Corrigendum to the paper "Semigroup actions on tori and stationary measures on projective spaces"

(Studia Math. 171 (2005), 33-66)

by

YVES GUIVARC'H (Rennes) and ROMAN URBAN (Wrocław)

The argument given in the first sentence of Subsection 6.1 on page 63, which shows that $\Sigma = \mathbb{T}^d$, is not correct. This is because we cannot directly apply Corollary 5.22 to the set $p^{-1}(\Sigma)$ since this is a subset of $V = \mathbb{R}^d$ whereas Corollary 5.22 concerns subsets of $\widetilde{V} \setminus \{0\}$. However, the fact that $\Sigma = \mathbb{T}^d$ is true and can be justified as follows.

Let Σ be a closed Γ -invariant subset of \mathbb{T}^d and suppose that 0 is a limit point of Σ . Consider $p^{-1}(\Sigma) \subset V = \mathbb{R}^d$, the inverse image of Σ under the canonical projection p. Let $p^{-1}(\Sigma)$ be the projection of the set $p^{-1}(\Sigma) \subset V$ into the space $\widetilde{V} = V/\{\pm \mathrm{Id}\}$. Clearly, $p^{-1}(\Sigma)$ is a closed Γ -invariant set in \widetilde{V} and 0 is a limit point of $p^{-1}(\Sigma)$. Applying Corollary 5.22 to the Γ -invariant set $\widetilde{p^{-1}(\Sigma)} \setminus \{0\} \subset \widetilde{V} \setminus \{0\}$ we get

$$\widetilde{p^{-1}(\Sigma)} \supset L_{\Gamma} \times \mathbb{R}^*_+ = \widetilde{L}_{\Gamma} / \{ \pm \mathrm{Id} \},\$$

and consequently

$$V \supset p^{-1}(\Sigma) \cup -p^{-1}(\Sigma) \supset \widetilde{L}_{\Gamma}.$$

By Lemma 5.1, L_{Γ} is not contained in a countable union of subspaces, in particular \widetilde{L}_{Γ} contains at least one ray which is not contained in a rational subspace. Thus

$$p(p^{-1}(\Sigma) \cup -p^{-1}(\Sigma)) = \mathbb{T}^d,$$

and consequently

$$\Sigma \cup -\Sigma = \mathbb{T}^d.$$

²⁰⁰⁰ Mathematics Subject Classification: 54H20, 37C85, 60B11, 60J05.

In particular, the normalized Haar measure of the set Σ is positive. Using exactly the same ergodic argument as on page 64, lines 16–13 from the bottom, we conclude that $\Sigma = \mathbb{T}^d$.

IRMAR Université de Rennes 1 Campus de Beaulieu 35042 Rennes Cedex, France E-mail: yves.guivarch@univ-rennes1.fr Institute of Mathematics Wrocław University Plac Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: urban@math.uni.wroc.pl

Received September 20, 2007 Revised version September 29, 2007 (6241)

196