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Characterization of the convolution operators

on quasianalytic classes of Beurling type

that admit a continuous linear right inverse

by

José Bonet (Valencia) and Reinhold Meise (Düsseldorf)

Abstract. Extending previous work by Meise and Vogt, we characterize those con-
volution operators, defined on the space E(ω)(R) of (ω)-quasianalytic functions of Beurling
type of one variable, which admit a continuous linear right inverse. Also, we character-
ize those (ω)-ultradifferential operators which admit a continuous linear right inverse on
E(ω)[a, b] for each compact interval [a, b] and we show that this property is in fact weaker
than the existence of a continuous linear right inverse on E(ω)(R).

1. Introduction. For a weight function ω let E(ω)(R) denote the space
of all (ω)-ultradifferentiable functions of Beurling type on R. Then each
µ ∈ E ′(ω)(R) induces a convolution operator Tµ : E(ω)(R) → E(ω)(R). If ω is

non-quasianalytic, i.e., if E(ω)(R) admits non-trivial functions with compact
support, then Meise and Vogt [21] characterized by various equivalences
those convolution operators Tµ on E(ω)(R) that admit a continuous linear
right inverse. The arguments which they apply in their proofs use the non-
quasianalyticity in an essential way, in particular through the existence of
cut-off functions and fundamental solutions.

In the present paper we first show that for each quasianalytic weight func-
tion ω which satisfies condition (α1), a convolution operator Tµ on E(ω)(R)
admits a continuous linear right inverse only if its Fourier–Laplace trans-
form µ̂ is (ω)-slowly decreasing and satisfies |Im a| = O(ω(a)) for a ∈ V (µ̂)
as |a| tends to infinity. Conversely, if these two conditions hold and if ω
is a (DN)-weight function, then Tµ admits a continuous linear right in-
verse on E(ω)(R), even without the assumption that ω satisfies condition
(α1). Accordingly, when ω is a quasianalytic (DN)-weight function satis-
fying condition (α1), we obtain a characterization (see Theorem 3.4). To
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prove these results we use an idea of Langenbruch [13] who characterized
the convolution operators on the real-analytic functions on R which ad-
mit a solution operator. Also, we work with the space of Fourier–Laplace
transforms of the (ω)-quasianalytic functionals, where we apply methods
that go back to Berenstein and Taylor [2], Meise [15], and Meise and Tay-
lor [17]. An important step in proving the necessity of the conditions given
above is a recent result of Vogt [30] and Bonet and Domański [4] on topo-
logical invariants of spaces of {ω}-ultradifferentiable functions of Roumieu
type.

We also investigate (ω)-ultradifferential operators Tµ on E(ω)(R) and on
E(ω)[a, b] for compact intervals [a, b]. It turns out that the surjectivity of such
an operator on E(ω)(R) already implies the existence of a continuous linear
right inverse for Tµ, restricted to E(ω)[a, b]. As a consequence we deduce that
an analogue of a result of Domański and Vogt [9, Theorem 4.7] in the real-
analytic case also holds for the class E(ω), provided that ω is a quasianalytic
(DN)-weight function which satisfies condition (α1). More precisely, we show
that each (ω)-ultradifferential operator Tµ which is surjective on E(ω)(R)
admits a continuous linear right inverse on E(ω)(R) if and only if for each
compact interval [a, b] and each f ∈ E(ω)[a, b] satisfying Tµ(f) = 0 there
exists g ∈ E(ω)(R) satisfying Tµ(g) = 0 and f = g|[a,b].

The authors thank P. Domański and D. Vogt for a discussion which drew
their attention to the paper [9]. We also thank the referee for the careful
reading of our manuscript.
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2. Preliminaries. In this section we introduce the notation that will
be used throughout the entire paper.

2.1. Weight functions. A function ω : R → [0,∞[ is called a weight
function if it is continuous, even, increasing on [0,∞[, satisfies ω(0) = 0,
and also the following conditions:

(α) There exists K ≥ 1 such that ω(2t) ≤ Kω(t) + K for all t ≥ 0.
(β) ω(t) = o(t) as t tends to infinity.
(γ) log(t) = o(ω(t)) as t tends to infinity.
(δ) ϕ : t 7→ ω(et) is convex on [0,∞[.
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(a) If a weight function ω satisfies

(Q)

∞\
1

ω(t)

t2
dt = ∞,

then it is called a quasianalytic weight function. Otherwise it is called non-
quasianalytic.

(b) If a weight function ω satisfies the condition

(ε) there exists C > 0 such that
T∞
1 (ω(yt)/t2) dt ≤ Cω(y) + C for all

y > 0,

then ω is called a strong weight function. Obviously, each strong weight
function is non-quasianalytic. The reverse implication does not hold.

(c) A weight function ω satisfies condition (α1) if

sup
λ≥1

lim sup
t→∞

ω(λt)

λω(t)
< ∞.

This condition was introduced by Petzsche and Vogt [26] and is equivalent
to the existence of C1 > 0 such that for each W ≥ 1 there exists C2 > 0
such that

ω(Wt + W ) ≤ WC1ω(t) + C2, t ≥ 0.

(d) The radial extension ω̃ of a weight function ω is defined as

ω̃ : C
n → [0,∞[, ω̃(z) := ω(|z|).

It will also be denoted by ω, by abuse of notation.
(e) The Young conjugate of the function ϕ = ϕω, which appears in (δ),

is defined as
ϕ∗(x) := sup{xy − ϕ(y) : y > 0}, x ≥ 0.

2.2. Example. The following are easily seen to be weight functions:

(1) ω(t) := |t|(log(e + |t|))−α, α > 0.
(2) ω(t) := |t|α, 0 < α < 1.
(3) ω(t) = (max(0, log t))s, s > 1.

2.3. Ultradifferentiable functions defined by weight functions. Let ω be
a given weight function, let K be a compact and G be an open subset of
R

N , and denote by C∞(K) the space of all C∞-Whitney jets on K.

(a) The space E(ω)(G) of (ω)-ultradifferentiable functions of Beurling type
on G is defined as

E(ω)(G) := {f ∈ C∞(G) : for each K ⊂ G compact and m ∈ N,

pK,m(f) := sup
x∈K

sup
α∈NN

0

|f (α)(x)| exp(−mϕ∗(|α|/m)) < ∞}.

It is easy to check that E(ω)(G) is a Fréchet space if we endow it with the
locally convex topology given by the seminorms pK,m. We also define the
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space
E(ω)(K) := {f ∈ C∞(K) : pK,m(f) < ∞ ∀m ∈ N}.

(b) For m ∈ N let

Em
{ω}(K) :=

{
f ∈ C∞(K) :

‖f‖K,m := sup
x∈K

sup
α∈NN

0

|f (α)(x)| exp

(
− 1

m
ϕ∗(m|α|)

)
< ∞

}

and define the space E{ω}(G) of {ω}-ultradifferentiable functions of Roumieu
type on G as

E{ω}(G) := {f ∈ C∞(G) : for each K ⊂ G compact

there is m ∈ N so that ‖f‖K,m < ∞}.
It is endowed with the topology given by the representation

E{ω}(G) = proj←K indm→ Em
{ω}(K),

where K runs over all compact subsets of G.

Note that E{ω}(G) is a countable projective limit of (DFN)-spaces, which
is ultrabornological, reflexive and complete. This follows from Rösner [27,
Satz 3.25] and Vogt [30, Theorem 3.4].

If a statement holds in the Beurling and the Roumieu case then we will
use the notation E∗(G). It means that in all cases ∗ can be replaced either
by (ω) or by {ω}.

2.4. Definition. Let ω be a weight function and G an open convex set
in R

N .

(a) We define

A(ω) := {f ∈H(CN ) : ∃n∈N : ‖f‖n := sup
z∈C

|f(z)| exp(−nω(z))<∞}.

Endowed with its natural (LB)-topology, A(ω) is a (DFN)-space.
(b) For each compact set K in G, the support functional of K is

hK : R
N → R, hK(x) := sup{〈x, y〉 : y ∈ K}.

(c) For K as in (b) and λ > 0 let

A(K, λ) := {f ∈ H(CN ) :

‖f‖K,λ := sup
z∈CN

|f(z)| exp(−hK(Im z) − λω(|z|)) < ∞}

and define

A(ω)(C
N , G) := indK,n→A(K, n),

A{ω}(C
N , G) := indK→ proj←n A(K, 1/n).
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It is easy to check that A(K, λ) is a Banach space, that A(ω)(C
N , G) is

an (LB)-space, and that A{ω}(C
N , G) is an (LF)-space.

2.5. The Fourier–Laplace transform. Let ω be a weight function and let
G be an open convex set in R

N . For each u ∈ E∗(G)′ it is easy to check that

û : C
N → C, û(z) := ux(e−i〈x,z〉),

is an entire function which belongs to A∗(CN , G) and that

F : E ′∗(G) → A∗(C
N , G), F(u) := û,

is linear and continuous.

The following result was proved for N = 1 by Meyer [23] and for N ≥ 1
in the Roumieu case by Rösner [27]. For a unified proof we refer to Heinrich
and Meise [10, Theorems 3.6 and 3.7].

2.6. Theorem. For each weight function ω and each convex open set
G ⊂ R

N the Fourier–Laplace transform

F : E ′∗(G) → A∗(C
N , G)

is a linear topological isomorphism.

2.7. Convolution operators. For µ ∈ E∗(R)′, µ 6= 0, and ϕ ∈ E∗(R) we
define

µ̌(ϕ) := µ(ϕ̌), ϕ̌(x) := ϕ(−x), x ∈ R.

The convolution operator Tµ : E∗(R) → E∗(R) is defined by

Tµ(f) := µ̌ ∗ f, (µ̌ ∗ f)(x) := µ̌(f(x − ·)), x ∈ R.

It is a well-defined, linear, continuous operator; see Meyer [23] and [24].
For g ∈ A∗(C, R) we define the multiplication operator Mg : A∗(C, R) →
A∗(C, R) by Mg(f) = gf . It is well-known that for µ ∈ E∗(R) we have
F ◦ T t

µ = Mµ̂ ◦ F on E ′∗(R).

By the work of S. Momm [25, Proposition 2 and Corollary 1] (see also
[5, Proposition 2.6 and Theorem 2.7]) we have

2.8. Theorem. For each weight function ω the following conditions are
equivalent for µ ∈ E ′(ω)(R), µ 6= 0:

(1) Tµ : E(ω)(R) → E(ω)(R) is surjective.
(2) The principal ideal µ̂A(ω)(C, R) is closed in A(ω)(C, R).
(3) µ̂ is (ω)-slowly decreasing in the sense of Ehrenpreis, i.e., there exist

k, x0 > 0 such that for each x ∈ R with |x| ≥ x0 there exists t ∈ R

with |t − x| ≤ kω(x) such that

|µ̂(t)| ≥ exp(−kω(t)).
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(4) µ̂ is (ω)-slowly decreasing , i.e., there exists C > 0 such that for each
x ∈ R with |x| ≥ C there exists ξ ∈ C such that

|x − ξ| ≤ Cω(x), |µ̂(ξ)| ≥ exp(−C|Im ξ| − Cω(ξ)).

(5) µ̂ is slowly decreasing for A(ω)(C, R) in the sense of Berenstein and
Taylor , i.e., for p(z) := |Im z| + ω(z), z ∈ C, there exist ε, C, D > 0
such that each connected component S of

S(µ̂, ε, C) := {z ∈ C : |µ̂(z)| < ε exp(−Cp(z))}
satisfies

sup
z∈S

p(z) ≤ D(1 + inf
z∈S

p(z)).

(6) There exist k ∈ N, m ∈ N, and R > 0 such that for each z ∈ C

with |z| ≥ R there is a circle T surrounding z with diameter d(T ) ≤
|Im z| + kω(z) and |F (w)| ≥ exp(−mp(w)) for each w ∈ T .

In the next section we will use the following definitions.

2.9. Definition. Let α=(αj)j∈N be an increasing, unbounded sequence
in [0,∞[. For R ∈ {0,∞} the power series spaces ΛR(α) are defined as

ΛR(α) :=
{

x = (xj)j∈N ∈ C
N : ‖x‖r :=

∞∑

j=1

|xj | exp(rαj) < ∞ ∀r < R
}

.

Λ∞(α) is called a power series space of infinite type, while Λ0(α) is said to
be of finite type. Note that ΛR(α) is a Fréchet–Schwartz space for each α
and each R.

The following linear topological invariants are related to power series
spaces of infinite type. For details we refer to Meise and Vogt [22, Section 29].

2.10. Definition. Let E be a Fréchet space and let (‖ · ‖j)j∈N be a
fundamental sequence of seminorms for E.

(a) E has property (DN) if there exists p ∈ N such that for each k ∈ N

there exist n ∈ N and C > 0 such that

‖x‖2
k ≤ C‖x‖p‖x‖n, x ∈ E.

(b) E has property (Ω) if for each p ∈ N there exists q ∈ N such that for
each k ∈ N and 0 < Θ < 1 there exists C > 0 such that

‖y‖∗q ≤ C‖y‖∗1−Θ
p ‖y‖∗Θk , y ∈ E′,

where for y ∈ E′,

‖y‖∗k := sup{|y(x)| : ‖x‖k ≤ 1} ∈ R ∪ {+∞}.
Note that each subspace of a power series space of infinite type has (DN),

while each quotient space has (Ω).

From Meise and Taylor [18], we recall the following definition.
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2.11. Definition. A weight function ω is called a (DN)-weight function
if it satisfies:

(2.1) for each C > 1 there exist R0 > 0 and 0 < δ < 1 such that for each
R ≥ R0,

ω−1(CR)ω−1(δR) ≤ (ω−1(R))2.

For the significance of (DN)-weight functions we refer to Meise and Tay-
lor [18, Theorem 3.4].

2.12. Example. Let ω be a weight function for which there exists A > 0
such that

2ω(t) ≤ ω(At) + A, t ≥ 0.

Then ω is a (DN)-weight function by Meise and Taylor [18, Example 3.5(4)].
In particular, the following functions are quasianalytic (DN)-weight func-
tions which also satisfy (α1):

(1) ω(t) := |t|(log(e + |t|))−α, 0 < α ≤ 1.
(2) ω(t) := |t|(log(e + log(e + |t|)))−1.

3. The global case. In this section we characterize when a convolution
operator Tµ admits a continuous linear right inverse on E(ω)(R). To do this
we will use the following lemma.

3.1. Lemma. Let ω be a weight function which satisfies condition (α1).
Suppose that there is a sequence (aj)j∈N of complex numbers with 0 < |aj| <
|aj+1| for each j ∈ N and limj→∞ |aj | = ∞ such that ω(aj) ≤ |Im aj |/j2 for
each j ∈ N. Then there is a weight function σ satisfying condition (α1) and
ω(t) = o(σ(t)) as t → ∞, and there is a subsequence (aj(k))k∈N of (aj)j∈N

such that σ(aj(k)) = O(|Im aj(k)|) as k → ∞.

Proof. Case 1: |Im aj | = o(|aj|) as j → ∞. Then we write aj = αj+iβj ,
j ∈ N, and choose j(1) ∈ N such that |βj| ≤ |αj |/2 and ω(αj) ≥ 1 if j ≥ j(1).
By the properties of ω, there exists D ≥ 1 such that for all j ≥ j(1),

ω(αj) ≤ ω(|aj|) ≤ ω(|αj| + |βj|) ≤ ω
(

3
2 |αj |

)
≤ Dω(|αj|) + D ≤ 2Dω(αj).

Without restriction we may assume that αj > 0 for j ≥ j(1). Then we
define x1 := 0 and x2 := αj(1). Proceeding by induction suppose that j(n) >
max(n, j(n − 1)) and xn+1 := αj(n) > 2xn are already selected satisfying

ω(xn+1) ≥ 2n−i+1ω(xi), 1 ≤ i ≤ n, and ω(x) ≤ x/n2 if x ≥ xn.

Since (|αj |)j∈N tends to infinity and ω satisfies condition 2.1(γ) and
limt→∞ ω(t)/t = 0, we can find j(n + 1) > max(n + 1, j(n)) such that
αj(n+1) > 2xn+1, ω(αj(n+1)) ≥ 2n+2−iω(xi), 1 ≤ i ≤ n + 1, and ω(x) ≤
x/(n + 1)2 if x ≥ αj(n+1). Now define xn+2 := αj(n+1).
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As in Braun, Meise, and Taylor [7, Lemma 1.6], define

(3.1) σ : [0,∞[ → [0,∞[, σ(x) := nω(x) −
n∑

i=1

ω(xi), x ∈ [xn, xn+1[.

Then it follows as in the proof of [7, Lemma 1.6] that σ is continuous, has
properties (α) and (δ) of 2.1, and ω(t) = o(σ(t)) as t → ∞, which implies
that σ has property (γ) as well. On the other hand, for each t ∈ [xn, xn+1],
we get σ(t) ≤ nω(t) ≤ t/n, and therefore σ(t) = o(t) as t → ∞. Moreover,
since ω satisfies condition (α1) it follows from [7, Lemma 1.7] that σ also
satisfies (α1).

To show that σ(aj(k)) = O(|Imaj(k)|) as k → ∞, we first fix k(0) ∈ N

such that σ(aj(k)) ≥ 1 if k ≥ k(0). Then we apply property 2.1(α) for the
weight function σ to find L ≥ 1 such that for all k ≥ k(0),

σ(aj(k)) ≤ σ(3|αj(k)|/2) ≤ Lσ(αj(k)) = Lσ(xk+1) ≤ Lkω(xk+1)

≤ Lj(k)ω(aj(k)) ≤ Lj(k)
1

j(k)2
|Im aj(k)| ≤ L|Im aj(k)|.

Case 2: lim infj→∞ |Im aj |/|aj| > 0. Then there are δ > 0 and a subse-
quence (aj(k))k∈N such that |Im aj(k)| ≥ δ|aj(k)| for each k ∈ N. Next choose
inductively a sequence (xn)n∈N in [0,∞[ which satisfies

x1 = 0, xn+1 ≥ 2xn, ω(x2) > 0, ω(t)/t ≤ 1/n2 if t ≥ xn,

and

ω(xn+1) ≥ 2n+1−iω(xi), 1 ≤ i ≤ n,

and define σ as in (3.1). Then σ is a weight function which satisfies ω(t) =
o(σ(t)), σ(t) = o(t) as t → ∞, and condition (α1). Next choose k0 ∈ N such
that σ(aj(k)) ≥ 1 if k ≥ k0. By the property 2.1(β) of the weight σ, we find
C ≥ 1 such that, for k ≥ k0,

σ(aj(k)) ≤ C|aj(k)| ≤
C

δ
|Imaj(k)|.

3.2. Proposition. Let ω be a weight function which satisfies (α1) and
let µ ∈ E ′(ω)(R). If the convolution operator

Tµ : E(ω)(R) → E(ω)(R)

admits a continuous linear right inverse, then the following two conditions
are satisfied :

(a) µ̂ is (ω)-slowly decreasing.
(b) There exists C > 0 such that

|Im a| ≤ C(1 + ω(a)), a ∈ C, µ̂(a) = 0.
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Proof. If Tµ : E(ω)(R) → E(ω)(R) admits a continuous linear right inverse,
then Tµ is surjective. Hence Momm’s Theorem 2.8 implies that µ̂ is (ω)-
slowly decreasing, which proves (a).

To prove that condition (b) holds we argue by contradiction and assume
that it is not satisfied. Then there exists a sequence (aj)j∈N of complex
numbers such that µ̂(aj) = 0 and ω(aj) ≤ j−2|Im aj | for each j ∈ N. By
Lemma 3.1 we can choose a weight function σ with ω = o(σ), which also
satisfies condition (α1), such that by passing to a subsequence, we have
σ(aj) = O(|Imaj |) as j → ∞. Proceeding by recurrence, we extract a sub-
sequence of (aj)j∈N, which we denote in the same way, such that, for n(t) :=
card{j ∈ N : |aj | ≤ t},

(i) |aj+1| ≥ 4|aj |,
(ii) n(t) log t = o(ω(t)) as t → ∞.

As in Braun, Meise, and Vogt [8, 3.11], define

F (z) :=
∞∏

j=1

(
1 − z

aj

)
, z ∈ C.

By Rudin [28, Theorem 15.6], F is an entire function such that its set of
zeros consists of the sequence (aj)j∈N, and satisfies the following condi-
tions:

(1) There exists C > 0 such that |F (z)| ≤ C exp(ω(z)), z ∈ C.
(2) There exists ε0 > 0 such that |F (ζ)| ≥ ε0 exp(−ω(ζ)) for all ζ ∈

C \ ⋃∞
j=1 B(aj , 1).

(3) There exist ε0, K0 > 0 such that, if ζ ∈ C satisfies 1 ≤ |ζ − aj | ≤ 2
for some j, then

|F (ζ)| ≥ ε0 exp(−K0ω(aj)).

This can be achieved by the arguments given in [6, proof of Lemma 3.5],
based on [8, 3.11]. In particular, F is (ω)-slowly decreasing.

Since each aj is a zero of µ̂, it follows that g := µ̂/F is an entire function.
Since F is (ω)-slowly decreasing, we conclude that g ∈ A(ω)(C, R) (notation
as in 2.4). This implies, in particular, that Mg : A(ω)(C, R) → A(ω)(C, R) is
continuous.

By hypothesis Tµ : E(ω)(R) → E(ω)(R) admits a continuous linear right
inverse. Therefore, Mµ̂ : A(ω)(C, R) → A(ω)(C, R) admits a continuous linear
left inverse Lµ̂. The operator LF := Lµ̂ ◦ Mg : A(ω)(C, R) → A(ω)(C, R) is
continuous, and it is a left inverse of MF since

LF MF (h) = Lµ̂MgMF (h) = Lµ̂(gFh) = Lµ̂(µ̂h) = h, h ∈ A(ω)(C, R).

Thus MF : A(ω)(C, R) → A(ω)(C, R) admits a continuous linear left inverse.
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Since the weight σ constructed at the beginning of the proof by the
use of Lemma 3.1 satisfies ω(t) = o(σ(t)) as t → ∞, we conclude that
A(ω)(C, R) ⊂ A{σ}(C, R) and that the inclusion map is continuous. More-
over, the growth estimate for F in (1) implies that MF also defines a con-
tinuous linear operator from A{σ}(C, R) into itself. Next define

̺ : H(C) → C
N, ̺(f) := (f(aj))j∈N.

Proceeding as in the proof of [6, Lemma 3.8] (based on the method of
Meise [15, Theorem 3.7]), we can conclude from the properties (1)–(3) of
F that

MF A(ω)(C, R) = {f ∈ A(ω)(C, R) : f(aj) = 0 ∀j ∈ N}
= ker ̺ ∩ A(ω)(C, R),

MF A{σ}(C, R) = {f ∈ A{σ}(C, R) : f(aj) = 0 ∀j ∈ N}
= ker ̺ ∩ A{σ}(C, R).

Moreover, the map ̺ defined above induces an isomorphism between the
quotient A(ω)(C, R)/MF A(ω)(C, R) and the sequence space

E := {(xj)j∈N ∈ C
N : ∃n : ‖x‖n := sup

j∈N

|xj | exp(−n|Im aj | − nω(aj)) < ∞},

as well as an isomorphism between A{σ}(C, R)/MF A{σ}(C, R) and the (LF)-
sequence space

G := ind→n proj←k K(n, k),

where

K(n, k) :=

{
x ∈ C

N : ‖x‖n,k := sup
j∈N

|xj| exp

(
−n|Im aj | −

1

k
σ(aj)

)
< ∞

}
.

We then obtain the diagram

0 → A(ω)(C, R)
MF−→ A(ω)(C, R)

̺1−→ E → 0

∩ ∩
0 → A{σ}(C, R)

MF−→ A{σ}(C, R)
̺2−→ G → 0

where ̺1 and ̺2 are the restrictions of ̺. Since MF has a continuous linear
left inverse, ̺1 has a continuous linear right inverse R1 : E → A(ω)(C, R).

Next note that ω(aj) ≤ j−2|Im aj |, j ∈ N, implies, for each n ∈ N,

(3.2) 0 < n|Im aj | ≤ n|Im aj | + nω(aj) ≤
(

n +
n

j2

)
|Im aj | ≤ 2n|Im aj |,

while the choice of σ implies the existence of C ∈ N such that σ(aj) ≤
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C|Im aj | + C, j ∈ N. Hence for each n ∈ N we have

0 < n|Im aj | ≤ n|Im aj | +
1

k
σ(aj) ≤ n|Im aj | +

C

k
|Im aj | +

C

k
(3.3)

≤ (n + C)|Im aj | + C.

From (3.2) and (3.3) it follows easily that the sequence spaces E and G coin-
cide algebraically and topologically with the dual of P := Λ∞((|Imaj |)j∈N).
If we identify E and G and use the fact that A(ω)(C, R) ⊂ A{σ}(C, R),
then the map R1 : E = G → A{σ}(C, R) is a continuous linear right in-
verse for ̺2. Hence G = P ′ is isomorphic to a complemented subspace of
A{σ}(C, R) = E ′{σ}(R). Since σ satisfies condition (α1), a result of Vogt

[30, Theorem 1.8], and Bonet and Domański [4, Theorem 6.2 in connection
with Propositions 5.3(a) and 5.4(b)] implies that each Fréchet quotient of

E{ω}(R) and hence P has the topological invariant (Ω). However, this is a

contradiction since no power series space satisfies (Ω). Hence condition (b)
is satisfied.

Remark. For ω(t) = t we get E(ω)(R) = H(C). By Taylor [29, The-
orem 5.1] or Meise [16, Theorem 3.5], each convolution operator on H(C)
admits a continuous linear right inverse. This is the reason why we require
in 2.1(β) that ω(t) = o(t) as t tends to infinity.

Next we show that the necessary conditions in Proposition 3.2 are suffi-
cient if ω is a (DN)-weight function.

3.3. Proposition. Let ω be a (DN)-weight function. Then for µ ∈
E ′(ω)(R) the convolution operator

Tµ : E(ω)(R) → E(ω)(R)

admits a continuous linear right inverse if conditions (a) and (b) in Propo-
sition 3.2 hold.

Proof. Obviously, it is no restriction to assume that V (µ̂) := {a ∈ C :
µ̂(a) = 0} is infinite. To simplify the notation we let

F := µ̂ ∈ A(ω)(C, R), p(z) := |Im z| + ω(z).

Note that then A(ω)(C, R) coincides with the algebra Ap(C) of Berenstein
and Taylor [2] and Meise [15]. Since F = µ̂ is (ω)-slowly decreasing, it
follows from Theorem 2.8 that there are k, m ∈ N and R > 0 such that for
each a ∈ V (F ), |a| ≥ R, there is a circle Ta surrounding a with diameter
d(Ta) ≤ kω(a) + |Im a| and |F (w)| ≥ exp(−mp(w)) for each w in Ta. By
condition (b), d(Ta) ≤ (k + C)ω(a) + C.

We apply again the fact that F is (ω)-slowly decreasing to find 0 <
ε0 < 1, C0 > 0, D0 > 0 such that every component of S(F, ε0, C0) :=
{z ∈ C : |F (z)| < ε0 exp(−C0p(z))} (is bounded and) satisfies supz∈S p(z) ≤
D0(1 + infz∈S p(z)). Without restriction, we may assume that C0 > m.
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Let S be a connected component of S(F, ε0, C0) which has a non-empty
intersection with V (F ) and let a ∈ S∩V (F ). If |a| ≥ R, then S is contained
in the disc Da limited by the circle Ta. In particular, if z ∈ S, then

|Im z| ≤ |Im a| + d(Ta) ≤ 2|Im a| + kω(a) ≤ (k + 2C)ω(a) + 2C.

On the other hand, if z ∈ Da, |z− a| ≤ d(Ta), and if K0 is chosen according
to condition 2.1(α) such that ω(2t) ≤ K0(ω(t) + 1) for t ≥ 0, then

ω(a) ≤ K0ω(z) + K0ω(d(Ta)) + K2
0

≤ K0ω(z) + K0ω(C + (k + C)ω(a)) + K2
0

≤ K0ω(z) + K2
0ω(C) + K2

0ω((k + C)ω(a)) + 2K2
0 .

Thus

ω(a)

(
1 − (k + C)K2

0

ω((k + C)ω(a))

(k + C)ω(a)

)
≤ K0ω(z) + K2

0ω(C) + 2K2
0 .

Since ω(t) = o(t), if |a| ≥ R1 > R, we get ω(a) ≤ 2K0ω(z)+2K2
0ω(C)+4K2

0 ,
and the existence of A1 > 0 such that |Im z| ≤ 2(k + 2C)K0ω(z) + A1 for
each z ∈ S.

Since there are only finitely many components S which meet V (F ) at
a point a with |a| ≤ R1, and they are bounded, we conclude that there
is A2 ≥ 1 such that for each component S of S(F, ε0, C0) which satisfies
S ∩ V (F ) 6= ∅ we have

|Im z| ≤ A2ω(z) + A2, z ∈ S.

Denote by Iloc(F ) the ideal of A(ω)(C, R) of all g ∈ A(ω)(C, R) such that
V (g) ⊃ V (F ) and at each a ∈ V (F ) the order of vanishing of g is at least
as high as the one of F at a, i.e., ord(g, a) ≥ ord(F, a).

Since F is (ω)-slowly decreasing, Iloc(F ) = FA(ω)(C, R) and it is closed;
see [2] and [15, 3.5]. We select the connected components of S(F, ε0, C0)
which intersect V (F ) and label them as (Sj)j∈N so that γj := supz∈Sj

p(z),
j ∈ N, is increasing. Recall that there is D1 > 0 such that

(3.4) ω(z) ≤ p(z) ≤ D1 + D1ω(z), z ∈ Sj , j ∈ N.

Put γ = (γj)j∈N. Following the proof of [15, Theorem 3.7, pp. 77–78] we let

(3.5) Ej :=
∏

b∈Sj∩V (F )

C
ord(F,b), j ∈ N,

and we define ̺j : H∞(Sj) → Ej by

(3.6) ̺j(f) :=

((
1

k!
f (k)(b)

)

0≤k<ord(F,b)

)

b∈Sj∩V (F )

.
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We endow Ej with the quotient norm

‖̺j(g)‖ := inf{‖h‖H∞(Sj) : ̺j(h) = ̺j(g)}, g ∈ H∞(Sj).

Then ̺j is linear, continuous and surjective. Now, for each j ∈ N there is
Rj : Ej → H∞(Sj) continuous and linear such that ̺jRj = idEj

and ‖Rj‖ ≤
2 dim Ej . If f ∈ A(ω)(C, R), then ‖f‖n := supz∈C |f(z)| exp(−np(z)) < ∞
for some n ∈ N. This implies

‖f |Sj
‖H∞(Sj) ≤ enγj‖f‖n.

Therefore, ‖̺j(f |Sj
)‖j ≤ enγj‖f‖n and consequently (̺j(f |Sj

))j∈N is in
K∞(γ, (Ej)j), where

K∞(γ, (Ej)j) :=
{
(xj)j ∈

∏

j∈N

Ej : ∃n : |||x|||n := sup
j∈N

‖xj‖je
−nγj < ∞

}
.

By the above, the map

̺ : A(ω)(C, R) → K∞(γ, (Ej)j∈N), ̺(g) := (̺j(g|Sj
))j∈N

is linear and continuous. The arguments of Meise [15, pp. 77–78], which
involve the semilocal to global extension theorem of Berenstein and Taylor
[3, 2.2] (see also [2, p. 110]), show that ̺ is surjective and ker ̺ = Iloc(F ). In
particular, K∞(γ, (Ej)j∈N) is nuclear, so we can apply [15, 1.3] to conclude
that for each n ∈ N there exist k ∈ N and d > 0 such that

(3.7) 2(dimEj)e
nγj ≤ dekγj , j ∈ N.

We want to show that ̺ has a continuous linear right inverse. To do
this, fix y = (yj)j∈N ∈ K∞(γ, (Ej)j). Then there is n ∈ N with |||y|||n :=
supj∈N ‖yj‖je

−nγj <∞. Now λj :=Rjyj is in H∞(Sj) and satisfies ‖λj‖H∞(Sj)

≤ 2(dimEj)‖yj‖j ≤ 2(dimEj)|||y|||nenγj . By (3.7) this implies

‖λj‖H∞(Sj) ≤ d|||y|||nekγj ≤ d|||y|||n exp(kD0(1 + inf
z∈Sj

p(z))).

Therefore, we deduce by (3.4) that for each z ∈ Sj we have

|λj(z)| ≤ dekD0 |||y|||n exp(kD0p(z)) ≤ dekD0+kD0D1 |||y|||n exp(kD0D1ω(z)).

We define P (y) ∈ H(S(F, ε0, C0)) by P (y)(z) = Rjyj(z) if z ∈ Sj and
P (y)(z) = 0 otherwise. Clearly, P : K∞(γ, (Ej)j) → H(S(F, ε0, C0)) is
well-defined and linear. Moreover,

(3.8) |P (y)(z)|≤dek(D0+D0D1)|||y|||n exp(kD0D1ω(z)), z∈S(F, ε0, C0).

As in the proof of Bernstein and Gay [1, Theorem 2.1.4], it follows that
there exist 0 < ε1 < ε0, C1 > C, A0 > 0, B0 > 0, and χ ∈ C∞(C) satisfying
0 ≤ χ ≤ 1, χ ≡ 1 on S(F, ε1, C1), suppχ ⊂ S(F, ε0, C0) and

∣∣∣∣
∂χ

∂z
(z)

∣∣∣∣ ≤ A0 exp(B0p(z)), z ∈ C.
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Then χP (y) is in C∞(C) and is holomorphic on S(F, ε1, C1). This implies
∂
∂z (χP (y)) = ∂χ

∂z P (y). We set

v := − 1

F

∂

∂z
(χP (y)) = − 1

F

∂χ

∂z
P (y).

Clearly, v is a C∞-function on C which vanishes on S(F, ε1, C1). To de-
rive an estimate for v, note that |F (z)| ≥ ε1 exp(−C1p(z)) whenever z /∈
S(F, ε1, C1) for some j ∈ N. From this estimate and (3.8) as well as (3.4) we
get the existence of A3, A4, B1, B2 > 0 such that

(3.9) |v(z)| ≤ A3e
B1p(z) 1

ε1
eC1p(z)A0e

B0p(z) ≤ A4e
B2ω(z).

To use this estimate we let

K(ω) := {f ∈ C∞(C) : ‖f‖k := sup
|α|≤k

sup
z∈C

|f (α)(z)|ekω(z) < ∞ ∀k ∈ N}.

Then K(ω) is a nuclear Fréchet space. Since ω is a (DN)-weight function, it
follows from Meise and Taylor [18, Proposition 1.9 and Theorem 2.17] that

(3.10) 0 → A(ω) → K ′(ω)
∂→ K ′(ω) → 0

is an exact sequence which splits. Hence there exists a continuous linear
operator L : K ′(ω) → K ′(ω) which satisfies ∂ ◦ L = idK′(ω). Now note that
the estimate (3.9) and the fact that ω satisfies condition 2.1(γ) imply that
v defines an element of K ′(ω) by

v(f) :=
\
C

v(z)f(z) dz, f ∈ K(ω).

Next we define

Q : K∞(γ, (Ej)j∈N) → K ′(ω), Q(y) := χP (y) + FL(v).

Then it follows from (3.8) and an easy computation that Q is well-defined,
linear and continuous. Moreover,

∂

∂z
Q(y) =

∂χ

∂z
P (y) + F

∂

∂z
L(v) =

∂χ

∂z
P (y) + Fv = 0.

Hence Q(y) ∈ ker ∂ and by (3.10) this implies Q(y) ∈ A(ω). Since the se-
quence (3.10) is exact and consists of (DFN)-spaces, it follows from Meise
and Vogt [22, Propositions 26.4 and 26.24] that it is topologically exact.
Hence Q is in fact a continuous linear map from K∞(γ, (Ej)j∈N) into A(ω).
Since A(ω) ⊂ A(ω)(C, R) with continuous inclusion,

Q : K∞(γ, (Ej)j) → A(ω)(C, R)

is linear, continuous, and satisfies ̺(Q(y)) = y for each y in K∞(γ, (Ej)j).
In particular, ker ̺ = FA(ω)(C, R) is complemented in A(ω)(C, R).
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To complete the proof, we must show that Tµ has a continuous linear
right inverse. It is enough to see that T t

µ : E ′(ω)(R) → E ′(ω)(R) has a con-

tinuous linear left inverse. Since F ◦ T t
µ = Mµ̂ ◦ F for Mµ̂g := µ̂g, we have

proved that the image of Mµ̂ is µ̂A(ω)(C, R) = FA(ω)(C, R), and that it is
complemented in A(ω)(C, R). This yields the conclusion.

3.4. Theorem. Let ω be a quasianalytic (DN)-weight function which
satisfies condition (α1). Then for µ ∈ E ′(ω)(R) the convolution operator

Tµ : E(ω)(R) → E(ω)(R)

admits a continuous linear right inverse if and only if conditions (a) and (b)
in Proposition 3.2 hold.

Proof. This follows immediately from Propositions 3.2 and 3.3.

Remark. Note that Theorem 3.4 extends the main result of Meise and
Vogt [21] from the non-quasianalytic to the quasianalytic case. In the non-
quasianalytic case, however, it was not required that ω is a (DN)-weight
function, nor that ω satisfies (α1). In fact, the theorem holds for ω(t) =
(log(1+t))α, α > 1, which is not a (DN)-weight function, however, it satisfies
condition (α1).

4. Ultradifferential operators on compact intervals. In this sec-
tion we prove that (ω)-ultradifferential operators can behave differently on
the real line than on compact intervals. Also, we show that for them the
characterization in Theorem 3.4 can be complemented by a condition which
is similar to the one which was given by Domański and Vogt [9, Theorem
4.7]. To do so we need two lemmas and more notation.

4.1. Definition. Let ω be a weight function and assume that for µ ∈
E ′(ω)(R) its Fourier–Laplace transform µ̂ is in A(ω). Then the operator Tµ

will be called an (ω)-ultradifferential operator since for each f ∈ E(ω)(R) we
have

Tµ(f) =
∞∑

j=0

ij
µ̂(j)(0)

j!
f (j).

4.2. Lemma. Let ω be a weight function. Assume that F ∈ A(ω) satisfies

(4.1) |F (z)| ≤ B exp(Bω(z)), z ∈ C,

for some B > 0 and that F is (ω)-slowly decreasing. Then there exist m > 0
and R0 > 0 such that for each z ∈ C with |z| ≥ R0 there exists ζ ∈ C with
|z − ζ| ≤ mω(z) such that

|F (ζ)| ≥ exp(−mω(ζ)).
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Proof. Since F is slowly decreasing, it follows from Theorem 2.8(3) that
there exist k, x0 > 0 such that for each x ∈ R with |x| ≥ x0 there exists
t ∈ R with |t − x| ≤ kω(x) such that

|F (t)| ≥ exp(−kω(t)).

Next we fix z = x + iy in C with |x| ≥ x0 and consider two cases:

Case 1: |y| ≤ kω(x). Since |x| ≥ x0 we can choose t ∈ R according to
2.8(3). Then ζ := t satisfies

|ζ − z| = |t − x − iy| ≤ |t − x| + |y| ≤ 2kω(x) ≤ 2kω(z).

Hence the assertion follows for m = 2k in this case.

Case 2: |y| > kω(x). Select n > 2 (depending on z) with |y|/n < kω(x)
and t ∈ R according to 2.8(3). We apply the minimum-modulus theorem
[14, Chap. I, Theorem 11] with

η :=
1 −

(
1 + 1√

2 n

)−1

16

to find ̺ > 0 with |t − z| < ̺ <
(
1 + 1√

2 n

)
|t − z| =: R such that for

H = 2 + log(3e/2η) we have

(4.2) |F (ξ)| ≥ |F (t)|H+1( sup
|w−t|=2eR

|F (w)|)−H

for each ξ ∈ C with |ξ − t| = ̺. We now choose ζ ∈ C with |ζ − t| = ̺ and
|ζ − z| < |t − z|/(

√
2n). Then

|ζ − z| <
|t − z|√

2 n
=

(|t − x|2 + |y|2)1/2

√
2n

≤ ((kω(x))2 + |y|2)1/2

√
2n

<
|y|
n

≤ kω(x) ≤ kω(z).

To derive the desired lower bound for F (ζ) we estimate ω(ξ) for |ξ−t| ≤ 2eR
(in particular for ξ = t). To do this, we note first that by 2.1(α) there exists
K ≥ 1 such that for each a, b ∈ R we have

(4.3) ω(a + b) ≤ K(ω(a) + ω(b) + 1), ω(2a) ≤ Kω(a) + K.

This implies

ω(ξ) ≤ ω(|ξ − t|+ |t|) ≤ Kω(t) + Kω(|ξ − t|)+ K ≤ Kω(t) + Kω(2eR) + K.

On the other hand, it follows from (4.3) that ω(t) ≤ Kω(|t − z|) +
Kω(z) + K. From the hypotheses in the present case we get

|t − z| ≤ |t − x| + |y| ≤ kω(x) + |y| ≤ 2|y|
and hence

(4.4) ω(|t − z|) ≤ ω(2|y|) ≤ Kω(y) + K.
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This implies

(4.5) ω(t) ≤ K2ω(y) + Kω(z) + K2 + K ≤ 2K2ω(z) + 2K2

and consequently

ω(ξ) ≤ 2K3ω(z) + 2K3 + Kω(2eR) + K.

From 2eR ≤ 12|t − z| and (4.4) we get

ω(2eR) ≤ ω(12|t−z|) ≤ ω(24|t−z|) ≤ K4ω(|t−z|)+4K4 ≤ K5ω(z)+5K5.

Therefore,

(4.6) ω(ξ) ≤ 2K3ω(z) + K6ω(z) + 2K3 + 5K6 + K ≤ 3K6ω(z) + 8K6.

On the other hand, |z − ζ| ≤ |y|/n and

|y| = |Im z| ≤ |Im ζ| + |Im(z − ζ)| ≤ |Im ζ| + |z − ζ| ≤ |Im ζ| + |y|/n

imply

|y| ≤ n

n − 1
|Im ζ| ≤ 2|Im ζ|,

and consequently |y|/n ≤ 2|Im ζ|/n ≤ |Im ζ|. Therefore, we have

ω(z) ≤ Kω(ζ) + Kω(|ζ − z|) + K ≤ Kω(ζ) + Kω(|y|/n) + K(4.7)

≤ Kω(ζ) + Kω(|Im ζ|) + K ≤ 2Kω(ζ) + K.

Since |ζ − t| = ̺, it follows from (4.2) together with (4.5)–(4.7) that

|F (ζ)| ≥ |F (t)|H+1( max
|ξ−t|=2eR

|F (ξ)|)−H

≥ exp(−(H + 1)kω(t))[ max
|ξ−t|=2eR

B exp(Bω(ξ))]−H

≥ B−H exp(−(H + 1)kω(t))[exp(3BK6ω(z) + 8BK6)]−H

≥ B−H exp(−H8BK6) exp(−(H + 1)kω(t) − 3BK6Hω(z))

≥ B−H exp(−8HBK6)

× exp(−2(H + 1)kK2ω(z) − 3BK6Hω(z) − 2(H + 1)kK2)

≥ B−H exp(−8HBK6 − 2(H + 1)kK2)

× exp(−(2(H + 1)kK2 + 3BK6H)ω(z))

≥ B−H exp(−8HBK6 − 2(H + 1)kK2

− [2(H + 1)kK + 3BK6H](2kω(ζ) + K)).

Hence there exists d1 independent of z (very small) and l large, depending
on B, k, and K, but not on z, such that |F (ζ)| ≥ d1 exp(−lω(ζ)). Selecting
R1 > 0 such that exp(−ω(ζ)) < d1 if |ζ| ≥ R1 we conclude that

|F (ζ)| ≥ exp(−(l + 1)ω(ζ)).

Hence the assertion follows for m = max(k, l + 1) in this case.
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For z = x + iy ∈ C satisfying |x| ≤ x0 let z̃ := x0 + iy and choose ζ ∈ C

for z̃ according to what we proved so far. Then

|ζ − z| ≤ |ζ − z̃| + |z̃ − z| ≤ mω(z̃) + |x0 − x| ≤ mω(z̃) + 2|x0|.
Note that by (4.3) we also have

ω(z̃) ≤ Kω(z) + Kω(2x0) + K.

Since limt→∞ ω(t) = ∞ this shows that there is m′ > m such that the
statement of the lemma holds with m replaced by m′.

4.3. Lemma. Let ω be a weight function and assume that F ∈ A(ω)

satisfies the hypotheses of Lemma 4.2. Then there exist positive numbers ε0,
C0, and D such that each component S of

Sω(F, ε0, C0) := {z ∈ C : |F (z)| < ε0 exp(−C0ω(z))}
satisfies

diamS ≤ D inf
z∈S

ω(z) + D.

Proof. By Lemma 4.2 there exist m > 0 and R0 > 0 such that the
conclusion of that lemma holds. We fix z ∈ C with |z| ≥ R0 and choose
ζ = ζ(z) ∈ C with |ζ − z| ≤ mω(z) such that

|F (ζ)| ≥ exp(−mω(ζ)).

In order to apply the minimum-modulus theorem we let

η :=
1

32
, H := 2 + log

(
3e

2η

)
, R := 2|ζ − z|.

Then there exists ̺ with |ζ − z| < ̺ < 2|ζ − z| such that

(4.8) |F (ξ)| ≥ |F (ζ)|H+1( sup
|w−ζ|=2eR

|F (w)|)−H

for each ξ ∈ C with |ξ− ζ| = ̺. Next choose δ > 0 so small that δ ≤ 1/28m.
Since ω(t) = o(t) by 2.1 (β), we may assume that R0 is so large that

ω(t) ≤ δt for t ≥ R0.

Now fix any ξ ∈ C with |ξ− ζ| = ̺ and note that by our choices we have

|z| ≤ |z − ζ| + |ζ − ξ| + |ξ| ≤ 3mω(z) + |ξ| ≤ 1
2 |z| + |ξ|

and hence |z| ≤ 2|ξ|. This implies

|ζ| ≤ |ξ| + |ζ − ξ| ≤ |ξ| + 2mω(z) ≤ |ξ| + 1
4 |z| ≤ 2|ξ|.

If we assume that K ≥ 1 is a constant for which (4.3) holds, then it follows
from this that

(4.9) ω(ζ) ≤ Kω(ξ) + K, ξ ∈ C, |ζ − ξ| = ̺.
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Similarly we get for any w ∈ C with |w − ζ| = 2eR the estimate

|w| ≤ |ζ| + 2eR ≤ |ζ| + 12mω(z) ≤ |ξ| + |ζ − ξ| + 12mω(z)

≤ |ξ| + 14mω(z) ≤ |ξ| + |z|/2 ≤ 2|ξ|
and hence

ω(w) ≤ Kω(ξ) + K

for each w, ξ ∈ C satisfying |w − ζ| = 2eR, |ξ − ζ| = ̺. From this estimate
together with (4.9) and (4.8) it follows that for each ξ ∈ C with |ξ − ζ| = ̺
we have the estimate

|F (ξ)| ≥ exp(−m(H + 1)(Kω(ξ) + K)) exp(−H(Kω(ξ) + K))

= exp(−[m(H + 1) + H]K) exp(−K(m(H + 1) + 1)ω(ξ)).

If we let ε0 := exp(−[m(H + 1) + H]K) and C0 := K(m(H + 1) + 1) then
it follows that for each z0 ∈ Sω(F, ε0, C0) with |z0| ≥ R0 the connected
component S of Sω(F, ε0, C0) which contains z0 is contained in the open
disk B(ζ(z0), 2mω(z0)). In particular, we have

diamS ≤ 4mω(z0).

By our choice of δ, we have 4mω(z0) ≤ |z0|/7. Now we choose z1 ∈ S such
that infz∈S ω(z) = ω(z1). Then we get

|z0| ≤ |z1| + |z0 − z1| ≤ |z1| + diamS ≤ |z1| + 1
7 |z0|

and consequently |z0| ≤ 7
6 |z1| ≤ 2|z1|. This implies

diamS ≤ 4mω(z0) ≤ 4mω(2z1) ≤ 4mK inf
z∈S

ω(z) + 4mK.

If we choose D = max(r0, 4mK), then we deduce the estimate diamS ≤
D infz∈S ω(z) + D.

4.4. Definition. For a weight function ω and R > 1 we define the
space

A(ω,R) := indn→A([−R, R], n).

4.5. Lemma. Let ω be a (DN)-weight function or a strong weight func-
tion. Then for each R > 0 the following assertions hold :

(a) F : E ′(ω)[−R, R] → A(ω,R) is a linear topological isomorphism.

(b) A(ω,R) is a (DFN)-space.
(c) A′(ω,R) has properties (DN) and (Ω).

Proof. (a) This follows from the proof of Meise and Taylor [17, Propo-
sition 3.6], since the proof of the surjectivity of the map G defined in that
proposition does not use the assumption that ω is a non-quasianalytic weight
function.

(b) The properties of a weight function and well-known results imply
that the (LB)-space A(ω,R) is in fact a (DFN)-space.
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(c) A′(ω,R) has (Ω) by Meise and Taylor [19, Lemma 1.10(c)]. If ω is

a (DN)-weight function, the proof of [19, Proposition 5.3] shows that
E(ω)[−R, R] and hence A′(ω,R) has (DN). If ω is a strong weight function,

then E(ω)[−R, R] has (DN) by [19, Corollary 5.6].

4.6. Lemma. Let ω be a weight function. Then for F ∈ A(ω) the follow-
ing conditions are equivalent :

(1) F is (ω)-slowly decreasing.
(2) For each R > 0 the multiplication operator

MF : A(ω,R) → A(ω,R), MF (g) := Fg,

is an injective topological homomorphism.
(3) There exist positive numbers ε0, C0, and D such that for Sω(F, ε0, C0)

the conclusion of Lemma 4.3 holds.

Proof. (1)⇒(2). Fix R > 0 and note first that A(ω,R) is a (DFN)-space
by Lemma 4.5. Hence (2) follows from the Baernstein lemma (see Meise and
Vogt [22, Proposition 26.26]) if we show that for each bounded set B in
A(ω,R) the set M−1

F (B) is bounded. Since the sets

Bn := {f ∈ A(ω,R) : sup
z∈C

|f(z)|e−R|Im z|−nω(z) ≤ 1}, n ∈ N,

form a fundamental sequence of bounded sets in A(ω,R), it suffices to show

that M−1
F (Bn) is bounded for each n ∈ N. To do so, fix n ∈ N. Since F is

(ω)-slowly decreasing by hypothesis, it follows from Lemma 4.2 that there
exist m, R0 > 0 such that for each z ∈ C, |z| ≥ R0, there exists ζ ∈ C such
that |ζ − z| ≤ mω(z) and |F (ζ)| ≥ exp(−mω(ζ)). Since F is in A(ω), there
exists A > 0 such that

(4.10) |F (z)| ≤ A exp(Aω(z)), z ∈ C.

Next fix h ∈ M−1
F (Bn) and let g := Fh ∈ Bn. Then

(4.11) |g(z)| ≤ exp(R|Im z| + nω(z)), z ∈ C.

Now we apply Hörmander [11, Lemma 3.2] for r = mω(z) > 0 to get, for
|z| ≥ R0,

(4.12) |h(z)| =

∣∣∣∣
g(z)

F (z)

∣∣∣∣ ≤
sup|w−z|≤4mω(z) |g(w)| sup|w−z|≤4mω(z) |F (w)|

(sup|w−z|≤mω(z) |F (w)|)2

To derive further estimates from (4.12), note that limt→∞ ω(t)/t = 0
implies the existence of t0 > 0 such that ω(t + 4mω(t)) ≤ ω(2t) for t ≥ t0.
Since ω satisfies 2.1(α), this implies the existence of K1 ≥ K such that

(4.13) ω(t + 4mω(t)) ≤ Kω(t) + K1, t > 0.
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Next note that for ζ = ζ(z) we similarly get the existence of C1 ≥ 1 such
that

|ζ| ≤ |z| + |ζ − z| ≤ |z| + mω(z) ≤ 2|z| + C1.

By (4.3), this implies

(4.14) 2mω(ζ) ≤ 2mω(2|z| + C1) ≤ 2m(K2ω(z) + K(K + 1 + ω(C1))).

Now from (4.12) by (4.10), (4.11), (4.13), and (4.14) we get

|h(z)|/A ≤ exp(R|Im z| + (4Rm + nK + AK)ω(z) + K1(n + A))

× exp(2mω(ζ))

≤ exp(R|Im z| + (4Rm + nK + AK + 2mK2)ω(z))

× exp(K1(n + A) + 2mK(K + 1 + ω(C1))).

Hence there exist D1 ≥ 1 and D2 ≥ 1, not depending on h, such that

|h(z)| ≤ D1 exp(R|Im z| + D2ω(z)), z ∈ C, |z| ≥ R0.

This estimate implies that we can enlarge the constant D1 to have the
inequality for all z ∈ C. Since h was an arbitrary element of M−1

F (Bn) we

have proved that M−1
F (Bn) is bounded in A(ω,R).

(2)⇒(1). By Theorem 2.8, condition (1) is equivalent to

(4.15) For each bounded set B in A(ω)(C, R) the set M−1
F (B) is bounded

in A(ω)(C, R).

To show that (4.15) holds, let B be any bounded set in A(ω)(C, R). Since
A(ω)(C, R) is a (DFN)-space, it follows easily that there exists R > 0 such
that B is contained in A(ω,R) and bounded there. Now (2) implies that

M−1
F (B) is bounded in A(ω,R) and hence bounded in A(ω)(C, R).
(1)⇒(3). This holds by Lemma 4.3.
(3)⇒(1). Obviously, (3) implies condition (3) in Theorem 2.8. Hence (1)

holds.

4.7. Lemma. Let ω be a weight function and assume that F ∈ A(ω) is
(ω)-slowly decreasing. Then for each R > 0 the space A(ω,R)/MF A(ω,R) is
either finite-dimensional or isomorphic to the strong dual of a nuclear power
series space of infinite type.

Proof. Fix R > 0 and note that MF : A(ω,R) → A(ω,R) has closed range
by Lemma 4.6. Note also that A(ω,R)/MF A(ω,R) is finite-dimensional if and
only if F has only finitely many zeros. Therefore, we assume from now
on that V (F ) := {a ∈ C : F (a) = 0} is an infinite set. Next we choose
ε0, C0, and D according to Lemma 4.3 and we label the components S of
Sω(F, ε0, C0) which satisfy S ∩ V (F ) 6= ∅ in such a way that the sequence α
defined by

αj := sup
z∈Sj

ω(z), j ∈ N,
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is increasing. Also, we define the sequence β by

βj := sup
z∈Sj

|Im z|, j ∈ N.

Then we define the spaces Ej and the maps ̺j : H∞(Sj) → Ej as in (3.5)
and (3.6). Moreover, we let

K∞(α, β, (Ej)j∈N) :=
{
(xj)j∈N ∈

∏

j∈N

Ej :

∃n ∈ N : |||x|||n := sup
j∈N

‖xj‖je
−nαj−Rβj < ∞

}
.

If f ∈ A(ω,R) satisfies

‖f‖n = sup
z∈C

|f(z)| exp(−R|Im z| − nω(z)) < ∞

then for each j ∈ N we have

‖f |Sj
‖H∞(Sj) ≤ ‖f‖n exp(nαj + Rβj).

This implies that

‖̺j(f |Sj
)‖je

−nαj−Rβj ≤ ‖f‖n, j ∈ N.

Consequently,

̺ : A(ω,R) → K∞(α, β, (Ej)j∈N), ̺(f) := (̺j(f |Sj
))j∈N,

is a linear and continuous map.

Next we claim that ker ̺ = MF A(ω,R). To show this, note first that by
the definition of ̺ we obviously have MF A(ω,R) ⊂ ker ̺. To prove the reverse
inclusion, let g ∈ ker ̺. Then g/F is an entire function. Using Lemma 4.3
and standard arguments, it follows as in the proof of Berenstein and Taylor
[2, Proposition 3] that g/F ∈ A(ω,R) and hence g ∈ MF A(ω,R).

To show that ̺ is surjective, we argue similarly to the proof of The-
orem 3.7 in Meise [15]. Let y = (yj)j∈N ∈ K∞(α, β, (Ej)j∈N) and choose
n ∈ N such that |||y|||n < ∞. By the definition of the norm in Ej we can
choose λj ∈ H∞(Sj) with ̺j(λj) = yj so that

‖λj‖H∞(Sj) ≤ 2|||y|||nenαj+Rβj , j ∈ N.

Next define λ : Sω(F, ε0, C0) → C by λ(z) := λj(z) if z ∈ Sj and λ(z) := 0
if z ∈ Sω(F, ε0, C0) \

⋃
j∈N

Sj . Then the diameter estimate from Lemma 4.3
and the definition of α and β imply the existence of D1 > 0 such that

(4.16) |λ(z)| ≤ 2|||y|||n exp(R|Im z| + D1nω(z) + D1).

If K is a constant for which the estimate (4.3) holds then it follows that
∣∣∣∣
∂F

∂z
(ζ)

∣∣∣∣ ≤ eKB exp(KBω(ζ)), ζ ∈ C.
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From this and Lemma 4.3 it follows that there exist ε1, C1, L > 0 such that
for each z ∈ Sω(F, ε1, C1) the distance to C \ Sω(F, ε0, C0) is at least as
large as L−1 exp(−Lω(z)). Therefore, there are A0, B0 > 0 and χ ∈ C∞(C)
having the following properties:

(4.17)

0 ≤ χ ≤ 1, χ ≡ 1 on Sω(F, ε1, C1), suppχ ⊂ Sω(F, ε0, C0),
∣∣∣∣
∂χ

∂z
(z)

∣∣∣∣ ≤ A0 exp(B0ω(z)), z ∈ C.

Next let

v := − 1

F

∂

∂z
(χλ) = − 1

F

∂χ

∂z
λ

and note that v is in C∞(C) and vanishes on S(F, ε1, C1). The estimates
(4.16) and (4.17) imply that

|v(z)| ≤ 1

ε1
A0 · 2|||y|||neD1 exp(R|Im z| + (C1 + B0 + D1n)ω(z))

= A1 exp(R|Im z| + B1ω(z)), z ∈ C,

for suitable numbers A1, B1 > 0. Since ω satisfies condition 2.1(γ), it follows
from this that\

C

[|v(z)| exp(−R|Im z| − (B1 + 1)ω(z))]2 dz < ∞.

By Hörmander [12, Theorem 4.4.2], there exists g ∈ L2
loc(C) satisfying

∂g/∂z = v and

(4.18)
\
C

[|g(z)| exp(−R|Im z| − (B1 + 1)ω(z) − log(1 + |z|2))]2 dz < ∞.

Since v is in C∞(C) and since ∂/∂z is elliptic, g is in C∞(C). Hence

f := χ · λ + gF

is in C∞(C) and satisfies

∂f

∂z
=

∂χ

∂z
λ +

∂g

∂z
F = 0

by the choice of g. Consequently, f ∈ H(C) and the estimates (4.16) and
(4.18) together with well-known arguments imply the existence of A2 > 0
and B2 > 0 such that

|f(z)| ≤ A2 exp(R|Im z| + B2ω(z)), z ∈ C.

This shows that f ∈ A(ω,R). By the definition of f and λ we have

̺(f) = (̺j(f |Sj
))j∈N = (̺j(λj))j∈N = y.

Therefore, ̺ : A(ω,R) → K(α, β, (Ej)j∈N) is surjective. Thus we have proved
that A(ω,R)/MF A(ω,R)

∼= K∞(α, β, (Ej)j∈N) by the open mapping theorem.
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Since A(ω,R) is a (DFN)-space by Lemma 4.5(a), also K∞(α, β, (Ej)j∈N) is
a (DFN)-space. It is easy to check that

D : K∞(α, β, (Ej)j∈N) → K∞(α, (Ej)j∈N), D((xj)j∈N) := (e−βjxj)j∈N

is a linear topological isomorphism. Hence K∞(α, (Ej)j∈N) is a (DFN)-space.
By Meise [15, Propositions 1.3 and 1.4], this implies that K∞(α, (Ej)j∈N)
and hence also K∞(α, β, (Ej)j∈N) is isomorphic to the strong dual of a nu-
clear power series space of infinite type.

4.8. Lemma. Let ω be a (DN)-weight function or a strong weight func-
tion. If F ∈ A(ω) is (ω)-slowly decreasing then for each R > 0 the map
MF : A(ω,R) → A(ω,R) admits a continuous linear left inverse.

Proof. By Lemma 4.6, the following sequence is exact:

0 → A(ω,R)
MF−→ A(ω,R)

q→ A(ω,R)/MF (A(ω,R)) → 0,

where q denotes the quotient map. Since the maps MF and q are linear and
continuous, it follows from Meise and Vogt [22, Proposition 26.4] that the
dual sequence

(4.19) 0 → (A(ω,R)/MF (A(ω;R)))
′ q′→ A′(ω,R)

M ′

F−→ A′(ω,R) → 0

is exact aswell. ByLemma4.5, the spaceA′(ω,R) has (DN),while byLemma4.7,

the space (A(ω,R)/MF (A(ω,R)))
′ has (Ω). Hence the exact sequence (4.19)

splits by the splitting theorem of Vogt and Wagner (see [22, 30.1]), which
finishes the proof.

4.9. Proposition. Let ω be a (DN)-weight function or a strong weight
function. Assume that for µ ∈ E ′(ω)(R) its Fourier–Laplace transform µ̂ is

(ω)-slowly decreasing and is in A(ω). Then for each a, b ∈ R with a < b the
sequence

0 → ker Tµ,[a,b] → E(ω)[a, b]
Tµ,[a,b]−−−→ E(ω)[a, b] → 0

is exact and splits.

Proof. From Lemma 4.5 we know that for each R>0 the space E ′(ω)[−R,R]

is isomorphic to A(ω,R) via the Fourier–Laplace transform. From this and the
fact that Tµ commutes with translations it follows that for R := (a + b)/2
and up to isomorphism the present sequence is identical with the exact
sequence (4.19). Hence it is exact and splits.

Remark. If we replace in Proposition 4.9 the condition “µ̂ is (ω)-slowly
decreasing” by “Tµ,[a,b] is surjective for some interval [a, b]”, then it follows
as in the proof of Proposition 4.9 that Tµ,[a,b] : E(ω)[a, b] → E(ω)[a, b] admits
a continuous linear right inverse.
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Remark. If ω is a strong weight function then the existence of a contin-
uous linear right inverse for Tµ as in Proposition 4.9 can also be proved in the
following way. By Meise and Taylor [20, Theorem 3.1], there exists a continu-
ous linear extension operator E0 : E(ω)[a, b] → E(ω)(R). If we fix ϕ ∈ D(ω)(R)
such that ϕ ≡ 1 in some neighborhood of [a, b], then E : f 7→ ϕE0(f) defines
a continuous linear operator from E(ω)[a, b] into D(ω)(R). Since Tµ admits a
fundamental solution ν ∈ D′(ω)(R) it is easy to check that the map

R : E(ω)[a, b] → E(ω)[a, b], R(f) := ν ∗ (E(f))|[a,b],

is a continuous linear right inverse for Tµ.

4.10. Example. Let ω be a quasianalytic (DN)-weight function which
satisfies condition (α1). Then there exist (ω)-ultradifferential operators Tµ

which admit a continuous linear right inverse on E(ω)[a, b], but which do not
admit a continuous linear right inverse on E(ω)(R).

To show this, let (bj)j∈N be an increasing sequence in ]0,∞[ which sat-
isfies, for n(t) := card{j ∈ N : bj ≤ t},

(i) bj+1 ≥ 4bj , j ∈ N,
(ii) n(t) log t = o(ω(t)) as t → ∞.

Then define

F (z) :=
∏

j∈N

(
1 − z

ibj

)
, z ∈ C.

By Rudin [28, Theorem 15.6], F is an entire function. Arguing as in [6,
Lemma 3.5] we get the existence of B > 0 such that

|F (z)| ≤ B exp(Bω(z)), z ∈ C,

and the existence of ε0 > 0 and C0 > 0 such that for each w ∈ C \⋃
j∈N

B(ibj, 1) we have

|F (w)| ≥ ε0 exp(−C0ω(w)).

Therefore, F is in A(ω) and it follows from Lemma 4.6 that F is (ω)-slowly
decreasing. By Theorem 2.6 we can find µ ∈ E ′(ω)(R) such that µ̂ = F . It then

follows from Proposition 4.9 that Tµ admits a continuous linear right inverse
on E(ω)[a, b] for each a, b ∈ R with a < b. However, since condition 3.2(b) does
not hold for F , it follows from Proposition 3.2 that Tµ : E(ω)(R) → E(ω)(R)
does not admit a continuous linear right inverse.

From Theorem 3.4 we now get the following corollary.

4.11. Corollary. Let ω be a quasianalytic (DN)-weight function which
satisfies condition (α1). Assume that for µ ∈ E ′(ω)(R) its Fourier–Laplace

transform µ̂ is (ω)-slowly decreasing and is in A(ω). Then the following
assertions are equivalent :
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(1) Tµ : E(ω)(R) → E(ω)(R) admits a continuous linear right inverse.
(2) There exists C > 0 such that |Im a| ≤ C(ω(a)+1) for each a ∈ V (µ̂).
(3) For each/some a, b ∈ R with a < b and each f ∈ kerTµ,[a,b] there

exists g ∈ ker Tµ such that f = g|[a,b].

Proof. (1)⇒(2). This holds by Proposition 3.2.

(2)⇒(3). Fix any R > 0 and consider the following commutative diagram
with exact rows:

0 // kerTµ

̺

��

// E(ω)(R)

̺

��

Tµ // E(ω)(R)

̺

��

// 0

0 // kerTµ,R // E(ω)[−R, R]
Tµ,R // E(ω)[−R, R] // 0

where the vertical maps ̺ are defined by ̺(f) := f |[−R,R]. They are lin-
ear and continuous. Therefore, the dual diagram is commutative as well.
If we apply the Fourier–Laplace transform to it, then we get the following
commutative diagram with exact rows:

0 // A(ω)(C, R)
Mµ̂ // A(ω)(C, R)

q // A(ω)(C, R)/µ̂A(ω)(C, R) // 0

0 // A(ω,R)

j

OO

Mµ̂ // A(ω,R)

j

OO

qR // A(ω,R)/µ̂A(ω,R)

J

OO

// 0

where the maps j are obvious inclusions and where J is induced by j. As we
proved in Proposition 3.3 the quotient A(ω)(C, R)/µ̂A(ω)(C, R) is isomorphic
to K∞(γ, (Ej)j∈N). Since condition (2) holds, we also know from the proof
of this proposition that there exists A2 > 0 such that for each component S
of S(µ̂, ε0, C0) which satisfies S ∩ V (µ̂) 6= 0 we have |Im z| ≤ A2ω(z) + A2

for each z ∈ S. This implies that the space K∞(λ, (Ej)j∈N) is identical with
K∞(α, β, (Ej)j∈N) defined in the proof of Lemma 4.7. Moreover, the map J
in the diagram above is the identity if we identify both spaces. Hence J and
consequently ̺ : kerTµ → kerTµ,R is an isomorphism. Since Tµ commutes
with translations, this implies (3) for each a < b in R.

(3)⇒(1). Assume that condition (3) holds for some a, b ∈ R. Then let
R := (a + b)/2 and note that the present hypothesis and Proposition 4.9
imply that Tµ,R : E(ω)[−R, R] → E(ω)[−R, R] admits a continuous linear
right inverse SR. To use it in order to define a continuous linear right inverse
for Tµ, we fix any g ∈ E(ω)(R). Since Tµ is surjective by hypothesis, there
exists f ∈ E(ω)(R) with Tµf = g. We denote by ̺ : E(ω)(R) → E(ω)[−R, R]
the restriction map ̺(h) := h|[−R,R] and we let

hR := ̺(f) − SR(̺(g)).
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Then hR belongs to E(ω)[−R, R] and

Tµ,R(hR) = Tµ,R(̺(f))−Tµ,R◦SR(̺(g)) = ̺(Tµ(f))−̺(g) = ̺(g)−̺(g) = 0

implies hR ∈ kerTµ,R. By the present hypothesis we can choose H ∈ kerTµ

satisfying ̺(H) = hR. Now we let

S(g) := f − H

and claim that S(g) is well-defined, i.e., that it does not depend on the
choice of f . To show this, assume that f1 ∈ E(ω)(R) satisfies Tµf1 = g. Then
h1,R := ̺(f1)−SR(̺(g)) is again in kerTµ,R and we can choose H1 ∈ kerTµ

satisfying ̺(H1) = h1,R. Now note that our choices imply

̺(f − H) = ̺(f) − ̺(H) = ̺(f) − hR = SR(̺(g)),

̺(f1 − H1) = ̺(f1) − ̺(H1) = ̺(f1) − h1,R = SR(̺(g)).

Hence f − H and f1 − H1 coincide on the interval [−R, R]. Since ω is a
quasianalytic weight function, this implies f −H = f1−H1 and proves that
S(g) is well-defined. From this it follows easily that S : E(ω)(R) → E(ω)(R)
is a linear map. By the definition of S we have

̺(S(g)) = ̺(f) − ̺(H) = ̺(f) − hR = SR(̺(g)).

In order to show that S is continuous, we apply the closed graph theorem.
To do so, let (gj)j∈N be any sequence in E(ω)(R) which satisfies gj → g and
S(gj) → f in E(ω)(R). Then the equality ̺(S(gj)) = SR(̺(gj)), j ∈N, implies
that the sequence (̺(S(gj)))j∈N converges to ̺(f) as well as to SR(̺(g)) =
̺(S(g)). Hence f and S(g) coincide on [−R, R] and consequently f = S(g).
Thus S has a closed graph and therefore is continuous. Since

Tµ(S(g)) = Tµ(f − H) = Tµ(f) − Tµ(H) = Tµ(f) = g

for each g ∈ E(ω)(R), we proved (1).
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Universitätsstrasse 1
40225 Düsseldorf, Germany

E-mail: meise@math.uni-duesseldorf.de

Received April 5, 2007

Revised version September 27, 2007 (6139)


