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Poisson kernel and Green funtion of ballsfor omplex hyperboli Brownian motionbyTomasz �ak (Wroªaw)Abstrat. The aim of this paper is to give a desription of the Poisson kernel andthe Green funtion of balls in the omplex hyperboli spae. The desription is in termsof the hypergeometri funtion and unitary spherial harmonis in C
n.1. Introdution. The Poisson kernel and Green funtion are the mainobjets in potential theory. Even in the lassial ontext, i.e. for the Laplaeoperator ∆ in R

n, expliit formulas for the Poisson kernel PD(x, y) and theGreen funtion GD(x, y) are known only for a few lasses of sets D, inlud-ing balls and half-spaes. Our main goal is to desribe the Poisson kerneland the Green funtion of balls Br, 0 < r < 1, in the omplex hyperbolispae, that is, in the unit ball in C
n equipped with the Bergman metri andthe Laplae�Beltrami operator ∆LB. In our omputations we use stohastianalysis, hene we �rst reall the probabilisti interpretation of the Poissonkernel and the Green funtion.By the general theory, the Laplae�Beltrami operator ∆LB in the unitball of C

n is the generator of a di�usion (Xt)t≥0 with trajetories in this ball.We all this proess the omplex hyperboli Brownian motion. For r ∈ (0, 1)let Br = {z ∈ C
n : |z| < r} and let τr = inf{t > 0 : |Xt| = r} be the�rst time the proess (Xt)t≥0, starting from x ∈ Br, exits from Br. Thenthe distribution of Xτr is the Poisson kernel for the ball Br. We denote itby Pr(x, y). Next onsider (XBr

t )t≥0, the proess starting from x ∈ Br andkilled on exiting Br. Let pBr
(t, x, y) be the density of its transition probabil-ity. Then Gr(x, y) =

T∞
0 pBr

(t, x, y) dt is the Green funtion of the ball Br.Observe that ∆LB ommutes with the ation of the unitary group U(n) ([R,Thm. 4.1.2℄). This implies that if (Xt)t≥0 starts from x ∈ Br then both2000 Mathematis Subjet Classi�ation: Primary 60J45, 31C12, 60G15; Seondary60J65.Key words and phrases: Poisson kernel, Green funtion, omplex hyperboli Brownianmotion.Researh partially supported by KBN grant 1 P03A 020 28.[161℄ © Instytut Matematyzny PAN, 2007



162 T. �ak
Pr(x, y) and Gr(x, y), as funtions of y, are invariant with respet to those
g ∈ U(n) that leave x �xed. This property allows us to use unitary spher-ial harmonis to examine Pr(x, y) and Gr(x, y). We will provide formulasfor Pr(x, y) and Gr(x, y) in terms of the hypergeometri funtion 2F1 andomplex unitary spherial harmonis.In the ase of real hyperboli Brownian motion suh formulas have reentlybeen found by Byzkowski and Maªeki [BM℄. For the omplex hyperbolispae the Poisson kernel of the whole spae (known as the Poisson�Szegökernel for the unit ball) is well-known ([Kr℄, [R℄, [S℄). In 1975 Folland [F℄ gavea desription of this kernel in terms of spherial harmonis. The problem of�nding the Green funtion is muh harder�knowing the Green funtion wean easily ompute thePoisson kernel by di�erentiation in the normal diretion(f. Theorem 8, p. 174 in [Ch℄ and Lemma 11 in the Appendix). The potentialof the proess (Xt)t≥0 was omputed in 2001 by Matsumoto [M℄. Matsumotoomputed the λ-potential, that is, Gλ(x, y) =

T∞
0 e−λtpt(x, y) dt for all λ ≥ 0,but, as he wrote (p. 554 of [M℄), �in order to use stohasti analysis, we adoptthe upper half-spae realizations of the hyperboli spaes�. In this paper weprefer the ball realization of the omplex hyperboli spae beause in thisase the hyperboli Brownian motion is invariant with respet to the group

U(n) of unitary transformations and we an use spherial harmonis. As wewill show, in this model it is also possible to use stohasti analysis.2. Preliminaries. Consider C
n = {z = (z1, . . . , zn) : zi ∈ C, i =

1, . . . , n} with the Hermitian salar produt: for z = (z1, . . . , zn) and w =
(w1, . . . , wn),

〈z, w〉 =

n∑

j=1

zjwj .Then |z|2 = 〈z, z〉 =
∑n

j=1 |zj|2.A. Complex hyperboli spae and its isometries. Let B1 = {z ∈ C
n :

|z| < 1} denote the unit ball of C
n. This set, equipped with the Bergmanmetri, is a model of a omplex hyperboli spae. The Bergman metri isindued by the form h = −4∂∂ logK(z) with K(z) = 1 − |z|2 (f. [Kr℄or [S℄), whih means that the metri is given by the matrix [hij], where for

i, j = 1, . . . , n,

hij =
(1 − |z|2)δij + zizj

(1 − |z|2)2 .Consider the Laplae�Beltrami operator assoiated to the Bergman met-ri on B1 (we hoose a normalization as in [R℄)
∆LB = 4(1 − |z|2)

n∑

j,k=1

(δjk − zjzk)
∂2

∂zk∂zj
.



Poisson kernel and Green funtion for Brownian motion 163If n = 1 then ∆LB = (1 − |z|2)2∆, where ∆ is the ordinary Laplaeoperator, and the Bergman metri is the Poinaré metri. In this ase the
∆LB-harmoni funtions oinide with the funtions harmoni in the ordi-nary sense (see [R℄). Heneforth we assume n ≥ 2.All transformations of B1 that are isometries of the Bergman metriare desribed in [R℄. Fix a ∈ C

n, a 6= 0, and denote by Pa the orthogonalprojetion of C
n on the omplex line lin[a℄ and by Qa = I−Pa the orthogonalprojetion on the orthogonal omplement to lin[a℄. More preisely, for z ∈ C

nput
Paz =

〈z, a〉
〈a, a〉 a and ψa(z) =

a− Paz − saQaz

1 − 〈z, a〉 ,where sa = (1 − |a|2)1/2. If ψ is any isometry of B1 and a = ψ−1(0), thenthere exists g ∈ U(n) suh that ψ = gψa (Theorem 2.2.5 in [R℄).B. Hypergeometri funtion. For a, b, c ∈ C, c 6= 0,−1,−2, . . . , and |z|
< 1 the hypergeometri funtion 2F1(a, b ; c ; z) is de�ned by the followingpower series ([E℄):

2F1(a, b ; c ; z) =
∞∑

k=0

(a)k(b)k

(c)kk!
zk,

where (α)0 = 1 and (α)k = α(α + 1) · · · (α + k − 1) for k = 1, 2, . . . isthe Pohhammer symbol. Observe that the roles of a and b are symmet-ri: 2F1(a, b ; c ; z) = 2F1(b, a ; c ; z). The funtion is also de�ned for c =
0,−1,−2, . . . provided a (or b) is also a negative integer and c ≤ a < 0.Namely, if a is a negative integer, a = −m, then for c = −m − l and
l = 0, 1, 2, . . . ,

2F1(−m, b ; −m− l ; z) =
m∑

k=0

(−m)k(b)k

(−m− l)kk!
zk.

Let n ≥ 2 be an integer and let p, q be nonnegative integers. We willuse the hypergeometi funtion for two sets of parameters: a = p, b = q,
c = p + q + n, and a = 1 − n − q, b = 1 − n − p, c = 2 − n − p − q.In the �rst ase the hypergeometri funtion is well de�ned for all z ∈ Cwith |z| ≤ 1. In the seond ase it is a polynomial, provided q > 0 (or
p > 0), beause then 2 − n − p − q < 1 − n − q. Thus we have to de�ne
2F 1(1 − n − q, 1 − n − p ; 2 − n − p − q ;x) for p = q = 0. In that ase weadditionally put ([E℄)

2F1(1 − n, 1 − n ; 2 − n ; z) =
n−2∑

k=0

(−1)n−k

n− 1 − k

(
n− 1

k

)
zk + zn−1 ln z.



164 T. �akIf ℜc > ℜb > 0 and ℜ(c− a− b) > 0, then the Gauss 2F1 identity statesthat
2F1(a, b ; c ; 1) =

Γ (c)Γ (c− a− b)

Γ (c− a)Γ (c− b)
.Moreover, if c < b < a < 0 are integers, the series de�ning 2F1(a, b ; c ; z)terminates and an analogue of the Gauss identity holds true (f. [V℄).Di�erentiation of the hypergeometri funtion gives again the hypergeo-metri funtion

dk

dxk 2F1(a, b ; c ; z) =
(a)k(b)k

(c)k
2F1(a+ k, b+ k ; c+ k ; z)and one of Kummer's relations (see [E, 2.9℄) gives the identity

2F1(a, b ; c ; z) = (1 − z)c−a−bF (c− a, c− b ; c ; z).The funtion y(z) = 2F1(a, b ; c ; z) satis�es the hypergeometri equation
(1) z(1 − z)y′′(z) + (c− (a+ b+ 1)z)y′(z) − aby(z) = 0.For a = p, b = q, c = n + p + q, the general solution of (1) is given bythe formula ([E℄)

y(z) = c1 · 2F1(a, b ; c ; z) +
c2
z1−c

· 2F1(1 + a− c, 1 + b− c ; 2 − c ; z).C. Jaobi polynomials. For α, β > −1 and k = 0, 1, 2, . . . the Jaobipolynomial of degree k assoiated to (α, β) is given by
Pα,β

k (x) =
(−1)k(1 − x)−α(1 + x)−β

k!2k

dk

dxk
[(1 − x)α+k(1 + x)β+k]with

Pα,β
k (1) =

Γ (α+ k + 1)

k!Γ (α+ 1)
=

(
k + α

k

)
.The Jaobi polynomials satisfy the Jaobi equation: for −1 ≤ x ≤ 1,

(2) (1−x)2y′′(x)+ [β−α− (α+β+2)x]y′(x)+k(k+α+β+1)y(x) = 0.For �xed α, β they form an orthogonal basis in L2([−1, 1], (1−x)α(1+x)βdx):
1\
−1

Pα,β
k (x)Pα,β

m (x) (1 − x)α(1 + x)β dx

= δkm
2α+β+1Γ (α+ k + 1)Γ (β + k + 1)

k!(k + α+ β + 2k + 1)Γ (α+ β + k + 1)
.D. Spherial harmonis in C

n. We an identify the set C
n with R

2n.Then S1 = ∂B1, the unit sphere in C
n, oinides with the unit sphere in R

2n.Fix n and let σ1 denote the surfae measure on the unit sphere in R
2n. Wedenote by ω2n−1 = 2πn/Γ (n) the area of the unit sphere in R

2n.Consider the unitary group U(n) ating on S1. The subgroup of unitarytransformations whih leave one point of S1 �xed is U(n−1), and the sphere



Poisson kernel and Green funtion for Brownian motion 165an be identi�ed with the homogeneous spae U(n)/U(n− 1). Funtions on
S1 invariant under U(n− 1) are alled zonal funtions. It turns out ([K℄, seealso Proposition 1 in [F℄) that there exists an orthogonal deomposition ofthe funtion spae L2(S1, σ1) into subspaes Hp,q, p, q = 0, 1, 2, . . . , whihare invariant and irreduible under U(n). The funtions belonging to Hp,qare alled spherial harmonis. The zonal harmonis Hp,q

n ∈ Hp,q are thefollowing: for z = Reiθ ∈ C ,
(3) Hp,q

n (Reiθ) =
D(p, q, n)

ω2n−1P
n−2,|p−q|
p∧q (1)

ei(p−q)θR|p−q|P
n−2,|p−q|
p∧q (2R2 − 1),

where Pn−2,|p−q|
p∧q

(
2R2 − 1

) is the appropriate Jaobi polynomial, p ∧ q =
min(p, q) and

D(p, q, n) =
(p+ q + n− 1)(p+ n− 2)!(q + n− 2)!

p!q!(n− 1)!(n− 2)!is the dimension of the spae Hp,q. Observe also that Hp,q
n (Reiθ)=Hq,p

n (Reiθ)and Hp,q
n (1) = Hq,p

n (1) = D(p, q, n)ω−1
2n−1.It is also well-known (f. e.g. [K℄) that (Hp,q

n )∞p,q=0 is an orthogonal basisin L2({(x, y) ∈ R
2 : x2 + y2 < 1}, (1 − x2 − y2)n−2 dx dy).The orthogonal projetions from L2(S1, σ1) onto Hp,q were desribed byKoornwinder [K℄; the formulation below is taken from [F℄:Proposition 1. If f1, . . . , fD(p,q,n) is any orthonormal basis for Hp,q ⊂

L2(S1, σ1), then for x, y ∈ S1,
D(p,q,n)∑

j=1

fj(x)fj(y) = Hp,q
n (〈x, y〉).Consequently , the orthogonal projetion πp,q : L2(S1, σ1) → Hp,q is given by

(4) πp,qf(x) =
\

S1

Hp,q
n (〈x, y〉)f(y) dσ1(y).Fix x ∈ B1, x 6= 0, and let a = Reiθ with R ≤ 1. Put Sx,a = {z ∈ S1 :

〈z, x〉/(|z| |x|) = a}. Observe that Sx,a is a sphere in C
n−1. In this way wedeompose the unit sphere as S1 = D×Sx,a, where D is the unit dis in theomplex plane.If gx ∈ U(n) is suh that gxx = x, then of ourse gx(Sx,a) = Sx,a. Let σx,adenote the spherial measure on Sx,a ⊂ R

2n−2. The above deomposition of
S1 indues a deomposition of σ1: if z = (a, za) with a = Reiθ and za ∈ Sx,a,then

dσ1(z) = dσx,a(za)R(1 −R2)n−2 dR dθ.Let fx be a funtion de�ned on S1, ontinuous and invariant under those
gx ∈ U(n) whih leave x �xed. Suh funtions fx are uniquely determined



166 T. �akby their expansions with respet to (Hp,q
n )∞p,q=0. Indeed, if in view of (4) wede�ne the (p, q)-oe�ient of fx as

(f̂x)p,q =
\

S1

Hp,q
n (〈x, z〉)fx(z) dσ1(z) =

\
S1

Hq,p
n (〈z, x〉)fx(z) dσ1(z),then, by the above deomposition of the unit sphere, we have

(f̂x)p,q =
\
D

( \
Sx,a

Hp,q
n (〈x, za〉)fx((a, za)) dσx,a(za)

)
R(1 −R2)n−2 dR dθ

=
\
D

Hp,q
n (Reiθ)f̃x(Reiθ)R(1 −R2)n−2 dRdθ,

where f̃x(Reiθ) = f̃x(a) = fx(a, za) for some (and hene all) za ∈ Sx,a.The family of harmonis (Hp,q
n (Reiθ))p,q=0,1,2... is an orthogonal basis in

L2(D,R(1 − R2)n−2 dRdθ), hene the oe�ients (f̂x)p,q, p, q = 0, 1, 2, . . . ,uniquely determine the values of fx on every Sx,a, whene on the wholesphere S1.If fx is de�ned on the sphere Sr = {z ∈ C
n : |z| = r} and σr denotes thespherial measure on Sr, then we de�ne

(f̂x)p,q =
\

Sr

Hp,q
n

( 〈x, z〉
|x| |z|

)
fx(z) dσr(z)(5)

=
\

Sr

Hq,p
n

( 〈z, x〉
|z| |x|

)
fx(z) dσr(z).E. Di�usion: relation between its generator and a stohasti di�erentialequation. The following fat is well-known. The proof an be found in manytextbooks, e.g. [RW℄. Let (Xt)t≥0 be a real-valued di�usion with the followinggenerator: for f twie di�erentiable,

Af(x) = σ(x)f ′′(x) + b(x)f ′(x),where σ, b are ontinuous funtions and σ > 0 is loally Lipshitz. Then
(Xt) satis�es the stohasti di�erential equation

dXt =
√
σ(Xt) dWt + b(Xt) dt,where (Wt)t≥0 is a real-valued Brownian motion with E(Wt) = 2t.3. The proess Yt = 〈Xt, a〉/(|Xt| |a|) and its polar deomposition.Fix a nonzero point a ∈ B1 and onsider the isometry ψa of B1 equipped withthe Bergman metri. From the desription of suh isometries in item A ofSetion 2 we know that, modulo unitary transformations, ψa is a ombinationof two orthogonal projetions. If we onsider ψa(Xt), it turns out that the



Poisson kernel and Green funtion for Brownian motion 167projetion
Pa(Xt) =

〈Xt, a〉
〈a, a〉 a =

〈
Xt,

a

|a|

〉
· a|a|ontains essential information about the behaviour of the proess (Xt).More preisely: onsider the omplex hyperboli Brownian motion (Xt)t≥0starting from the point a ∈ B1, a 6= 0. With probability one, this proessdoes not visit zero. Indeed, onsider the projetion of Xt onto {z ∈ C

n : z =
(z1, 0, . . . , 0)}. Computing the ation of ∆LB on funtions f(z1, 0, . . . , 0) =
g(z1), depending on z1 only, we easily see that the generator of this two-dimensional proess is (1 − |z|2)(1 − |z1|2)∆R2 , hene the proess is a time-hanged planar Brownian motion. With probability one, the planar Brownianmotion does not visit zero, hene neither does (Xt)t≥0. This implies that theproess

Yt =
〈Xt, a〉
|Xt| |a|is well-de�ned. Observe that Yt is a omplex-valued proess with values inthe unit dis of the omplex plane, hene we an deompose it using polaroordinates:

Yt =
〈Xt, a〉
|Xt| |a|

= Rte
iθt ,where

(6) Rt =
|〈Xt, a〉|
|Xt| |a|is the length of the projetion of the vetor Xt/|Xt| onto lin[a℄, and

(7) eiθt =
〈Xt, a〉
|〈Xt, a〉|measures the angle (on the plane lin[a℄) between this projetion and a.4. The radial proess (rt)t≥0 and its generator. We will need onemore proess, the length of Xt. As the norm is not di�erentiable at zero,instead of |Xt| we will onsider its square:

rt = |Xt|2.For z ∈ C
n put r = |z|2 =

∑n
j=1 zjzj . To ompute the generator of theproess (rt)t≥0 it is enough to ompute ∆LBf(r) for twie di�erentiable realfuntions f . Beause

∂r

∂zk
= zk,

∂r

∂zj
= zj ,

∂2r

∂zk∂zj
= δjk,for any funtion f : (0,∞) → R with two ontinuous derivatives we have
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(8) ∆LBf(r)

= 4(1 − |z|2) ·
n∑

j,k=1

(δjk − zjzk)
∂2f(r)

∂zk∂zj

= 4(1 − |z|2) ·
n∑

j,k=1

(δjk − zjzk)

(
f ′′(r)

∂r

∂zk
· ∂r
∂zj

+ f ′(r)
∂2r

∂zk∂zj

)

= 4r(1 − r)2f ′′(r) + 4(1 − r)(n− r)f ′(r).This implies that the proess (rt)t≥0 is a solution of the stohasti di�erentialequation
(9) drt = 2

√
rt(1 − rt) dW

(1)
t + 4(1 − rt)(n− rt) dt,where (W

(1)
t )t≥0 is a real-valued Brownian motion normalized in suh a waythat E(W
(1)
t ) = 2t.5. Generators of the proesses (Rt)t≥0 and (θt)t≥0. Fix a 6= 0 andput

A = 〈a, z〉 =

n∑

j=1

ajzj , A = 〈z, a〉 =

n∑

j=1

zjaj .By the formulas (6) and (7) we have
R =

|〈z, a〉|
|z| |a| =

|A|
|a| |z| and eiθ =

〈z, a〉
|〈z, a〉| =

〈z, a〉√
〈a, z〉〈z, a〉

=
A√
AA

,

hene θ = −i ln(A/
√
AA), where ln z denotes the prinipal branh of thelogarithm, i.e. the ontinuous branh with ln 1 = 0.We will need the partial derivatives of these funtions:

(10)
∂θ

∂zk
=
iak

2A
,

∂θ

∂zj
=

−iaj

2A
,

∂2θ

∂zk∂zj
= 0,

(11)
∂R

∂zk
=

akA

2|a| |z| |A| −
zk|A|

2|a| |z|3 ,
∂R

∂zj
=

ajA

2|a| |z| |A| −
zj |A|

2|a| |z|3and
∂2R

∂zk∂zj
=

akaj

4|a| |z| |A| −
akzjA

4|a| |z|3|A|(12)

− δjk|A|
2|a| |z|3 − ajzkA

4|a| |z|3|A| +
3zkzj |A|
4|a| |z|5 .Let f be a twie di�erentiable real funtion. We ompute the ation of

∆LB on f(R):
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(13) ∆LBf(R)

= 4(1 − |z|2)
n∑

j,k=1

(δjk − zjzk)
∂2f(R)

∂zk∂zj

= 4(1 − |z|2)
n∑

j,k=1

(δjk − zjzk)

(
f ′′(R)

∂R

∂zk

∂R

∂zj
+ f ′(R)

∂2R

∂zk∂zj

)
.Using (11), we get

(14) 4(1 − |z|2)
n∑

j,k=1

(δjk − zjzk)
∂R

∂zk

∂R

∂zj

= 4(1 − |z|2)
n∑

j,k=1

(δjk − zjzk)

(
akA

2|a| |z| |A| −
zk|A|

2|a| |z|3
)

×
(

ajA

2|a| |z| |A| −
zj |A|

2|a| |z|3
)

=
1 − |z|2
|z|2

(
1 − |A|2

|a|2|z|2
)

=
1 − |z|2
|z|2 (1 −R2)and using (12) we obtain

(15) 4(1 − |z|2)
n∑

j,k=1

(δjk − zjzk)
∂2R

∂zk∂zj

= 4(1 − |z|2)
n∑

j,k=1

(δjk − zjzk)

(
akaj

4|a| |z| |A| −
akzjA

4|a| |z|3|A|

− δjk|A|
2|a| |z|3 − ajzkA

4|a| |z|3|A| +
3zkzj |A|
4|a| |z|5

)

=
1 − |z|2
|z|2

(
1

R
− (2n− 1)R

)
,hene

(16) ∆LBf(R) =
1 − |z|2
|z|2

(
(1 −R2)f ′′(R) +

(
1

R
− (2n− 1)R

)
f ′(R)

)
.This means that the real-valued proess Rt is a di�usion, desribed by thestohasti equation

(17) dRt =

√
1 − rt
rt

√
1 −R2

t dW
(2)
t +

1 − rt
rt

(
1

Rt
− (2n− 1)Rt)

)
dt.In a similar way, omputing the ation of ∆LB on g(θ) and using (10),we �nd that
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(18) ∆LBg(θ) =

1 − |z|2
|z|2

(
1

R2
− |z|2

)
g′′(θ),hene

(19) dθt =

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
t .

6. Independene of W (1), W (2) and W (3). Now we will show that theBrownian motions W (1)
t , W (2)

t and W (3)
t an be hosen to be independent.We are interested in the martingale parts of the proesses rt, Rt and θt; foronveniene denote them by supersript m. For instane, (rt)

m will denotethe martingale part of rt, i.e. the stohasti integral Tt0 2
√
rs(1 − rs) dW

(1)
s .The group U(n) ats transitively on the unit sphere, so we may assumethat a = (a1, 0, . . . , 0). Then (6), (7) and the de�nition of rt imply thatX1(t),the �rst oordinate of the hyperboli Brownian motion X(t), is √

rtRte
iθt .First we will show the independene ofW (1)

t andW (2)
t , the Brownian motionsfrom formulas (9) and (17).On the one hand, as shown in Setion 3, the proess X1(t) has the gen-erator

(20) (1 − r)(1 −R2r)∆R2 .This implies that the proess |X1(t)|, being a time-hanged Bessel proessof dimension two, has the following braket:
(21) 〈|X1|, |X1|〉t = 2(1 − rt)(1 −R2

t rt).On the other hand, |X1(t)| =
√
rtRt, thus (9) and (17) give another wayto ompute the braket of |X1(t)|. By the It� formula,

d(|X1(t)|)m = Rt d(
√
rt)

m +
√
rt d(Rt)

m,hene �rst we have to �nd the stohasti equation desribing the martingalepart of the proess √
rt. We make use of the It� formula one again to get

d(
√
rt)

m = (1 − rt) dW
(1)
t . From this and (17), we get

d(|X1(t)|) = Rt (1 − rt) dW
(1)
t +

√
rt d(Rt)

m

= Rt (1 − rt) dW
(1)
t +

√
1 − rt

√
1 −R2

t dW
(2)
t .We an now ompute the braket of |X1(t)|:

〈|X1|, |X1|〉t = 2(R2
t (1 − rt)

2 + (
√

1 − rt)
2(

√
1 −R2

t )
2)

+Rt

√
1 −R2

t (
√

1 − rt)
3〈W (1),W (2)〉t

= 2(1 − rt)(1 − rtR
2
t ) +Rt

√
1 −R2

t (
√

1 − rt)
3〈W (1),W (2)〉t.



Poisson kernel and Green funtion for Brownian motion 171Comparing this with (21) we see that 〈W (1),W (2)〉t = 0, hene the Brownianmotions W (1) and W (2) are independent.We know that X1(t) =
√
rtRte

iθt and X1 is a two-dimensional Brownianmotion with random lok, beause its generator, given in (20), is the Laplaeoperator in R
2, multiplied by a funtion.Let (u, θ) denote the polar oordinates on the plane, 0 ≤ u < ∞, 0 ≤

θ < 2π. The polar deompositon of the Laplae operator on the plane,
∆R2 =

∂2

∂u2
+

1

u

∂

∂u
+

1

u2

∂2

∂θ2
,implies a representation of X1(t) as a skew-produt of a radial part (whih isa Bessel proess) and an angular (spherial) part (f. [PR℄ or [IMK, Chap-ter 7.15℄). More preisely, if (B

(1)
t , B

(2)
t ) is the standard two-dimensionalBrownian motion then there exist a Bessel proess Bes(t) and a real Brow-nian motion W (t), independent of Bes(t), suh that

(B
(1)
t , B

(2)
t )

d
= [Bes(t), eiW (A(t))],where A(t) =

Tt
0 Bes−2(s) ds. The same applies in our situation, beause ourproess X1(t) is a time-hanged two-dimensional Brownian motion.As we have already desribed the proess √rtRt, whih is the radial partof X1(t), we now fous on the spherial part. In our ase u = R

√
r, henethe spherial part of (20) is

(1 − r)(1 −R2r)
1

R2r

∂2

∂θ2
=

1 − r

r

(
1

R2
− r

)
∂2

∂θ2
,whih gives the following representation for the proess eiθt : there exists areal Brownian motion W (3), independent of W (1) and W (2), suh that

dθt =

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
t .This is preisely equation (19), omputed there by use of the generator.Remark. Independene ofW (1),W (2) andW (3) an also be obtained byomputing the ation of ∆LB on the produt f(r)g(R)h(θ), but this requiresextensive omputations.7. A martingale. Our main tools in omputing the Poisson kernel andGreen funtion of the balls Br, 0 < r < 1, are unitary spherial harmonisand killing Xt when it reahes the boundary of Br. In order to use unitaryspherial harmonis we must have a omplex-valued proess; by analogyto the real ase we onsider Hq,p

n (〈Xt, a〉/(|Xt| |a|)). For this reason in this



172 T. �aksetion we examine the properties of the proess
Zt = Hq,p

n

( 〈Xt, a〉
|Xt| |a|

)
· exp

(t\
0

Q(rs) ds
)
,

where (Xt)t≥0 is the omplex hyperboli Brownian motion, a = X0 6= 0 isits starting point and Q(r) is a funtion to be de�ned later.We will �nd a positive, ontinuous funtion Q(|z|2) (a potential in thesense of [ChZ℄) suh that
(22) (∆LB −Q(|z|2))

(
Hq,p

n

( 〈z, a〉
|z| |a|

))
= 0.It turns out (see e.g. [W, III.39, p. 159℄) that for suh a Q the proess Zt isa martingale.Finding Q by analytial methods requires tedious omputations so weprefer using stohasti alulus and the It� formula, whih makes the alu-lations a little shorter.Let z = Reiθ be a omplex number with modulus R ≤ 1. Reall thatby (3),

Hp,q
n (Reiθ) = Cei(p−q)θR|p−q|P (2R2 − 1),where C is some onstant and P = P

n−2,|p−q|
p∧q denotes the appropriate Jaobipolynomial. This implies that Hq,p

n (Reiθ) = Cei(q−p)θR|p−q|P (2R2 − 1) =

Hp,q
n (Reiθ).For n = 2, 3, . . . and p, q = 0, 1, 2, . . . onsider the proess

Zt = Cei(q−p)θt ·R|p−q|
t P (2R2

t − 1) · exp
(t\

0

Q(rs) ds
)
.

To simplify notation, write
g(θt) = Cei(q−p)θt , f(Rt) = R

|p−q|
t P (2R2

t − 1), Vt = exp
(t\

0

Q(rs) ds
)
.

Then
(23) Zt = g(θt)f(Rt)Vt, Z0 = g(0)f(1)V0 = Hp,q

n (1) = D(p, q, n)ω−1
2n−1and we have the following.Theorem 2. Set

Q(r) = 4(1 − r)

[ p+q
2

(p+q
2 + n− 1

)

r
−

(
p− q

2

)2]
.
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dZt = Vt

{
g(θt)f

′(Rt)

√
1 − rt
rt

√
1 −R2

t dW
(2)
t

+ f(Rt)g
′(θt)

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
t

}
,hene (Zt)t≥0 is a martingale and

Zt = Hp,q
n (1) +

t\
0

Vtg(θt)f
′(Rt)

√
1 − rt
rt

√
1 −R2

t dW
(2)
s(24)

+

t\
0

Vtf(Rt)g
′(θt)

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
s .Proof. Observe that Q is always positive, beause r ∈ (0, 1) and n≥ 2.Below we use the It� formula several times. Beause Vt is a proess ofbounded variation, we have dVt = Q(rt)Vt dt and 〈g(θt)f(Rt), Vt〉 = 0. Thus,di�erentiating Zt given by (23), we obtain

dZt = d(g(θt)f(Rt)Vt) = d(g(θt)f(Rt)) · Vt + g(θt)f(Rt) · dVt.Now
(26) d(g(θt)f(Rt)) = d(g(θt))f(Rt) + d(f(Rt))g(θt) + d〈g(θt), f(Rt)〉.By the It� formula and (17),
(27) d(f(Rt)) = f ′(Rt) dRt +

1

2
f ′′(Rt) d〈Rt, Rt〉

= f ′(Rt)

[√
1 − rt
rt

√
1 −R2

t dW
(2)
t +

1 − rt
rt

(
1

Rt
− (2n− 1)Rt

)
dt

]

+ f ′′(Rt)

[
1 − rt
rt

(1 −R2
t )

]
dt,beause d〈W (2)

t ,W
(2)
t 〉 = 2t dt.In a similar way, using (19), we get

(28) d(g(θt)) = g′(θt)dθt +
1

2
g′′(θt) d〈θt, θt〉

= g′(θt)

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
t + g′′(θt) ·

1 − rt
rt

·
(

1

R2
t

− rt

)
dt.Both g(θt) and f(Rt) are ontinuous semimartingales, so that

〈g(θt), f(Rt)〉 = 〈gm(θt), f
m(Rt)〉,where the supersript �m� denotes the martingale part of the proess ([RW,p. 58℄).



174 T. �akMoreover, beause W (2) and W (3) in (17) and (19) are independent, wehave 〈g(θt), f(Rt)〉 = 0.Substituting (27) and (28) into (26) and next (26) to (25), we get
(29) dZt = Vt{d(g(θt))f(Rt) + g(θt)d(f(Rt)) + g(θt)f(Rt)Q(rt)}

= Vt

{
f(Rt)g

′(θt)

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
t

+ f(Rt)g
′′(θt) ·

1 − rt
rt

·
(

1

R2
t

− rt

)
dt

+ g(θt)f
′(Rt)

[√
1 − rt
rt

√
1 −R2

t dW
(2)
t +

1 − rt
rt

(
1

Rt
− (2n− 1)Rt

)
dt

]

+ g(θt)f
′′(Rt)

[
1 − rt
rt

(1 −R2
t )

]
dt+ g(θt)f(Rt)Q(rt) dt

}
.The right-hand side of (29) is a sum of two martingales,

(30)

dM
(1)
t = Vtf(Rt)g

′(θt)

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
t ,

dM
(2)
t = Vtg(θt)f

′(Rt)

√
1 − rt
rt

√
1 −R2

t dW
(2)
t ,and the following quantity:

(31) Vt

{
f(Rt)g

′′(θt)
1 − rt
rt

(
1

R2
t

− rt

)

+ g(θt)f
′(Rt)

1 − rt
rt

(
1

Rt
− (2n− 1)Rt

)

+ g(θt)f
′′(Rt)

1 − rt
rt

(1 −R2
t ) + g(θt)f(Rt)Q(rt)

}
dt = Vt · Jt dt.Observe now that

g′′(θ) = (Cei(q−p)θ)′′ = −C(q − p)2ei(q−p)θ = −(p− q)2g(θ),hene Jt, the quantity in braes in (31), is equal to
Jt =

1 − rt
rt

g(θ)

[
(1 −R2

t )f
′′(Rt) +

(
1

Rt
− (2n− 1)Rt

)
f ′(Rt)(32)

− (p− q)2
(

1

R2
t

− rt

)
f(Rt) +

rt
1 − rt

Q(rt)f(Rt)

]
.But f(R) = R|p−q|P (2R2 − 1), hene

(33) f ′(R) = |p− q|R|p−q|−1P (2R2 − 1) + 4R|p−q|+1P ′(2R2 − 1),
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(34) f ′′(R) = |p− q|(|p− q| − 1)R|p−q|−2P (2R2 − 1)

+ (8|p− q| + 4)R|p−q|P ′(2R2 − 1) + 16R|p−q|+2P ′′(2R2 − 1).We want to �nd Q that makes Jt = 0. Substituting (33) and (34) into (32)we get a quantity whih turns into the left-hand side of (2) if we put
Q(rt) = 4(1 − rt)

[ p+q
2

(p+q
2 + n− 1

)

rt
−

(
p− q

2

)2]
.Indeed,

Jt =
1 − rt
rt

g(θt)R
|p−q|
t

{
16(R2

t −R4
t )P

′′(2R2
t − 1)

+ 8[1 + |p− q| − (|p− q| + n)R2
t ]P

′(2R2
t − 1)

+

[
−|p− q|2 − (2n− 2)|p− q| + (p− q)2rt

+ 4rt

( p+q
2

(p+q
2 + n− 1

)

rt
−

(
p− q

2

)2)]
P (2R2

t − 1)

}

= 4 · 1 − rt
rt

g(θt)R
|p−q|
t {4(R2

t −R4
t )P

′′(2R2
t − 1)

+ 2[|p− q| + 1 − (|p− q| + n)R2
t ]P

′(2R2
t − 1)

+ [pq + (n− 1) min(p, q)]P (2R2
t − 1)}.Substituting x = 2R2 − 1 in the last braes above, we get

(1 − x2)P ′′(x) + [|p− q| − n+ 2 − (|p− q| + n)x]P ′(x)

+ [min(p, q)(min(p, q) + n− 1 + |p− q|)]P (x).But this is preisely the left-hand side of (2), with y(x) being the Jaobi poly-nomial P (x) = P
n−2,|p−q|
p∧q (x). This implies that Jt = 0, hene the quantity(31) is zero,

dZt = Vtf(Rt)g
′(θt)

√
1 − rt
rt

√
1

R2
t

− rt dW
(3)
t

+ Vtg(θt)f
′(Rt)

√
1 − rt
rt

√
1 −R2

t dW
(2)
tis a martingale and Z0 = Hq,p

n (〈X0, a〉/(|X0| |a|)) = Hq,p
n (1), beause

X0 = a.8. Expetation of Hq,p
n (〈Xt, x〉/(|Xt| |x|)). Fix 0 < r < 1 and let Br =

{z ∈ C
n : |z| < r}. Let (Xt)t≥0 be the omplex hyperboli Brownian motionwith X0 = x 6= 0. Reall that rt = |Xt|2 and Zt = Hq,p

n (〈Xt, x〉/(|Xt| |x|))Vt.Let h : R → R be Borel measurable and bounded.



176 T. �akTheorem 3. Under the above assumptions ,
E

x

[
h(|Xt|2)Hq,p

n

( 〈Xt, x〉
|Xt| |x|

)]
= Hq,p

n (1) · E
|x|2

[
h(rt) exp

(
−

t\
0

Q(rs) ds
)]
.Proof. The proess Zt is a martingale, hene its expetation is onstant.In order to get Zt we multiply Hq,p

n (〈Xt, x〉/(|Xt| |x|)) by 1 = VtV
−1
t :

E
x

[
h(|Xt|2)Hq,p

n

( 〈Xt, x〉
|Xt| |x|

)]
= E

x

[
h(rt)H

q,p
n

( 〈Xt, x〉
|Xt| |x|

)
VtV

−1
t

]

= E
x[h(rt)ZtV

−1
t ] = E

x
[
h(rt)Zt exp

(
−

t\
0

Q(rs) ds
)]
.But we know the struture of Zt: by (24) we have

E
x
[
h(rt)Zt exp

(
−

t\
0

Q(rs) ds
)]

= E
x[h(rt)V

−1
t Hq,p

n (1)]

+ E
x

[
h(rt)V

−1
t

(t\
0

Vsg(θs)f
′(Rs)

√
1 − rs
rs

√
1 −R2

s dW
(2)
s

)]

+ E
x

[
h(rt)V

−1
t

(t\
0

Vsf(Rs)g
′(θs)

√
1 − rs
rs

√
1

R2
s

− rs dW
(3)
s

)]
,

where V −1
t = exp(−

Tt
0Q(rs) ds). The proess h(rt) exp(−

Tt
0Q(rs) ds) de-pends only on (rs)0≤s≤t, hene it is measurable with respet to the �ltra-tion of the Brownian motion W (1). The stohasti integrals in the last twoterms of the right-hand side are integrals with respet to the Brownian mo-tions W (2) and W (3), respetively, and these Brownian motions are indepen-dent of W (1). Hene the last two terms in the above sum are zero (f. alsoLemma 2.4 in [BM℄) and we �nally have

E
x

[
h(rt)H

q,p
n

( 〈Xt, x〉
|Xt| |x|

)]
= Hq,p

n (1)E|x|2
[
h(rt) exp

(
−

t\
0

Q(rs) ds
)]
.An analogue of Theorem 3 holds true if, instead of t, we take τr, the �rsttime the proess (Xt)t≥0 exits from Br.Corollary 4. Let r ∈ (0, 1) and τr = inf{t > 0 : |Xt| = r}. If X0 = xwith |x| < r, then

E
x

[
Hq,p

n

( 〈Xτr , x〉
|Xτr | |x|

)]
= Hq,p

n (1) · E
|x|2

[
exp

(
−

τr\
0

Q(rs) ds
)]
.Proof. Let Tk = inf{t > 0 : rt ≤ 1/k}. Beause rt > 0 for all t > 0a.s. and this proess has ontinuous trajetories, Tk → ∞ as k → ∞. To



Poisson kernel and Green funtion for Brownian motion 177simplify notation write τ(t, k, r) = t ∧ Tk ∧ τr. Beause Zt is a martingale,arguing as in the proof of Theorem 3, for h ≡ 1 and the bounded stoppingtime τ(t, k, r) we get
E

x

[
Hq,p

n

( 〈Xτ(t,k,r), x〉
|Xτ(t,k,r)| |x|

)]
= Hq,p

n (1)E|x|2
[
exp

(
−

τ(t,k,r)\
0

Q(rs) ds
)]
.

The funtion exp(−
Tt
0Q(rs) ds) is bounded, beause Q is positive. If k → ∞,then Tk → ∞. If we also let t → ∞, using the dominated onvergenetheorem, we get the assertion.9. Poisson kernel of a ball. Now we an ompute the oe�ients ofthe expansion of Pr(x, y), the Poisson kernel of a ball Br. If X0 = x, then

Pr(x, ·) is the density (with respet to σr) of the distribution of Xτr . Thisfat and formula (5) give
(P̂r)p,q =

\
Sr

Hq,p
n

( 〈y, x〉
|y| |x|

)
Pr(x, y) dσr(y) = E

xHq,p
n

( 〈Xτr , x〉
|Xτr | |x|

)
.

The theorem below determines the oe�ients (P̂r)p,q.Theorem 5. Let x 6= 0 be the starting point of the omplex hyperboliBrownian motion (Xt)t≥0. For |x| < r,
E

x

[
Hq,p

n

( 〈Xτr , x〉
|Xτr | |x|

)]
= Hq,p

n (1) ·
( |x|
r

)p+q

· 2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

.Proof. By Corollary 4 we have
E

x

[
Hq,p

n

( 〈Xτr , x〉
|Xτr | |x|

)]
= Hq,p

n (1)E|x|2
[
exp

(
−

τr\
0

Q(rs) ds
)]
.Observe that the proess under the last expetation is real-valued. Let x bea real number, 0 < x < 1. The funtion φ(x) = E

x[exp(−
Tτr

0 Q(rs) ds)] is theso-alled gauge funtion (see [ChZ, 4.3℄) for the Shrödinger operator basedon the generator of rt and potential −Q, hene, by the general Feynman�Katheory for the Shrödinger equation [ChZ℄, φ is a solution of the appropriateShrödinger equation (f. (8) and de�nition of Q):
(35) 4x(1 − x)2φ′′(x) + 4(1 − x)(n− x)φ′(x)

− 4(1 − x)

[ p+q
2

(p+q
2 + n− 1

)

x
−

(
p− q

2

)2]
φ(x) = 0.If we divide both sides of (35) by 4(1 − x) and next substitute φ(x) =

x(p+q)/2y(x), we get
x(1 − x)y′′(x) + [p+ q + n− (p+ q + 1)x]y′(x) − pqy(x) = 0.



178 T. �akThis is the hypergeometri equation (1), hene the general solution of (35)is given in terms of the hypergeometri funtion 2F1 and is the following:
y(x) = x(p+q)/2

[
c1 · 2F1(p, q ; p+ q + n ;x)(36)

+ c2 · 2F1(1 − n− q, 1 − n− p ; 2 − n− p− q ;x)

xp+q+n−1

]
.When x → 0, the expetation E

|x|2 [exp(−
Tτr

0 Q(rs) ds)] remains bounded(beause Q is positive), so that we are interested in a solution of (36) whihis bounded in the neighbourhood of zero. This implies c2 = 0 in the formula(36) and
φ(x) = c1x

(p+q)/2
2F1(p, q ; p+ q + n ;x).If Xt starts from x with |x| = r then τr = 0, hene φ(r2) = 1 and this implies

c1 =
1

rp+q · 2F1(p, q ; p+ q + n ; r2)
.Finally, for x ∈ Br, we get

φ(|x|2) =
|x|p+q

rp+q
· 2F1(p, q ; p+ q + n ; |x|2)

2F1(p, q ; p+ q + n ; r2)and the proof is �nished.Remark. If X0 = 0 then, by the unitary invariane of the distribution ofthe omplex hyperboli Brownian motion, the distribution ofXτr is a unitaryinvariant probability measure on the sphere Sr. By [R, 1.4.7℄, σr/ω2n−1 isthe only measure with this property.Knowing the oe�ients, we an give the expansion of the Poisson kernel.Theorem 6 (Poisson kernel). Let 0 6= x ∈ Br and y ∈ Sr. Then
Pr(x, y) =

1

r2n−1

∞∑

p,q=0

( |x|
r

)p+q
2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

Hp,q
n

( 〈y, x〉
|y| |x|

)
.

For every �xed x ∈ Br the series is onvergent absolutely and uniformly forall y ∈ Sr.Remark. It is possible to get the same expansion by the purely ana-lytial method of Folland ([F℄). This method is even shorter, but dependsheavily on the fat that Pr(x, y), as a funtion of x, is ∆LB-harmoni on thewhole Br. Our method, exploiting the It� alulus, seems to be more generaland also gives the desription of the Green funtion Gr(x, y), whih is notontinuous on Br (it tends to in�nity as y → x).
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(37)

∞∑

p,q=0

( |x|
r

)p+q
2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

Hp,q
n

( 〈y, x〉
|y| |x|

)

is onvergent absolutely and uniformly for all x ∈ Br and y ∈ Sr. The proofis a slight modi�ation of that given by Folland [F℄ for the ase r = 1. Wegive it here for ompleteness.By Proposition 1, for any orthonormal basis f1, . . . , fD(p,q,n) of Hp,q ⊂
L2(S1, σ1) and any x, y ∈ S1,
D(p,q,n)∑

j=1

fj(x)fj(y) = Hp,q
n (〈x, y〉), so D(p,q,n)∑

j=1

|fj(x)|2 = Hp,q
n (1) =

D(p, q, n)

ω2n−1
.

Orthogonality of fj 's implies\
S1

|Hp,q
n (〈x, y〉)|2 dσ1(y) =

D(p,q,n)∑

j=1

\
S1

|fj(x)|2|fj(y)|2 dσ1(y)

=

D(p,q,n)∑

j=1

|fj(x)|2 =
D(p, q, n)

ω2n−1
= Hp,q

n (1).

Moreover, hanging variables, we get\
Sr

∣∣∣∣H
p,q
n

(〈y, x〉
|y||x|

)∣∣∣∣
2 dσr(y)

r2n−1
=
\

S1

∣∣∣∣H
p,q
n

(〈y, x〉
|y||x|

)∣∣∣∣
2

dσ1(y) =
D(p, q, n)

ω2n−1

= Hp,q
n (1).Beause Hp,q

n (〈x, y〉) is Hermitian symmetri in x and y, and for �xed x it isin Hp,q as a funtion of y, by the Shwarz inequality we obtain
|Hp,q

n (〈y, x〉)| =
∣∣∣
\

S1

Hp,q
n (〈y, z〉)Hp,q

n (〈z, x〉) dσ1(z)
∣∣∣ ≤ D(p, q, n)ω−1

2n−1.Now,
D(p, q, n) =

(p+ q + n− 1)(p+ n− 2)!(q + n− 2)!

p!q!(n− 1)!(n− 2)!

=
(p+ q + n− 1)p(p+ 1) . . . (p+ n− 2)q(q + 1) . . . (q + n− 2)!

(n− 1)!(n− 2)!

≤ (p+ q + n− 1)

(n− 1)!(n− 2)!
(p+ n− 2)n−1(q + n− 2)n−1

≤ 1

(n− 1)!(n− 2)!
(p+ q + n− 1)2n−1.



180 T. �akBeause n is �xed, we have
1 ≤ p+ q + n− 1

p+ q + 1
≤ n− 1 for all p, q = 0, 1, 2, . . . ,whih implies that

D(p, q, n) ≤ (n− 1)2n

(n− 1)!(n− 2)!
(p+ q + 1)2n = cn(p+ q + 1)2n.The funtion 2F1(p, q ; p+ q+ n ; |x|2) is positive and inreasing for |x| ∈

(0, 1) so that
( |x|
r

)p+q
2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

≤
( |x|
r

)p+q

,thus
∞∑

p,q=0

( |x|
r

)p+q
2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

∣∣∣∣H
p,q
n

(〈x, y〉
|y||x|

)∣∣∣∣

≤ cn

∞∑

p,q=0

( |x|
r

)p+q

(p+ q + 1)2n = cn

∞∑

k=0

( |x|
r

)k

(k + 1)2n+1 <∞,

beause p+ q = k for k + 1 di�erent values of p, and |x| < r.The funtions (Hp,q
n (·))p,q=0,1,... are orthogonal, hene it is easy to om-pute the (p, q)-oe�ient of Pr(x, y). We have (reall that Hq,p

n (·) = Hp,q
n (·))

(P̂r)p,q =
\

Sr

Hq,p
n

( 〈y, x〉
|y| |x|

)
Pr(x, y) dσr(y)

=
\

Sr

Hq,p
n

( 〈y, x〉
|y| |x|

)(
1

r2n−1

∞∑

p,q=0

( |x|
r

)p+q

× 2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

Hp,q
n

( 〈y, x〉
|y| |x|

))
dσr(y)

=

( |x|
r

)p+q
2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

×
\

Sr

Hq,p
n

( 〈y, x〉
|y| |x|

)
Hp,q

n

( 〈y, x〉
|y| |x|

)
dσr(y)

r2n−1

= Hp,q
n (1)

( |x|
r

)p+q
2F1(p, q ; p+ q + n ; |x|2)
2F1(p, q ; p+ q + n ; r2)

.These oe�ients are the same as the (p, q)-oe�ients of the distributionof Xτr , omputed in Theorem 5. This implies that the series desribed inTheorem 6 represents the Poisson kernel of Br.



Poisson kernel and Green funtion for Brownian motion 18110. Green funtion of a ball. In order to ompute the Green fun-tion of a ball we use the method of Byzkowski and Maªeki [BM℄. We willompute Gr(x, y), the Green funtion of the ball Br, on all spheres SR, thatis, for �xed x ∈ Br and all y ∈ SR, 0 < R < r. Moreover, beause the Greenfuntion is symmetri: Gr(x, y) = Gr(y, x), it is enough to onsider the ase
|x| < R.Below we will use several semigroups and Green operators. Reall that
(Xt) denotes the omplex hyperboli Brownian motion and rt = |Xt|2. Let
P

(r)
t denote the semigroup of transition probabilities for the proess XBr

t ,the hyperboli Brownian motion killed at the boundary of Br. Similarly, let
(r

(r)
t ) be the proess (rt) killed on exiting the interval (0, r2). Beause Xtdoes not hit 0, (rt) exits (0, r2) through the point r2. We denote by T (r)

t theFeynman�Ka semigroup based on the proess rt and potential −Q, withits Feynman�Ka funtional exp(−
Tt
0Q(rs) ds) stopped at the �rst time theproess (rt) reahes the point r2. Let Gr denote the Green operator forthe proess Xt and the set Br, and let Gr(x, y) be the Green funtion,i.e. the kernel of Gr. Finally, V (r) will denote the (−Q)-Green operator forthe semigroup T (r)

t . For the details of the above de�nitions the reader mayonsult [ChZ℄.Let (Ĝr)p,q(x,R) denote the (p, q)-oe�ient ofGr(x, y), de�ned as in (5),onsidered as a funtion of y ∈ SR, with �xed x ∈ Br. Observe that two suhoe�ients are equal if |x1| = |x2|. For this reason we will use the notation
(Ĝr)p,q(|x|, R). By formula (5) we have
(38) (Ĝr)p,q(|x|, R) =

\
SR

Hq,p
n

( 〈y, x〉
|y| |x|

)
Gr(x, y) dσR(y).Now we ompute these oe�ients expliitly. To simplify the formulation ofthe next theorem, write

Fp,q(x) = 2F1(p, q ; p+ q + n ;x),

Gp,q(x) = 2F1(1 − n− q, 1 − n− p ; 2 − n− p− q ;x).Theorem 7. Let Gr(x, y) be the Green funtion for the proess (Xt)t≥0and ball Br. Then
(Ĝr)p,q(|x|, R)

=
Hp,q

n (1)|x|p+qFp,q(|x|2)
2(p+ q + n− 1)

Rp+q

(
Gp,q(R

2)

R2(p+q+n−1)
− Gp,q(r

2)

r2(p+q+n−1)
· Fp,q(R

2)

Fp,q(r2)

)
.Proof. In terms of semigroups of operators Theorem 3 reads as follows:for bounded measurable h : R → R,

(39) (P
(r)
t hHq,p

n )(x) = Hq,p
n (1)(T

(r)
t h)(|x|2).



182 T. �akIntegrating (39) with respet to time, we get
∞\
0

(P
(r)
t hHq,p

n )(x) dt = Hq,p
n (1)

∞\
0

(T
(r)
t h)(|x|2) dt,whih, in the language of potential operators, is

(40) (GrhH
q,p
n )(x) = Hq,p

n (1)(V (r)h)(|x|2).Using the fat that Gr(x, y) denotes the kernel of the operator Gr andintegrating in polar oordinates in C
n, we an write the left-hand side of(40) as

(GrhH
q,p
n )(x) =

\
Br

h(|y|2)Hq,p
n

( 〈y, x〉
|y| |x|

)
Gr(x, y) dy(41)

=

r\
0

h(R2)

( \
SR

Hq,p
n

( 〈y, x〉
|y| |x|

)
Gr(x, y) dσR(y)

)
dR.

The quantity (V (r)h)(|x|2) on the right-hand side of (40) equals
(V (r)h)(|x|2) =

r2\
0

h(y)V (r)(|x|2, y) dy(42)

=

r\
0

h(R2)V (r)(|x|2, R2) 2RdR,

where V (r)(|x|2, y) is the kernel of the operator V (r).Substituting (42) into the right-hand of (40) and then omparing theright-hand sides of (40) and (41), we get, for measurable bounded funtions h,
Hq,p

n (1)

r\
0

h(R2)V (r)(|x|2, R2) 2RdR

=

r\
0

h(R2)

( \
SR

Hq,p
n

( 〈y, x〉
|y| |x|

)
Gr(x, y) dσR(y)

)
dR.This implies

2Hq,p
n (1)RV (r)(|x|2, R2) =

\
SR

Hq,p
n

( 〈y, x〉
|y| |x|

)
Gr(x, y) dσR(y).

This in turn, together with (38), gives
(43) (Ĝr)p,q(|x|, R) = 2Hq,p

n (1)RV (r)(|x|2, R2).The (−Q)-Green funtion V (r)(y,R2) is (−Q)-harmoni in y, for 0 < y < Rand for R < y < r (f. [ChZ℄), hene it has to be a solution of (35), the



Poisson kernel and Green funtion for Brownian motion 183Shrödinger equation based on the generator of the proess (rt)t≥0 and poten-tial −Q. We have already found this solution: it is given by the formula (36),hene
(44) V (r)(|x|2, R2)

= |x|p+q

[
c1(p, q, R) · 2F1(p, q ; p+ q + n ; |x|2)

+
c2(p, q, R)

|x|2(p+q+n−1)
· 2F1(1 − q − n, 1 − p− n ; 2 − p− q − n ; |x|2)

]

= |x|p+q

(
c1(p, q, R)Fp,q(|x|2) +

c2(p, q, R)

|x|2(p+q+n−1)
Gp,q(|x|2)

)
.Beause lim|x|2→r2 V (r)(|x|2, R2) = 0, we have

c1(p, q, R) = − c2(p, q, R)

r2(p+q+n−1)
· Gp,q(r

2)

Fp,q(r2)and
(45) V (r)(|x|2, R2)

= c2(p, q, R)|x|p+q

(
Gp,q(|x|2)

|x|2(p+q+n−1)
− Gp,q(r

2)

r2(p+q+n−1)
· Fp,q(|x|2)
Fp,q(r2)

)
.By virtue of (43) and (45),

(Ĝr)p,q(|x|, R)

= 2Hq,p
n (1)R · c2(p, q, R)|x|p+q

(
Gp,q(|x|2)

|x|2(p+q+n−1)
− Gp,q(r

2)

r2(p+q+n−1)
· Fp,q(|x|2)
Fp,q(r2)

)
.The Green funtion is symmetri so that (Ĝr)p,q(|x|, R) also has thisproperty. Changing the roles of |x| and R, we get

(46) (Ĝr)p,q(R, |x|)

= 2Hq,p
n (1)|x| · c2(p, q, |x|)Rp+q

(
Gp,q(R

2)

R2(p+q+n−1)
− Gp,q(r

2)

r2(p+q+n−1)
· Fp,q(R

2)

Fp,q(r2)

)
.Now we ompute the onstant c2(p, q, |x|), showing �rst the following:Lemma 8. Let

u(x) = (n+ p+ q − 1)Fp,q(x)Gp,q(x) + x(F ′
p,q(x)Gp,q(x) − Fp,q(x)G

′
p,q(x)).Then u(x) = (n+ p+ q − 1)(1 − x)n−1.Proof. Reall that, by (1) and the de�nition, Fp,q satis�es the equation

x(1 − x)F ′′(x) + (p+ q + n− (p+ q + 1)x)F ′(x) − pqF (x) = 0,



184 T. �akwhile Gp,q satis�es the equation
x(1 − x)G′′(x) + (2 − n− p− q − (3 − p− q − 2n)x)G′(x)

− (1 − p− n)(1 − q − n)G(x) = 0.Let us ompute the derivative
u′(x) = (n+ p+ q − 1)(F ′

p,q(x)Gp,q(x) + Fp,q(x)G
′
p,q(x)) + F ′

p,q(x)Gp,q(x)

− Fp,q(x)G
′
p,q(x) + x(F ′′

p,q(x)Gp,q(x) − Fp,q(x)G
′′
p,q(x)).We an alulate x(1 − x)F ′′

p,q(x) and x(1 − x)G′′
p,q(x) from the above-itedequations. Substituting these quantities, we get

(1 − x)u′(x) = (1 − n)[(n+ p+ q + 1)Fp,q(x)Gp,q(x)

+ x(F ′
p,q(x)Gp,q(x) − Fp,q(x)G

′
p,q(x))]

= (1 − n)u(x).Solving the equation (1−x)u′(x) = (1−n)u(x), we get u(x) = C(1−x)n−1.For x→ 0 the asymptotis of the hypergeometri funtion and its derivativeis well-known [E℄; using this asymptotis we get limx→0+ u(x) = n+p+q−1,hene �nally u(x) = (n+ p+ q − 1)(1 − x)n−1.Using Lemma 8 we an ompute the derivative of the funtion
Rp+q

(
Gp,q(R

2)

R2(p+q+n−1)
− Gp,q(r

2)

r2(p+q+n−1)
· Fp,q(R

2)

Fp,q(r2)

)

with respet to R:
(47)

(
− d

dR

∣∣∣∣
R=r

)
Rp+q

(
Gp,q(R

2)

R2(p+q+n−1)
− Gp,q(r

2)

r2(p+q+n−1)
· Fp,q(R

2)

Fp,q(r2)

)

=
2(p+ q + n− 1)(1 − r2)n−1

rp+q+2n−1Fp,q(r2)
.On the other hand, by the Green formula (see Lemma 11 in the Ap-pendix), for y ∈ S1 we have

(
− d

dR

∣∣∣∣
R=r

)
Gr(x,Ry) = (1 − r2)n−1Pr(x, ry).From this fat and (38), for |y| = 1 and |x| < r we obtain

(48)

(
− d

dR

∣∣∣∣
R=r

)
(Ĝr)p,q(|x|, R)

=

(
− d

dR

∣∣∣∣
R=r

) \
S1

Hq,p
n

( 〈y, x〉
|x| |y|

)
Gr(x,Ry) dσ1(y)

=
\

S1

(
− d

dR

∣∣∣∣
R=r

)
Hq,p

n

( 〈y, x〉
|x| |y|

)
Gr(x,Ry) dσ1(y)
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= (1 − r2)n−1

\
S1

Hq,p
n

( 〈y, x〉
|x| |y|

)
Pr(x, ry) dσ1(y)

=
(1 − r2)n−1

r2n−1

\
Sr

Hq,p
n

( 〈y, x〉
|x| |y|

)
Pr(x, y) dσr(y)

=
(1 − r2)n−1

r2n−1
Hq,p

n (1) · |x|
p+q

rp+q
· Fp,q(|x|2)
Fp,q(r2)

,where in the last equality we have used Theorem 6.Now we an ompare the derivatives: formula (48) gives
(
− d

dR

∣∣∣∣
R=r

)
(Ĝr)p,q(|x|, R) =

(1 − r2)n−1

r2n−1
Hq,p

n (1)
|x|p+q

rp+q
· Fp,q(|x|2)
Fp,q(r2)

,while (46) and (47) imply
(
− d

dR

∣∣∣∣
R=r

)
(Ĝr)p,q(|x|, R)

= 2Hq,p
n (1)|x|c2(p, q, |x|) ·

2(p+ q + n− 1)(1 − r2)n−1

rp+q+2n−1Fp,q(r2)
.Comparing the right-hand sides of the last two expressions, we get

(1 − r2)n−1Hq,p
n (1)|x|p+qFp,q(|x|2)

r2n−1rp+qFp,q(r2)

=
4(p+ q + n− 1)Hq,p

n (1)|x|c2(p, q, |x|)(1 − r2)n−1

rp+q+2n−1Fp,q(r2)
,hene

|x|c2(p, q, |x|) =
|x|p+qFp,q(|x|2)
4(p+ q + n− 1)

,whih, by (46), �nally gives
(Ĝr)p,q(R, |x|)

=
Hq,p

n (1)|x|p+qFp,q(|x|2)
2(p+ q + n− 1)

Rp+q

(
Gp,q(R

2)

R2(p+q+n−1)
− Gp,q(r

2)

r2(p+q+n−1)
· Fp,q(R

2)

Fp,q(r2)

)
.Having the oe�ients, we an write down the expansion of the Greenfuntion.Theorem 9 (Green funtion). Let x, y ∈ Br. If x 6= 0 and |x| < |y|,then

Gr(x, y) =
1

2r2n−1

∞∑

p,q=0

|x|p+q|y|p+q

p+ q + n− 1
Fp,q(|x|2)

(
Gp,q(|y|2)

|y|2(p+q+n−1)

− Gp,q(r
2)

r2(p+q+n−1)
· Fp,q(|y|2)
Fp,q(r2)

)
Hp,q

n

( 〈x, y〉
|x| |y|

)
.



186 T. �akFor �xed x the series is uniformly onvergent on every sphere SR with |x| <
R < r.Proof. To show the uniform onvergene, we an estimate the series asfollows:

∣∣∣∣
∞∑

p,q=0

|x|p+q|y|p+q

p+ q + n− 1
Fp,q(|x|2)

×
(

Gp,q(|y|2)
|y|2(p+q+n−1)

− Gp,q(r
2)

r2(p+q+n−1)
· Fp,q(|y|2)
Fp,q(r2)

)
Hp,q

n

( 〈x, y〉
|x| |y|

)∣∣∣∣

≤ c

|y|2n−2

∞∑

p,q=0

|x|p+q

|y|p+q
Hp,q

n (1)|Fp,q(|x|2)Gp,q(|y|2)|

+
c

r2n−2

∞∑

p,q=0

|x|p+q|y|p+q

r2(p+q)
Hp,q

n (1)|Fp,q(|x|2)Gp,q(r
2)|,

beause Fp,q is positive and inreasing on (0, 1), whih implies that
Fp,q(|x|2)/Fp,q(r

2) ≤ 1.Below in Lemma 10 we will show that, exept for the ase pq = 0,G′
p,q < 0on (0, 1) and Gp,q(1) = 0. These fats immediately imply that Gp,q > 0 on

(0, 1) and x(F ′
p,q(x)Gp,q(x) − Fp,q(x)G

′
p,q(x)) > 0, hene by Lemma 8 wehave

0 < Fp,q(x)Gp,q(x) < (1 − x)n−1 ≤ 1 for x ∈ (0, 1).This, together with the fat that Fp,q is positive and inreasing, yields
|Fp,q(|x|2)Gp,q(|y|2)| < Fp,q(|y|2)Gp,q(|y|2) ≤ 1,

|Fp,q(|x|2)Gp,q(r
2)| < Fp,q(r

2)Gp,q(r
2) ≤ 1.By the de�nition, G0,q is bounded on every interval [ε, 1] and F0,q ≡ 1, hene

F0,qG0,q is also bounded on [ε, 1].Reall that 0 < |x| < |y| < r by our assumption and put ̺ = |x|/|y| inthe ase of the �rst series and ̺ = |x| |y|/r2 for the seond. In the proof ofTheorem 5 we showed that for any 0 < ̺ < 1 we have ∑
̺p+qHp,q

n (1) < ∞,hene both series are absolutely and uniformly onvergent.The family (Hp,q
n (·))∞p,q=0 is orthogonal, hene we an ompute (just aswe did for the Poisson kernel in the proof of Theorem 6) the (p, q)-oe�ientsof the funtion de�ned by the series. Beause the oe�ients are equal tothose omputed in Theorem 7 for the Green funtion, the series given inTheorem 9 represents Gr(x, y), the Green funtion of Br.Now we will prove the above-mentioned properties of Gp,q.



Poisson kernel and Green funtion for Brownian motion 187Lemma 10. For non-negative integers p, q and n ≥ 2 let
Gp,q(x) = 2F1(1 − n− q, 1 − n− p ; 2 − n− p− q ;x).If pq > 0 then G′

p,q(x) < 0 for x ∈ (0, 1) and Gp,q(1) = 0.Proof. We an assume that q ≤ p. The Kummer relation mentioned inthe Preliminaries implies that
2F1(1−n−q, 1−n−p ; 2−n−p−q ;x) = (1−x)n·2F1(1−p, 1−q ; 2−n−p−q ;x).Sine f(x) = (1− x)n is dereasing on (0, 1), f(1) = 0 and 2F1(1− p, 1 − q ;
2−n−p−q ;x) is a polynomial, it follows that Gp,q(1) = 0 and it is enough toshow that hp,q(x) = 2F1(1−p, 1− q ; 2−n−p− q ;x) has negative derivativefor 0 < x < 1.The funtion hp,q(x) is a polynomial in x of degree q − 1 (reall that weassumed 0 < q ≤ p) and for k = 1, . . . , q − 1 its kth derivative is
dk

dxk
hp,q(x) =

(1 − p)k(1 − q)k

(2 − n− p− q)k
· 2F1(1−p+k, 1−q+k ; 2−n−p−q+k ;x).In [V, omputations of C2 on p. 132℄, the following formula was proved:

(49) 2F1(1 − p+ k, 1 − q + k ; 2 − n− p− q + k ; 1)

=
(n+ p− 1)!(n+ q − 1)!

(n+ k)!(n+ p+ q − 2 + k)!
.Now observe that for �xed n, q and p the sequene ( (1−p)k(1−q)k

(2−n−p−q)k

)q−1

k=1
hasalternating signs. Indeed, let q > 0 be even. Then

dq−1

dxq−1
hp,q(1) =

(1 − p)q−1(1 − q)q−1

(2 − n− p− q)q−1
· 2F1(q − p, 0 ; 1 − n− p ; 1) < 0,beause there are an odd number of terms in the denominator, they are allnegative and 2F1(q−p, 0 ; 1−n−p ; 1) = 1. This implies that dq−2hp,q/dx

q−2is dereasing and sine its value at x = 1 is positive by (49), this derivativeis positive. This implies that the derivative of order q − 3 is dereasing, andas its value at x = 1 is positive, dq−3hp,q/dx
q−3 is positive. By indution weinfer that dhp,q/dx is negative, so that hp,q is dereasing, as required.If q is odd then dq−1

dxq−1hp,q(1) > 0 and the analogous reasoning gives thesame result.Remark. The formula in Theorem 9 is very similar to the one obtainedby Byzkowski and Maªeki [BM℄ for the ase of the real hyperboli spae Dn.Instead of our Fp,q their representation uses the hypergeometri funtion
2F1(p, (2 − n)/2 ; p + n/2 ;x) and for even n this funtion is a polynomial.Using this fat they managed to �nd sums of the analogous series desribing
Pr(x, y) and Gr(x, y) for n = 4 and n = 6. It seems hard to get suh ompat



188 T. �akformulas in the omplex hyperboli ase, beause for all n ≥ 2 the funtions
Fp,q are given by in�nite series.Appendix: gradient of a funtion and diretional derivative inthe omplex hyperboli spae. Consider the unit ball B1 = {z ∈ C

n :
|z| < 1} with the Bergman (Hermitian) metri, given by the matrix withentries

hij =
(1 − |z|2)δij + zizj

(1 − |z|2)2 , i, j = 1, . . . , n(f. [K℄ or [S℄, where the seond exponent in (1 − |z|2)2 is missing).The inverse matrix [hij] is given by the formula [S℄
hij = (1 − |z|2)(δij − zizj), i, j = 1, . . . , n.Beause we want to use the Green formula, involving derivatives in the nor-mal diretion, we desribe this metri in the language of the Riemannianmetri in the unit ball of R

2n. By the well-known identi�ation between thestrutures of C
n and R

2n ([KN℄, [R℄) we have the following:1) If z = (z1, . . . , zn) ∈ C
n and zk = xk + iyk then

C
n ∋ z ↔ (x1, . . . , xn, y1, . . . , yn) ∈ R

2n.2) Let MCn be the matrix of a linear transformation of Cn. If MCn =
ℜMCn + iℑMCn = A+ iB then

MR2n =

[
A B

−B A

]

is the matrix of the orresponding transformation of R
2n.Length of a tangent vetor. Now we want to look at the unit ball in C

nwith its Hermitian metri as a subset of R
2n with the Riemannian metri.By the above, the Riemannian metri gij , i, j = 1, . . . , 2n, in the unit ball of

R
2n is given by the matrix [

A B
−B A

]
, where

aij =
(1 − |z|2)δij + ℜ(zizj)

(1 − |z|2)2 , i, j = 1, . . . , n,

bij =
ℑ(zizj)

(1 − |z|2)2 , i, j = 1, . . . , n.Let T(x1,...,xn,y1,...,yn) denote the tangent spae at the point (x1, . . . , xn,
y1, . . . , yn) and let v ∈ T(x1,...,xn,y1,...,yn). Then the form determining thelength of v = (v1, . . . , v2n) is given by the formula

ds2 = [v1 . . . v2n]

[
A B

−B A

]
[v1 . . . v2n]T .
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ds2 = [x1 . . . xn y1 . . . yn]

[
A B

−B A

]
[x1 . . . xn y1 . . . yn]T

=
x2

1 + · · · + x2
n + y2

1 + · · · + y2
n

(1 − x2
1 − · · · − x2

n − y2
1 − · · · − y2

n)2
,so that

|(x1, . . . , xn, y1, . . . , yn)|R =
|(x1, . . . , xn, y1, . . . , yn)|E

1 − |(x1, . . . , xn, y1, . . . , yn)|2E
,where |v|E denotes the Eulidean and |v|R the Riemannian length of a ve-tor v.The same result an be obtained without omputations: the Bergmanmetri is invariant with respet to unitary transformations of the unit balland the group U(n) ats transitively on the spheres Sr, 0 < r < 1. Let z ∈ C

nwith |z|E = r < 1 and hoose Az ∈ U(n) suh that Az(z) = (r, 0, . . . , 0)
∈ C

n. This implies that the length of any vetor v in Tz = T(x1,...,xn,y1,...,yn)is the same as the length of Az(v) in T(r,0,...,0). In partiular the lengthof z = (x1, . . . , xn, y1, . . . , yn) is the same as the length of (r, 0, . . . , 0) in
T(r,0,...,0). But we an identify (r, 0, . . . , 0) ∈ C

n with r ∈ C
1. The form ofthe Bergman metri hij implies that both vetors have the same length andin the ase n = 1 the Bergman metri in the unit dis of C is the same asthe Poinaré metri, so that

|(r, 0, . . . , 0)|R =
|(r, 0, . . . , 0)|E

1 − r2
.Derivative in the normal diretion. Let 0 < r < 1 and �x a point

(x1, . . . , xn, y1, . . . , yn) with Eulidean norm r, i.e. a point from the sphere
Sr. For a di�erentiable funtion f we want to ompute the diretional deriva-tive ∂f/∂n, where n is the normal vetor at (x1, . . . , xn, y1, . . . , yn) and hasEulidean length 1. In order to use the formula

∂f

∂n = 〈grad f,n〉,we have to know grad f and the length of n (whih we have already om-puted). Now we ompute the gradient of f . Let [gij] be the matrix inverseto [gij ] and let (U, (x1, . . . , x2n)) be a loal oordinate system. Then by thewell-known formula for Riemannian manifolds ([KN℄, [Ch℄)
grad f =

2n∑

i,j=1

(
gij ∂f

∂xj

)
∂

∂xi
,

where (∂/∂xi)i=1,...,2n is a basi vetor �eld. In the ase we onsider, the



190 T. �akinverse matrix [gij] at (x1, . . . , xn, y1, . . . , yn) is
[gij]i,j=1,...,2n =

[
C D

−D C

]
,where

cij = (1 − |z|2)(δij −ℜ(zizj)), i, j = 1, . . . , n,

dij = (1 − |z|2)(−ℑ(zizj)), i, j = 1, . . . , n.Putting zk = xk + iyk, k = 1, . . . , n, with |z|2 =
∑n

i=1(x
2
i + y2

i ) = r2, we get,for i, j = 1, . . . , n,

cij =
(
1 −

n∑

k=1

x2
k −

n∑

k=1

y2
k

)
(δij − xixj − yiyj) = (1 − r2)(δij − xixj − yiyj),

dij =
(
1 −

n∑

k=1

x2
k −

n∑

k=1

y2
k

)
(−xiyj + xjyi) = (1 − r2)(−xiyj + xjyi).Let n be the normal vetor at (x1, . . . , xn, y1, . . . , yn) ∈ Sr. Then n =

(x1, . . . , xn, y1, . . . , yn). By the previous omputation its length is equal to
|n|R = |n|E/(1 − r2). Thus
〈grad f,n〉 =

1

1 − r2
〈grad f, (x1, . . . , xn, y1, . . . , yn)〉

=
1

1 − r2

〈( n∑

j=1

gij ∂f

∂xj
+

n∑

j=1

gi n+j ∂f

∂yj

)2n

i=1

, (x1, . . . , xn, y1, . . . , yn)

〉

=
n∑

i=1

Ci
∂f

∂xi
+

n∑

i=1

Di
∂f

∂yi
.

Now we ompute the oe�ients Ci and Di, using the form of the matrix
[gij] =

[ C D
−D C

]. For i = 1, . . . , n we have
Ci =

n∑

j=1

(δji − xjxi − yjyi)xj +
n∑

j=1

(xjyi − xiyj)yj

= xi

(
1 −

n∑

j=1

x2
j −

n∑

j=1

y2
j

)
= (1 − r2)xi,

Di =

n∑

j=1

(−xjyi + xiyj)xj +

n∑

j=1

(δji − xjxi − yjyi)yj

= yi

(
1 −

n∑

j=1

x2
j −

n∑

j=1

y2
j

)
= (1 − r2)yi.
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〈grad f,n〉 = (1 − r2)〈∇f, (x1, . . . , xn, y1, . . . , yn)〉.In the spae R

2n we have (λ denotes here the Lebesgue measure):
λ(B(0, r)) =

r\
0

ω2n−1̺
2n−1 d̺ =

ω2n−1

2n
r2n,whene the measure of the sphere Sr, whih is the derivative of λ(B(0, r)),is ω2n−1r

2n−1.In the unit ball of R
2n equipped with the Riemann metri (inherited fromthe Bergman metri in the unit ball of C

n) we have the following Riemannianvolume V of the ball (f. [R, Thm. 2.2.6(ii)℄):
V (B(0, r)) =

r\
0

ω2n−1
̺2n−1

(1 − ̺2)n+1
d̺.This implies that the Riemannian measure of the sphere Sr is equal to

(50) A(r) = lim
ε→0+

V (B(0, r + ε)) − V (B(0, r))

ε/(1 − r2)
= ω2n−1

r2n−1

(1 − r2)n
,beause the interval (in the unit ball of C

n) with endpoints (r, 0, . . . , 0) and
(r+ε, 0, . . . , 0) has length ε/(1 − r2)+o(ε). Thus the measure on Sr, induedby the Riemannian measure, is equal to the Eulidean measure divided by
(1 − r2)n.Lemma 11. Consider B1, the unit ball in C

n, equipped with the Bergmanmetri and let ∆LB be the Laplae�Beltrami operator on this Riemannianmanifold. Fix r ∈ (0, 1) and denote by Pr(x, y) the Poisson kernel , and by
Gr(x, y) the Green funtion of Br with respet to ∆LB. Then, in the abovenotation,

− d

dR

∣∣∣∣
R=r

(Gr(x,Ry))E = (1 − r2)n−1Pr(x, ry),where the subsript E in (Gr(x,Ry))E denotes that this quantity is omputedwith respet to the Eulidean metri.Proof. By Theorem 8 of [Ch, p. 174℄, for u harmoni in Br and u ∈
C1(Br),

−u(x) =
\

∂Br

(
∂Gr

∂vw

)

R

(x,w)u(w) dA(w),where now the subsript R denotes that the derivative is omputed withrespet to the Riemannian metri. We want to use the Eulidean metri andthen, by (50), for w ∈ Sr we have
dA(w) =

dσr(w)

(1 − r2)n
,



192 T. �akand the Riemannian diretional derivative is 1− r2 times the Eulidean one,hene
−u(x) =

1

(1 − r2)n−1

\
∂Br

(
∂G

∂vw

)

E

(x,w)u(w) dσr(w).Beause the funtion ∂G/∂vw reprodues harmoni funtions, it has to bethe Poisson kernel. This gives
− d

dR

∣∣∣∣
R=r
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