤
\
γζ

|∇F (ξ)| dξ.(4.4)

Define Bx,y = Bn+1
(x+y

2 + |x−y|
4 en+1,

|x−y|
8

)
∩ P , where P is the mid-point

normal plane of the segment [x, y] and let Ax,y =
⋃

ζ∈Bx,y
γζ . Next we take

the average integral of (4.4) over ζ ∈ Bx,y. This so-called Riesz potential
estimate (e.g. [26]) yields

|f(x) − f(y)| ≤ c
\

Ax,y

|∇F (ξ)|(|x− ξ|−n + |y − ξ|−n) dξ.
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Let z ∈ R
n and r > 0. Using the previous estimate together with (4.1) gives

M ♯
Bn(z,r)f ≤ c

<
Bn(z,r)

<
Bn(z,r)

\
Ax,y

|∇F (ξ)|t−n dξ dx dy,(4.5)

where t denotes the (n + 1)st co-ordinate of ξ and we used the fact that
t ≤ min{|y − ξ|, |x− ξ|} when ξ ∈ Ax,y.

The set Ax,y consists of two cones, one emanating from y and the other
from x, denoted by A′

x,y and A′′
x,y, respectively. By symmetry, we see that we

can replace Ax,y by A′
x,y in (4.5). We want to swap the order of integrations.

So suppose that ξ ∈ A′
x,y. Then certainly ξ ∈ Bn+1(z, r). Also, ξ lies in

a cone emanating from y whose direction depends on x − y. Thus we see
that y lies in the cone emanating from ξ with the same base-angle but
opposite direction. This means that for a fixed ξ the variable y varies in a
ball Bn(w, c′t) where ξ = (w, t) and c′ > 0 depends only on the dimension n.
Hence

M ♯
Bn(z,r)f ≤ cr−2n

\
Bn(z,r)

\
Bn(z,r)

\
A′

x,y

|∇F (ξ)|t−n dξ dx dy

≤ cr−2n
\

Bn+1((z,0),r)

χH(ξ)|∇F (ξ)|t−n
\

Bn(w,c′t)

\
Bn(z,r)

dx dy dξ

= cr
<

Bn+1((z,0),r)

χH(ξ)|∇F (ξ)| dξ.

This proves the lemma.

The proof of the next lemma is essentially the same as the proof of
Theorem 3.3, so it is omitted here.

Lemma 4.6. Let {φt} be a standard mollifier family on R
n. Let f ∈

L1
loc(R

n) and define F (x, t) := φt ∗ f(x) for x ∈ R
n and t ∈ (0,∞). Then

there exists a constant c2 depending only on φ and n such that , for all x ∈ R
n

and t ∈ (0,∞),

|F (x, t)| ≤ c2〈|f |〉
n
x,t, |∇F (x, t)| ≤

c2
t
M ♯

Bn(x,t)f.

Thus we are ready for the proof of the main result.

Proof of Theorem 4.2. Due to Theorem 3.1 and Remark 3.9 we can
assume without loss of generality that p(x, t) = p(x, 0) = p(x) for x ∈ R

n

and t ∈ [0, 2].
Let {φt} be a standard mollifier family on R

n, and let f ∈ TrW 1,p(·)(H)
with ‖f‖Tr W 1,p(·)(H) ≤ 1, or equivalently, with\

Rn

|f(x)|p(x) dx+

1\
0

\
Rn

(
1

r
M ♯

Bn(x,r)f

)p(x)

dx dr ≤ 1.(4.7)
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We have to show the existence of an extension F ∈W 1,p(·)(H) which satisfies
‖F‖W 1,p(·)(H) ≤ c, where c is independent of f . As mentioned above, we

would like to consider the extension (x, t) 7→ φt ∗f(x). But in order to avoid
difficulties as t → ∞ we cut off the part for large t. Let ψ ∈ C∞

0 ([0,∞))
with χB1(0,1/2) ≤ ψ ≤ χB1(0,1). Then our extension F is given by F (x, t) :=
φt ∗ f(x)ψ(t).

We now estimate the norm of F in W 1,p(·)(H). Using Lemma 4.6 and
noting that 〈|f |〉nx,t ≤Mf(x), we find that

̺Lp(·)(H)(F ) =

1\
0

\
Rn

|F (x, t)|p(x) dx dt ≤ c
\

Rn

Mf(x)p(x) dx.

Our assumptions on p imply that the maximal operator is bounded on
Lp(·)(Rn). Since ̺p(·)(f) ≤ 1, it follows from the previous inequality that
̺Lp(·)(H)(F ) ≤ c. We move to the norm of the gradient. Using Lemma 4.6
again, we estimate

̺Lp(·)(H)(∇F ) =

1\
0

\
Rn

|∇F (x, t)|p(x) dx dt

≤ c(ψ)

1\
0

\
Rn

∣∣∣∣
1

t
M ♯

Bn(x,t)f

∣∣∣∣
p(x)

dx dt ≤ c.

Thus we have shown that F ∈W 1,p(·)(H). Furthermore, it follows easily that
f = TrF , so we have proved one of the implications in the theorem.

To prove the opposite implication, we use the density of smooth functions
and restrict ourselves without loss of generality to F ∈W 1,p(·)(H)∩C∞(H).
Replacing F by Fψ, where ψ is as above, we see that it suffices to consider
F supported in R

n × [0, 1]. By homogeneity, it suffices to consider the case
‖F‖W 1,p(·)(H) ≤ 1 and to prove ‖f‖Tr,p(·) ≤ C. Since p is bounded, the latter

condition is equivalent to ̺Tr,p(·)(f) ≤ C, which is what we now prove. Define
f := TrF . We find that

|f(x)| = |F (x, 0)| ≤

1\
0

|∇F (x, t)| dt.

Hence using Jensen’s inequality we get

|f(x)|p(x) ≤

1\
0

|∇F (x, t)|p(x) dt,

and, integrating over x ∈ R
n,
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̺p(·)(f) =
\

Rn

|f(x)|p(x) dx ≤
\

Rn

1\
0

|∇F (x, t)|p(x) dt dx = ̺Lp(·)(H)(∇F ).

Thus we have bounded the Lp(·) part of the trace norm.
Since f = TrF , by Lemma 4.3 we get
1\
0

\
Rn

(
1

r
M ♯

Bn(x,r)f

)p(x)

dx dr

≤ c

1\
0

\
Rn

( <
Bn+1((x,0),r)

χH(ξ)|∇F (ξ)| dξ
)p(x)

dx dr

≤ c

1\
0

\
Rn

( <
Bn+1((x,r),2r)

χH(ξ)|∇F (ξ)| dξ
)p(x)

dx dr

≤ c
\

Rn×[0,1]

(M(n+1)(χH |∇F |)(η))p(η) dη.

Extending the exponent to the lower half-space by reflection, we immediately
see that p ∈ P(Rn+1) and

1\
0

\
Rn

(
1

r
M ♯

Bn(x,r)f

)p(x)

dx dr ≤ c
\

Rn+1

(M(n+1)(χH |∇F |)(ξ))p(ξ) dξ.

Since the maximal operator is bounded on Lp(·)(Rn+1), the right-hand side
of the previous inequality is bounded by a constant, which concludes the
proof.

Acknowledgments. We would like to thank the referee for a careful
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[34] L. Pick and M. Růžička, An example of a space Lp(x) on which the Hardy–Littlewood

maximal operator is not bounded, Expo. Math. 19 (2001), 369–371.
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