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Representations with regular norm-behaviour

of locally compact abelian semigroups

by

László Kérchy and Zoltán Léka (Szeged)

Abstract. We prove that some regularity conditions on unbounded representations
of topological abelian semigroups with countable spectral conditions induce a certain
stability result extending the well-known Arendt–Batty–Lyubich–Vũ theorem.

1. Introduction. Consider the well-posed abstract Cauchy problem

(ACP)

{
u̇(t) = Au(t) (t ≥ 0),

u(0) = x,

where A is a densely defined, closed operator acting on a complex Banach
space X and x ∈ X . Let (T (t))t≥0 denote the C0-semigroup generated by A
and suppose that the orbits T (t)x are bounded for all x ∈ X . The well-known
Arendt–Batty–Lyubich–Vũ theorem asserts that limt→∞ ‖T (t)x‖ = 0 for all
x ∈ X if σ(A) ∩ iR is countable and the point spectrum of the adjoint A∗

on iR is empty. Quite a few generalizations of the theorem are known for
bounded and unbounded representations of suitable locally compact abelian
semigroups (see [B], [BV], [BY], [K1], [K2]). In this article we shall extend
to topological semigroups the method that appears in the papers [K1], [K2]
in connection with discrete abelian semigroups.

In the next section we introduce the concept of almost convergence (de-
fined for sequences in [Lo]) in terms of invariant means, which will be crucial
in defining the limit functional in Section 3 for unbounded representations
satisfying a certain regularity condition. It turns out that this limit func-
tional is intrinsic to the representation itself and independent of any choice
of gauge function involved in the regularity condition. This enables us to de-
fine the peripheral spectrum, and various spectral notions of representations
with regular norm-function, in Section 4. In the bounded case the definition
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coincides with the one introduced by Batty and Vũ [BV] and Lyubich [L]. In
Section 5 we generalize a well-known method associating an isometric repre-
sentation to a representation with regular norm-function. With these results
at hand, we give a new extension of the ABLV theorem in Section 6. Our
stability theorem is strongly related to the main result of [BY]. The spectral
conditions are essentially the same. The differences appear in the method
of normalization and in the nature of convergence expressing stability. Our
proof follows the usual scheme and relies on results about isometric repre-
sentations proved in [BV]. The originality of our approach is in the usage
of almost convergence defining regular norm-behaviour and in the system-
atic study of representations with this property. We note that [V] was the
first paper dealing with a weighted version of the ABLV theorem. The more
recent work [BP] has a very general result, in the spirit of [BY], but using
different methods.

2. Almost convergence on semigroups. Consider an abelian semi-
group (S,+). For any s ∈ S and ω ⊆ S set ω ⊖ s := {s′ ∈ S : s + s′ ∈ ω}.
The translation of a function f : S → C by s ∈ S is the mapping fs : S → C

defined by fs(s
′) := f(s + s′) (s′ ∈ S). Let (S,Ω, λ) be a σ-finite mea-

sure space on S such that (i) ω ⊖ s ∈ Ω whenever ω ∈ Ω and s ∈ S, and
(ii) λ(ω) = 0 (ω ∈ Ω) implies λ(ω ⊖ s) = 0 for all s ∈ S. Obviously, S = R

n
+

with the Lebesgue measure and S = Z
n
+ with the counting measure sat-

isfy these conditions. Let L∞(λ) denote the Banach space of all essentially
bounded, complex-valued, measurable functions with the usual norm.

Lemma 1. Under the conditions (i) and (ii), τs : L∞(λ)→L∞(λ), f 7→fs,
is a well-defined linear mapping with ‖τs‖ = ‖τs1‖ = 1 for every s ∈ S.

Proof. Let χω be the characteristic function of ω ∈ Ω. Since χω is mea-
surable we infer by (i) that (χω)s = χω⊖s is also measurable. Using the usual
approximation method we find that fs is measurable for any f ∈ L∞(λ).
To see that the translation is well-defined on L∞(λ) suppose that f1 = f2

a.e.; then by (ii) we have (f1)s = (f2)s a.e. Obviously, ‖fs‖∞ ≤ ‖f‖∞. Since
‖1‖∞ = 1 and τs1 = 1, we obtain ‖τs‖ = ‖τs1‖ = 1.

The set M̃(S, λ) := {m ∈ L∞(λ)∗ : ‖m‖ = m(1) = 1} is called the
set of means on S with respect to λ. The Hahn–Banach theorem implies
that M̃(S, λ) 6= ∅. A functional m ∈ M̃(S, λ) is called an invariant mean

if m(fs) = m(f) for every f ∈ L∞(λ) and s ∈ S; the set of all invariant
means with respect to λ is denoted by M(S, λ). It is well-known that there
are invariant means on abelian groups, and this can be easily extended to
semigroups. For the reader’s convenience we sketch the proof.

Proposition 2. M(S, λ) is not empty.
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Proof. Since M̃(S, λ) is a convex, weak-∗ closed subset of the unit ball

of L∞(λ)∗, it is weak-∗ compact. Taking an m ∈ M̃(S, λ), for any s ∈ S

we have m ◦ τs ∈ M̃(S, λ), and T (s) : M̃(S, λ) → M̃(S, λ), m 7→ m ◦ τs, is
an affine, weak-∗ continuous mapping. The Markov–Kakutani theorem (see
e.g. [C, Theorem V.10.1]) implies the existence of a common fixed point

m0 ∈ M̃(S, λ). It is immediate that m0 is an invariant mean.

Consider a locally compact, Hausdorff abelian group G. Let S be a closed
subsemigroup of G with nonempty interior S◦ such that S − S = G and
S ∩ (−S) = {0}. By definition, for any s1, s2 ∈ S, s1 � s2 if s2 − s1 ∈ S.
In this way we obtain an inductive partial ordering on S, hence S is a
directed set. We say that a function f : S → C tends to 0 at infinity, written
lims f(s) = 0, if for every ε > 0 there exists an s0 ∈ S such that |f(s)| < ε
whenever s0 � s. Let µ denote the restriction of the Haar measure µ̃ of G
to S. It is clear that conditions (i) and (ii) of Lemma 1 are satisfied for µ,
indeed: ω⊖s = (ω−s)∩S. The (invariant) means with respect to µ are simply

called (invariant) means on S, and the notation L∞(S) := L∞(µ), M̃(S) :=

M̃(S, µ), M(S) := M(S, µ) is used. Throughout the paper a function f
defined on S is also considered to be a function on G, zero outside S.

Definition. A net {Kλ}λ∈Λ of compact subsets of G with nonempty
interiors is a strong Følner net for G if

(i) Kλ1
⊆ Kλ2

whenever λ1 ≤ λ2,
(ii) G =

⋃
K◦

λ,
(iii) µ̃((x+Kλ) △ Kλ)/µ̃(Kλ) → 0 (as λ → ∞) uniformly when x is

running through compact sets. (Here and below, △ stands for the
symmetric difference.)

A net {Kλ}λ∈Λ of compact subsets of G with nonempty interiors is called
a Følner net for G if (iii) is satisfied.

For example, if G = R then Kn := [−n, n] is a Følner sequence. We
recall that an arbitrary locally compact group G is called amenable if there
exists an invariant mean on G. The following theorem is a useful and deep
characterization of amenable groups (for its proof we refer to [P, Theorem
4.16]).

Theorem 3. A locally compact group G is amenable if and only if there

exists a strong Følner net for G. If G is σ-compact , then G is amenable if

and only if there exists a strong Følner sequence for G.

We shall assume in the following that G is σ-compact. Since G is abelian
by our assumption, the Markov–Kakutani theorem implies that G is amen-
able (see the proof of Proposition 2), thus using the characterization theorem
we obtain the existence of a strong Følner sequence {Kn}n∈N on G. We
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shall translate this sequence to the interior of S, preserving property (iii),
by means of the following two lemmas.

Lemma 4. If {Kn}n is a Følner sequence for G then {Kn + sn}n is also

a Følner sequence for G, for every sequence {sn}∞n=1 in G.

Proof. Using the translation invariance of the Haar measure, for any
measurable sets B1, B2 and g ∈ G, we have µ̃((B1 + g) △ (B2 + g)) =
µ̃(B1 △ B2); hence {Kn + sn}n is also a Følner sequence.

Lemma 5. Let K be a compact set in G. Then there exists an s ∈ S
such that K + s ⊆ S◦.

Proof. Since G = S − S by assumption, for any g ∈ G and s0 ∈ S◦ we
have g − s0 = s′ − s′′ with some s′, s′′ ∈ S. Since clearly s0 + s′ ∈ S◦, it
follows that G = S◦−S. The family {S◦−s : s ∈ S} forms an open covering
of K and so there exist s1, . . . , sn ∈ S such that K ⊆

⋃n
i=1(S

◦ − si). Set
s =

∑n
i=1 si. As si � s, we have S◦ − si ⊆ S◦ − s for every 1 ≤ i ≤ n. It

follows that K ⊆ S◦ − s, that is, K + s ⊆ S◦.

An immediate consequence of Lemmas 4 and 5 is that there is a Følner

sequence in the interior of S.

We shall need yet the following auxiliary result on topological semi-
groups. Recall that a function f on S is called locally bounded if it is bounded
on compact subsets of S. Let Cc(S) denote the set of continuous functions
with compact support in S.

Lemma 6. Let K ⊆ S◦ be a compact subset of G. If f is a measurable,

locally bounded function on S and g ∈ L∞(S) then the convolution

(f ∗ g)(s) :=
\
K

f(s+ t)g(t) dµ(t)

is continuous on S.

Proof. Assuming f ∈ Cc(S), we can easily verify that f is uniformly
continuous on S, that is, for every ε > 0, there exists an open set U in G
containing 0 such that |f(s′) − f(s)| ≤ ε whenever s′ − s ∈ U and s′, s ∈ S.
Hence f ∗ g is continuous.

Suppose now that f is any locally bounded, measurable function. We
can choose a compact neighbourhood K1 of 0 in G such that K +K1 ⊆ S◦.
Indeed, every s ∈ K is an inner point of S, hence there exists an open neigh-
bourhood Vs of 0 (in G) such that s+Vs ⊆ S◦. Choose open neighbourhoods
Ws of 0 such that Ws +Ws ⊆ Vs. Then {s +Ws : s ∈ K} is an open cov-
ering of K and therefore has a finite subcovering s1 + Ws1

, . . . , sn + Wsn .
The set W :=

⋂n
i=1Wsi

is open and K + W ⊆ (
⋃n

i=1(si + Wsi
)) + W =⋃n

i=1(si + Wsi
+ W ) ⊆

⋃n
i=1(si + Vsi

) ⊆ S◦. Since G is a locally compact
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Hausdorff space there is a compact neighbourhood K1 ⊆ W of 0, hence
K2 := K +K1 ⊆ S◦. It is clear that K2 is also compact.

Fix ε > 0 and y ∈ S. Since f ∈ L1(S, χK2+ydµ), there exists an h ∈ Cc(S)
such that

T
K2+y |f(t) − h(t)| dµ(t) < ε. (Notice that the restricted Haar

measure µ is regular on the σ-compact set S; see [Pe, p. 238].) We already
know that h ∗ g is continuous. Hence we can choose a neighbourhood U
of 0 in G such that U ⊆ K1 and |(h ∗ g)(y) − (h ∗ g)(v)| < ε whenever
v ∈ (y + U) ∩ S. Then

|(f ∗ g)(y) − (f ∗ g)(v)| ≤
\
K

|fy − hy| |g| dµ+ |(h ∗ g)(y) − (h ∗ g)(v)|

+
\
K

|hv − fv| |g| dµ

<
\

K+y

|f − h| ‖g‖∞ dµ+ ε+
\

K+v

|h− f | ‖g‖∞ dµ

≤ 2‖g‖∞
\

y+K2

|f − h| dµ+ ε < 2ε‖g‖∞ + ε,

and the lemma follows.

We proceed to the study of almost convergence.

Definition. A function f ∈ L∞(S) is called almost convergent if the
set {m(f) : m ∈M(S)} is a singleton. We shall use the notation a-lim f = c
whenever m(f) = c for all m ∈M(S).

A useful property of almost convergence is described in the following
proposition.

Proposition 7. If f ∈ L∞(S) is almost convergent with a-lim f = c
and {Kn}n is a Følner sequence on S then

lim
n→∞

1

µ(Kn)

\
Kn

fy dµ = c

uniformly with respect to y ∈ S.

Proof. Assume that there exist an ε > 0, a strictly increasing sequence
{nk}k of positive integers, and a sequence {yk}k ⊂ S such that

∣∣∣∣
1

µ(Knk
)

\
Knk

fyk
dµ− c

∣∣∣∣ > ε for every k ∈ N.

Applying Lemma 4 to the subsequence {Knk
}k we see that {Ck :=Knk

+ynk
}k

is also a Følner sequence. For every k ∈ N, consider the linear functional ϕk
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on L∞(S) defined by

ϕk(g) :=
1

µ(Ck)

\
Ck

g dµ, g ∈ L∞(S).

Obviously, ‖ϕk‖ = ϕk(1) = 1. By the Banach–Alaoglu theorem there exists a
weak-∗ cluster point m0 of {ϕk}k. Clearly, ‖m0‖ = m0(1) = 1. Furthermore,
for every g ∈ L∞(S) and y ∈ S, we have

|ϕk(g) − ϕk(gy)| =
1

µ(Ck)

∣∣∣
\

Ck

g dµ−
\

Ck+y

g dµ
∣∣∣

≤
µ((Ck+ y)△Ck)

µ(Ck)
‖g‖∞ → 0 as k → ∞,

whence m0(g) = m0(gy), that is, m0 is an invariant mean.
Since |m0(f) − c| ≥ ε by our assumption, we conclude that f cannot

almost converge to c.

We shall also need a stronger form of almost convergence.

Definition. We say that a function f ∈ L∞(S) almost converges in

strong sense to a complex number c if a-lim |f−c| = 0. In that case we shall
write as-lim f = c.

The following multiplicative property of as-lim is analogous to [K2,
Lemma 1]:

Lemma 8. For every f ∈ L∞(S), the following statements are equiva-

lent:

(i) as-lim f = c,
(ii) m(fg) = cm(g) for every g ∈ L∞(S) and m ∈M(S).

Proof. (i)⇒(ii): Every invariant meanm ∈M(S) is a positive functional
on L∞(S). Given any h ∈ L∞(S), let α be a complex number with |α| = 1
and |m(h)| = αm(h). Since |h| − Re(αh) ≥ 0, it follows that m(|h|) ≥
m(Re(αh)) = Rem(αh) = |m(h)|. Therefore

|m(fg) − cm(g)| = |m(fg − cg)| ≤ m(|fg − cg|) ≤ ‖g‖∞m(|f − c1|) = 0.

(ii)⇒(i): Let g(s) := |f(s)− c|(f(s)− c)−1 if f(s) 6= c and 0 otherwise.
Then g ∈ L∞(S), and m(|f − c1|) = m((f − c)g) = m(fg) − cm(g) = 0.

It is easy to check that convergence implies almost convergence in strong
sense. Consider the function f ∈ L∞(R+), where f(s) := 1 if n ≤ s < n+ 1
and n is even, while f(s) := −1 otherwise. Since f+f1 is identically zero, we
infer that a-lim f = 0; however, lims→∞ f(s) does not exist. It is also clear
that f does not converge in the strong sense. Consider now the function
g ∈ L∞(R+), where g(s) := 1 if 2n ≤ s < 2n + 1 (n ∈ N), while g(s) := 0

otherwise. For any a ∈ R+ and N ∈ N, let Ga,N := N−1
∑N

k=1 ga+k. Since
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m(Ga,N ) = m(g) for every invariant mean m ∈M(R+), and since ‖Ga,N‖∞
can be arbitrarily small, we conclude that as-lim g = 0. On the other hand,
lims→∞ g(s) does not exist.

3. Existence of the limit functional. The regular norm-behaviour
of representations will be defined in terms of gauge functions.

Definition. We say that p : S → (0,∞) is a gauge function if it is
locally bounded, measurable and, for every s ∈ S, ps/p ∈ L∞(S) almost
converges in strong sense to a positive real number cp(s). The function cp is
called the limit functional of the gauge function p.

If p : S → (0,∞) is a gauge function then the equality

ps1+s2

p
=

(ps1
)s2

ps2

·
ps2

p

implies by Lemma 8 that cp(s1 + s2) = cp(s1)cp(s2) (s1, s2 ∈ S), that is, the
limit functional cp of p is multiplicative.

The next lemma plays an important role in the proof of the main theorem
of this section.

Lemma 9. Let p be a gauge function with p(s) ≥ 1 for s ∈ S. Then

cp(s) ≥ 1 for every s ∈ S.

Proof. We can see from Proposition 7 that, for every s ∈ S,

1

µ(Kn)

\
Kn

(ps/p)y dµ→ cp(s) (n→ ∞),

uniformly with respect to y, where {Kn}n is a Følner sequence in S. Assume
that cp(s0) < 1 for some s0 ∈ S, and choose cp(s0) < δ < 1. There exists
n0 ∈ N such that µ(Kn0

)−1
T
Kn0

(ps0
/p)y dµ ≤ δ is true for every y ∈ S. Now

the Jensen inequality implies

1

µ(Kn0
)

\
Kn0

(log ps0+y − log py) dµ ≤ log

(
1

µ(Kn0
)

\
Kn0

(ps0
/p)y dµ

)

≤ log δ < 0 (y ∈ S).

Summing the inequalities obtained for y = 0, s0, 2s0, . . . , (m−1)s0 we deduce
that

1

µ(Kn0
)

\
Kn0

log pms0
dµ ≤

1

µ(Kn0
)

\
Kn0

log p dµ+m log δ

for every m ∈ N. This is a contradiction because the left-hand side of the
inequality must be nonnegative, since p ≥ 1, but the right-hand side is
negative for large m.
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We recall that the continuous homomorphisms of S into the multiplica-
tive semigroup of C, not identically zero, are called the characters of S.

Corollary 10. Let χ be a character of S such that cp ≤ |χ| ≤ p. Then

|χ| = cp.

Proof. It is clear that p̃ = p/|χ| is a gauge function with cp̃ = cp/|χ|.
Since p̃ ≥ 1, Lemma 9 yields cp̃ ≥ 1, and so cp ≥ |χ|.

Throughout the paper X stands for a complex Banach space and L(X ) is
the set of all bounded linear operators on X . A representation ̺ of S in the
Banach space X is a mapping ̺ : S → L(X ) such that ̺(0) = I, ̺(s + t) =
̺(s)̺(t) (s, t ∈ S), and s 7→ ̺(s)x is continuous for every x ∈ X .

Proposition 11. Let ̺ : S → L(X ) be a bounded representation. Then,
for every x ∈ X , ‖̺(·)x‖ almost converges to zero if and only if lims ‖̺(s)x‖
= 0.

Proof. Assume a-lims ‖̺(s)x‖ = 0 for some x ∈ X . Then by Proposi-
tion 7, for any ε > 0, we have ‖̺(s0)x‖ ≤ εM−1 for some s0 ∈ S, where
M := sup{‖̺(s)‖ : s ∈ S}. Thus ‖̺(s + s0)x‖ ≤ MεM−1 = ε for every
s ∈ S, and so lims ‖̺(s)x‖ = 0. The converse is trivial.

Now we introduce the concept of regularity.

Definition. The representation ̺ : S → L(X ) is of regular norm-

behaviour with respect to the gauge function p or has p-regular norm-function

if ‖̺(s)‖ ≤ p(s) for every s ∈ S, and a-lims‖̺(s)‖/p(s) = 0 does not hold.

There is a connection between the spectral radius function r(̺(s)) of a
representation ̺ with p-regular norm-function and the limit functional cp(s).
Namely, the argument applied in the proof of [K2, Proposition 8] yields the
following statement:

Lemma 12. cp(s) ≤ r(̺(s)) for every s ∈ S.

We are basically interested in unbounded representations of S, and the
gauge functions will be used to derive bounded functions. Therefore the
following assumption, valid throughout the paper, is natural:

(H) for any gauge function p we have p ≥ 1.

We show that the limit functional cp is continuous.

Theorem 13. Let p be a gauge function on S satisfying (H) and as-

sume that there exists a representation ̺ : S → L(X ) with a p-regular norm-

function. Then the limit functional cp of p is a positive character of S.

Proof. We already know that cp(s
′ + s′′) = cp(s

′)cp(s
′′), s′, s′′ ∈ S, so

cp is a homomorphism. It remains to show that cp is continuous. First, in
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view of Proposition 7 and Lemma 6, we see that cp is a measurable function,
being a sequential limit of continuous functions.

The Uniform Boundedness Principle shows that the function ‖̺(·)‖ is
bounded on compact sets, thus Lemma 12 implies that cp is also locally
bounded on S. Choose a compact set K ⊆ S◦ such that µ(K) > 0. Then
α :=

T
K cp(t) dµ(t) ∈ (0,∞). Given any y ∈ S, we have\

K

cp(y + t) dµ(t) =
\
K

cp(y)cp(t) dµ(t) = cp(y)
\
K

cp(t) dµ(t),

whence cp(y) = α−1
T
K cp(y+t) dµ(t). Now we can apply Lemma 6 to deduce

the continuity of cp.

Now we have arrived at the main result of the section.

Theorem 14. Let G be a locally compact , σ-compact , Hausdorff abelian

group with a closed subsemigroup S such that S − S = G, S ∩ (−S) = {0}
and S◦ 6= ∅. If the representation ̺ : S → L(X ) is of regular norm-behaviour

with respect to the gauge functions p and q satisfying (H), then

cp = cq.

Proof. We see from Lemma 12 that

cp(s) ≤ r(̺(s)) ≤ ‖̺(s)‖ ≤ q(s) (s ∈ S),

and c−1
p q is a gauge function by Theorem 13. Thus by Lemma 9 we have

1 ≤ cc−1
p q = c−1

p cq,

so cp ≤ cq. In a similar way we find that cp ≥ cq, thus cp = cq.

Now the following definition makes sense:

Definition. The function c̺ := cp is called the limit functional of the

representation ̺ with p-regular norm-function.

It was already shown in [K1] that for S = Z+ the limit functional
c̺(n) is equal to r(̺(n)) (n ∈ Z+). The analogous statement concerning
C0-semigroups is also valid. To prove this, we need a lemma. We say that
a representation T : R+ → L(X ) is quasinilpotent if r(T (s)) = 0 for every
s > 0. (Notice that in the quasinilpotent case r(T (·)) is not continuous, since
r(T (0)) = 1, and so it is not a character.)

Lemma 15. If the representation T : R+ → L(X ) is not quasinilpotent

then r(T (·)) is a character of R+.

Proof. Since this statement is certainly well-known, we only sketch a
proof. The submultiplicativity r(T (s+ t)) ≤ r(T (s))r(T (t)) (s, t ∈ R+) and
r(T (ns)) = r(T (s))n (n ∈ N, s ∈ R+) imply that r(T (s)) > 0 for every
s∈R+.Furthermore, it can be easily checked that ω0 := lims→∞ s−1 log‖T (s)‖



152 L. Kérchy and Z. Léka

∈ R exists; see e.g. [EN, p. 251]. Thus r(T (s)) = limn→∞ ‖T (ns)‖1/n =
exp(s limn→∞(ns)−1 log ‖T (ns)‖) = exp(ω0s) for every s ∈ R+.

Proposition 16. If the representation T : R+ → L(X ) is of regular

norm-behaviour, then cT (s) = r(T (s)) (s ∈ R+).

Proof. We know from Lemma 12 that r(T (s)) ≥ cT (s) > 0 (s ∈ R+),
and so T : R+ → L(X ) is not quasinilpotent. Hence Lemma 15 implies that
r(T (·)) is a character of R+. Now Corollary 10 yields the assertion.

However, the following example shows that the spectral radius function
and the limit functional can be different.

Example 17. On the semigroup R
2
+, consider the weight function w(x, y)

:= ex(1−y) +1 and the Banach space Cw of continuous functions f : R
2
+ → C

satisfying f |∂R
2
+ ≡ 0 and ‖f‖w := sup

R2
+
|f(x, y)|w(x, y) <∞. The strongly

continuous representation T : R
2
+ → L(Cw) is defined by

(T (s, t)f)(x, y) :=

{
f(x− s, y − t) if (x− s, y − t) ∈ R

2
+,

0 otherwise.

Since lim(x,y)→∞w(x, y) = 1 it follows that, for every (s, t) ∈ R
2
+,

lim
(x,y)→∞

w(s,t)(x, y)/w(x, y) = 1,

hence w is a gauge function (satisfying (H)) with cw ≡ 1. Since w is sub-
multiplicative, we have ‖T (s, t)‖ ≤ w(s, t) ((s, t) ∈ R

2
+). Taking a sequence

{fn}n in Cw satisfying 0 ≤ fn(x, y) ≤ fn(1/n, 1/n) = 1, (x, y) ∈ R
2
+, where

the support of fn is included in the disc centered at (1/n, 1/n) and of ra-
dius 1/(2n), we find that limn ‖fn‖w = 2 and limn ‖T (s, t)fn‖w = w(s, t),
whence 1

2w(s, t) ≤ ‖T (s, t)‖ ((s, t) ∈ R
2
+). This implies that T (s, t) has a

regular norm-function with respect to w. By the spectral radius formula,
r(T (s, 0)) = es.

4. The peripheral spectrum. Let S♯, S∗ denote the characters and
bounded characters of S, respectively. For any bounded character χ we have
|χ(s)| ≤ 1 for every s ∈ S. We recall that Cc(S) stands for the set of
continuous functions with compact support in S. The Fourier transform of
a function f ∈ Cc(S) with respect to the representation ̺ : S → L(X ) is
given by

f̂(̺) :=
\
S

f(s)̺(s) dµ(s).

The integral exists pointwise: f̂(̺)x =
T
S f(s)̺(s)x dµ(s) (x ∈ X ) in the

Bochner sense (see e.g. [H, Chapter 7.5]). Since the representation ̺ is
strongly continuous, the Uniform Boundedness Principle implies that ‖̺(·)‖

is bounded on the support of f , hence f̂(̺) ∈ L(X ). The characters of S
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are one-dimensional representations, hence the formula for f̂(χ) also makes
sense when χ ∈ S♯.

Since S is a locally compact Hausdorff space it is easy to see by the
Urysohn lemma that for each χ ∈ S♯ there exists an f ∈ Cc(S) such that

f̂(χ) 6= 0. Moreover, for all distinct χ1, χ2 ∈ S♯ we can find an f ∈ Cc(S)

such that f̂(χ1) 6= f̂(χ2). In other words, the functions f̂ separate the points
of S♯ from each other and from zero.

We shall define the spectrum for unbounded representations related to
Lyubich’s δ-spectrum [L] and the algebraic and balanced spectra of [K2]. In
the discrete case the algebraic spectrum of the representation ̺ was defined
in [K2] in the following way. Let A̺ denote the Banach algebra generated
by the set {̺(s) : s ∈ S}. Then σa(̺) := {h ◦ ̺ : h ∈ Σ(A̺)} where Σ(A̺)
is the Gelfand spectrum of the commutative Banach algebra A̺. It is easy
to see that σa(̺) is equal to the set of those characters χ ∈ S♯ satisfying
|
∑

s∈F asχ(s)| ≤ ‖
∑

s∈F as̺(s)‖ for all finite subsets F of S and as ∈ C. In
the continuous case one is led to the following extensions of the concept of
algebraic and balanced spectra.

Definition. The algebraic spectrum of the representation ̺ is

σa(̺) := {χ ∈ S♯ : |f̂(χ)| ≤ ‖f̂(̺)‖ for all f ∈ Cc(S)}.

The balanced spectrum is

σb(̺) := σa(̺) ∩ S
♯
b,

where S♯
b := {χ ∈ S♯ : χ(s) 6= 0 for all s ∈ S}.

The spectrum of ̺ with regular norm-function is

σ(̺) := {χ ∈ σa(̺) : |χ| ≤ c̺},

where c̺ denotes the limit functional of ̺.

We are going to show that the balanced spectrum σb(̺) is contained in
the spectrum σ(̺). We need the following lemma.

Lemma 18. If the norm-function of the representation ̺ : S → L(X ) is

continuous at s0 ∈ S, then |χ(s0)| ≤ ‖̺(s0)‖ for every χ ∈ σa(̺).

Proof. Fix a character χ ∈ σa(̺) and ε > 0. Since the functions ‖̺(·)‖
and χ are continuous at s0, there exists an open set V ⊆ S containing s0
such that | ‖̺(s)‖ − ‖̺(s0)‖ | < ε and |χ(s) − χ(s0)| < ε for every s ∈ V.
By the Urysohn lemma we can find a nonnegative function f0 ∈ Cc(S) with
support in V and

T
S f0 dµ = 1. Then

‖f̂0(̺)x‖ ≤
\
V

f0(s)‖̺(s)x‖ dµ(s) ≤
\
V

f0(s)(‖̺(s0)‖ + ε)‖x‖ dµ(s)

= (‖̺(s0)‖ + ε)‖x‖ (x ∈ X )



154 L. Kérchy and Z. Léka

and so ‖f̂0(̺)‖ ≤ ‖̺(s0)‖ + ε. As also |f̂0(χ) − χ(s0)| < ε, we infer that

|χ(s0)| − ε < |f̂0(χ)| ≤ ‖f̂0(̺)‖ ≤ ‖̺(s0)‖ + ε.

Since ε can be arbitrarily small, we conclude that |χ(s0)| ≤ ‖̺(s0)‖.

Proposition 19. If ̺ : S → L(X ) is a representation with regular

norm-function, then σb(̺) ⊆ σ(̺).

Proof. Let Sc(̺) stand for the set of points s ∈ S where ‖̺(·)‖ is contin-
uous. The norm-function ‖̺(·)‖, being the least upper bound of the contin-
uous functions ‖̺(·)x‖ (x ∈ X , ‖x‖ = 1), is lower semicontinuous. It follows
that S \Sc(̺) is of first Baire category, and so Sc(̺) is dense in S. (See, e.g.,
[E, p. 87].)

Fix χ ∈ σb(̺). We know from Lemma 18 that |χ(s)| ≤ ‖̺(s)‖ for every
s ∈ Sc(̺). Consider the representation ˜̺ := χ−1̺. It is clear that ‖˜̺(s)‖ ≥ 1
for every s ∈ Sc(̺). Assume that ‖˜̺(s0)‖ < 1 for some s0 ∈ S. Choose a
nonempty open set V ⊂ S◦ with compact closure. Then α := sup{‖̺(s)‖ :
s ∈ V } is finite. For any n ∈ N and s ∈ V, we have ‖˜̺(ns0+s)‖ ≤ ‖˜̺(s0)‖nα.
If n0 ∈ N is sufficiently large, then ‖˜̺(s0)‖n0α < 1, and so ‖˜̺(n0s0 +s)‖ < 1
for every s ∈ V. However, (n0s0 + V ) ∩ Sc(̺) being non-empty, we arrive at
a contradiction. Thus ‖˜̺(s)‖ ≥ 1 and so |χ(s)| ≤ ‖̺(s)‖ for all s ∈ S.

Assume ̺ has p-regular norm-function. Since |χ(s)| ≤ ‖̺(s)‖ ≤ p(s)
(s ∈ S), we infer that p̃(s) ≥ 1 (s ∈ S) for the gauge function p̃ = |χ|−1p.
Lemma 9 yields cp̃ ≥ 1, and the relations cp̃ = |χ|−1cp = |χ|−1c̺ imply
|χ| ≤ c̺, and so χ ∈ σ(̺).

Remarks. (a) For any χ ∈ σb(̺) we have seen that |χ(s)|n = |χ(ns)| ≤
‖̺(ns)‖ ≤ ‖̺(s)n‖ (s ∈ S, n ∈ N), whence |χ(s)| ≤ r(̺(s)), for an arbitrary
representation ̺.

(b) If S = R
n
+, then it can be easily checked that every character χ ∈

(Rn
+)♯ is non-vanishing, thus σa(̺), σb(̺) and σ(̺) coincide in that case.

(Indeed, let {ei}n
i=1 be the standard basis in R

n
+. If χ(t) = 0 for some

t = (t1, . . . , tn) ∈ R
n
+, then the equality χ(t) =

∏n
i=1 χ(ei)

ti implies that
χ(ej) = 0 for some 1 ≤ j ≤ n. Hence χ vanishes on a dense set. Since
χ(0) = 1 it follows that χ is not continuous.)

The most important spectrum that we need is the peripheral spectrum.

Definition. The peripheral spectrum of the representation ̺ : S→L(X )
with regular norm-function is defined by

σper(̺) := {χ ∈ σ(̺) : |χ(s)| = c̺(s) for all s ∈ S}.

Finally, we define the point spectrum.

Definition. The point spectrum of the representation ̺ : S → L(X ) is

σp(̺) := {χ∈ S♯ : there exists 0 6= x ∈ X with ̺(s)x = χ(s)x for all s∈ S}.
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The adjoint ̺∗(s) := ̺(s)∗ (s ∈ S) of ̺ is not necessarily strongly con-
tinuous, hence the spectrum of ̺∗ cannot be defined in general. However,
there is no difficulty in defining σp(̺

∗) analogously to σp(̺).

Multiplication of the representation ̺ (with regular norm-function) by
a nonvanishing character τ yields a representation (with regular norm-
function), whose different kinds of spectra can be naturally derived from
the spectra of ̺.

Lemma 20. If τ ∈ S♯
b then σa(τ̺) = τσa(̺), σb(τ̺) = τσb(̺), σ(τ̺) =

τσ(̺), σper(τ̺) = τσper(̺), σp(τ̺) = τσp(̺) and σp(τ̺
∗) = τσp(̺

∗).

Proof. Consider the bijection Ψ : Cc(S) → Cc(S), Ψ(f) := fτ. Since

(Ψ(f))∧(χ) = f̂(τχ) and (Ψ(f))∧(̺) = f̂(τ̺) for every f ∈ Cc(S), we in-
fer that σa(τ̺) = τσa(̺), whence σb(τ̺) = τσb(̺) readily follows. In view
of cτ̺ = τc̺ we deduce that σ(τ̺) = τσ(̺) and σper(τ̺) = τσper(̺). Fi-
nally, the equalities σp(τ̺) = τσp(̺) and σp(τ̺

∗) = τσp(̺
∗) are immediate

consequences of the definition.

Let us equip S♯ with the compact-open topology, so that convergence of
a net in S♯ means uniform convergence on compact subsets of S. The closed
set S∗ of bounded characters can be identified with the Gelfand spectrum
Σ(L1(S)) of the abelian Banach algebra L1(S). Indeed, L1(S) with the
multiplication (f ∗ g)(s) =

T
S f(s − t)g(t) dµ(t) is a closed subalgebra of

the abelian Banach algebra L1(G). Adaptation of the proof of [R, Theorem
1.2.2] to the semigroup setting shows that the mapping

Λ : S∗ → Σ(L1(S)), χ 7→ hχ, where hχ(f) =
\
S

fχ = f̂(χ),

is a bijection. We recall that Σ(L1(S)) is a locally compact Hausdorff space
with the Gelfand topology, induced by the weak-∗ topology of the dual space
of L1(S). Notice also that if f̌ ∈ C0(Σ(L1(S))) is the Gelfand transform of

f ∈ L1(S), then f̌(hχ) = hχ(f) = f̂(χ) for every χ ∈ S∗.

Proposition 21. The mapping Λ : S∗ → Σ(L1(S)), χ 7→ hχ, is a hom-

eomorphism, and so S∗ is locally compact in the compact-open topology.

Proof. For the sake of completeness we sketch the proof. The continuity
of Λ is an immediate consequence of the facts that Cc(S) is dense in L1(S)
and that ‖h‖ = 1 for every h ∈ Σ(L1(S)).

Assume now that a net {hν = hχν}ν∈N converges to h = hχ, that is,
limν hν(g) = h(g) for every g ∈ L1(S). Fix f ∈ L1(S) so that h(f) 6= 0, and
consider the equalities

hν(f)χν(t) = hν(f−t) (ν ∈ N , t ∈ S)
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and

h(f)χ(t) = h(f−t) (t ∈ S).

(See the proof of [R, Theorem 1.2.2].) Since the mapping ϕ : S → L1(S), t 7→
f−t, is continuous, we can easily deduce that {χν}ν converges to χ uniformly
on compact sets.

For any τ ∈ S♯
b, the multiplication Mτ : S♯ → S♯, χ 7→ τχ, is clearly a

homeomorphism, and so τS∗ is also a locally compact Hausdorff space with
the compact-open topology.

Now we turn to the spectrum of a representation.

Proposition 22. Let ̺ : S → L(X ) be a representation of regular norm-

behaviour. The spectrum σ(̺) of ̺ is a locally compact Hausdorff space with

the compact-open topology, as also is its closed subset σper(̺).

Proof. It is easy to see that σa(̺) is closed in S♯. Since the limit func-

tional c̺ belongs to S♯
b, it follows from Proposition 21 that c̺S

∗ is locally
compact. Then the closed subset σ(̺) = σa(̺) ∩ c̺S∗ of c̺S

∗ is also locally
compact.

Remarks. (a) Assume that the representation ̺ : S → L(X ) is bounded:
α := sup{‖̺(s)‖ : s ∈ S} < ∞. If ‖̺(s0)‖ < 1 for some s0 ∈ S, then the
inequalities ‖̺(ns0 + s)‖ ≤ ‖̺(s0)‖nα (n ∈ N) show that lims ‖̺(s)‖ = 0,
i.e., ̺ is uniformly stable.

Assuming that ‖̺(s)‖ ≥ 1 for every s ∈ S, we can see that ̺ is of regular
norm-behaviour with respect to the gauge function p(s) := α (s ∈ S).
The limit functional c̺ of ̺ is clearly the constant 1 function. Thus σper(̺)
coincides with the unitary spectrum σu(̺) := {χ ∈ σ(̺) : |χ| = 1} of ̺. It
can be easily verified that also σa(̺) = σ(̺). Indeed, if |χ(s0)| > 1 for some
χ ∈ S♯ and s0 ∈ S, then limn |χ(ns0)| = ∞, and so the Urysohn lemma

yields sup{|f̂(χ)| : 0 ≤ f ∈ Cc(S), ‖f‖1 = 1} = ∞. Since sup{‖f̂(̺)‖ : 0 ≤
f ∈ Cc(S), ‖f‖1 = 1} ≤ α, we see that χ cannot belong to σa(̺).

The Fourier transforms f̂(χ) and f̂(̺) are clearly defined for every f ∈
L1(S) and χ ∈ S∗. As Cc(S) is dense in L1(S), we conclude that if the

inequality |f̂(χ)| ≤ ‖f̂(̺)‖ holds for every f ∈ Cc(S) then it also does for
every f ∈ L1(S). Thus σ(̺) coincides with the spectrum introduced by
Batty and Vũ for bounded representations in [BV]. We also recall that this
concept is an adaptation of the finite L-spectrum and the Arveson spectrum,
defined for group representations, to the semigroup setting (see [L] and [D]).

(b) Let ̺ : S → L(X ) be a representation of regular norm-behaviour.

Since c̺ ∈ S♯
b, the representation ˜̺ := c−1

̺ ̺ : S → L(X ) is also of regular
norm-behaviour and c˜̺ = 1. Clearly |χ| = 1 for χ ∈ σper(˜̺). Hence every
χ ∈ σper(˜̺) can be uniquely extended to a character χ̃ of the extension
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group G. We conclude that σper(˜̺) can be identified with the unitary spec-
trum Spu(˜̺) introduced in [BY], namely σper(˜̺) = {χ̃|S : χ̃ ∈ Spu(˜̺)}.
Therefore σper(̺) = {c̺(χ̃|S) : χ̃ ∈ Spu(˜̺)} by Lemma 20.

5. Associated isometric representation. The key ingredient in prov-
ing the stability of ̺ is the transmission of the spectral conditions to a related
isometric representation. Such an associated representation is discussed in
the following theorem.

Theorem 23. For any representation ̺ : S→L(X ) with p-regular norm-

function, there exist an isometric representation ψ : S → L(Y) on a Banach

space Y and a contractive transformation Q ∈ L(X ,Y) such that :

(i) kerQ = {x ∈ X : a-lims‖̺(s)x‖/p(s) = 0}, and ranQ is dense in Y ,
(ii) Q̺(s) = c̺(s)ψ(s)Q for every s ∈ S,
(iii) for every operator C in the commutant {̺(S)}′, there exists a unique

operator D ∈ {ψ(S)}′ such that QC = DQ; furthermore, the map-

ping γ : {̺(S)}′ → {ψ(S)}′, C 7→ D, is a contractive algebra-homo-

morphism,
(iv) σ(̺) ⊇ c̺σ(ψ), σper(̺) ⊇ c̺σper(ψ), σp(̺

∗) ⊇ c̺σp(ψ
∗).

Proof. (i) Define a seminorm on X by

ℓ(x) := sup{m(‖̺(·)x‖/p) : m ∈M(S)}.

Clearly ℓ(x) ≤ ‖x‖, and ℓ(x) = 0 if and only if a-lims ‖̺(s)x‖/p(s) = 0. Let
Y be the completion of X /ker ℓ with the norm ‖x + ker ℓ‖ := ℓ(x), and let
Q : X → Y denote the natural embedding. Obviously, ranQ is dense.

(ii) In view of Lemma 8, for any x ∈ X and t ∈ S we have

‖Q̺(t)x‖ = ℓ(̺(t)x) = sup
m∈M(S)

m

(
‖̺(· + t)x‖

p

)

= sup
m∈M(S)

m

(
‖̺(· + t)x‖

pt

pt

p

)

= c̺(t) sup
m∈M(S)

m

(
‖̺(·)x‖

p

)

= c̺(t)ℓ(x) = c̺(t)‖Qx‖.

Hence there exists a unique isometry ψ(t) ∈ L(Y) such that Q̺(t) =
c̺(t)ψ(t)Q. This intertwining relation readily implies that ψ(s + t) =
ψ(s)ψ(t) so ψ is a homomorphism.

The inequality

‖c̺(s)ψ(s)Qx− c̺(t)ψ(t)Qx‖ = ‖Q̺(s)x−Q̺(t)x‖

≤ ‖Q‖ ‖̺(s)x− ̺(t)x‖ (x ∈ X )
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shows that the function c̺(t)ψ(t)y is continuous in t for every y in the dense
range of Q, and hence so is ψ(t)y. As ψ is isometric, it is strongly continuous.
Therefore ψ is an isometric representation.

(iii) For any C ∈ {̺(S)}′, we have

‖QCx‖ = sup
m∈M(S)

m

(
‖C̺(·)x‖

p

)
≤ ‖C‖ℓ(x) = ‖C‖ ‖Qx‖,

so there exists a unique D ∈ L(Y) such that QC = DQ. Clearly ‖D‖ ≤
‖C‖, and it is easy to check that D ∈ {ψ(S)}′ and that γ is an algebra-
homomorphism.

(iv) Since f̂(̺) ∈ {̺(S)}′ and Qf̂(̺) = f̂(c̺ψ)Q, we have γ(f̂(̺)) =

f̂(c̺ψ) (f ∈ Cc(S)). As γ : {̺(S)}′ → {ψ(S)}′ is contractive by (iii), we infer

that ‖f̂(c̺ψ)‖ ≤ ‖f̂(̺)‖, whence c̺σa(ψ) = σa(c̺ψ) ⊆ σa(̺) (see Lemma
20). Since the limit functional of the isometric representation ψ is clearly
the constant 1 function, we conclude that c̺σ(ψ) ⊆ σ(̺) and c̺σper(ψ) ⊆
σper(̺). Finally, the equalities kerQ∗ = {0} and ̺∗(s)Q∗ = c̺(s)Q

∗ψ∗(s)
(s ∈ S) readily imply that σp(̺

∗) ⊇ c̺σp(ψ
∗).

We can easily deduce the following corollary.

Corollary 24. If ̺ : S → L(X ) is a representation with p-regular

norm-function and a-lims ‖̺(s)x‖/p(s) = 0 does not hold for some x ∈ X ,
then σper(̺) is not empty.

Proof. The conditions ensure that the associated isometric representa-
tion ψ of Theorem 23 acts on a non-zero Banach space Y . Thus σper(ψ) is
non-empty by [BV, Corollary 3.3]. Since c̺σper(ψ) ⊂ σper(̺), we infer that
σper(̺) is not empty.

6. The stability theorem. Now, we prove a stability result in terms of
almost convergence, concerning representations with regular norm-function:

Theorem 25. Let ̺ : S → L(X ) be a representation with a p-regular

norm-function. If σper(̺) is countable and σp(̺
∗) ∩ {χ : |χ| = c̺} = ∅ then

a-lims
‖̺(s)x‖

p(s)
= 0 for all x ∈ X .

Proof. If the conclusion fails to hold then by Theorem 23 the associated
isometric representation ψ : S → L(Y) acts on a non-zero Banach space Y .
Hence by [BV, Corollary 3.3], σper(ψ) is not empty. The relation σper(̺) ⊇
c̺σper(ψ) implies that σper(ψ) is also countable. Thus σper(ψ) contains an
eigenvalue χ of ψ∗ by [BV, Proposition 4.1]. Applying Theorem 23 again,
we conclude that c̺χ ∈ σp(̺

∗) ∩ {χ : |χ| = c̺}, which is a contradiction.

Applying Proposition 7 we obtain the following corollary.
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Corollary 26. Let ̺ : S → L(X ) be a representation with a p-regular

norm-function. If σper(̺) is countable and σp(̺
∗) ∩ {χ : |χ| = c̺} = ∅ then

lim
n→∞

1

µ(Kn)

\
Kn

‖̺(s)x‖

p(s)
dµ(s) = 0 for all x ∈ X ,

where {Kn}n is any Følner sequence.

In view of Proposition 11 and Remark (a) at the end of Section 4, Theo-
rem 25 is a generalization of the stability result [BV, Theorem 4.2] concern-
ing bounded representations. In view of Remark (b) at the end of Section 4,
the spectral conditions of Theorem 25 are essentially the same as those in the
main result Theorem 3.2 of [BY]. The differences lie in the norm-condition
on ̺ and in the nature of convergence expressing stability.
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