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Characterization of the convolution operators
on quasianalytic classes of Beurling type
that admit a continuous linear right inverse

by

Jost BONET (Valencia) and REINHOLD MEISE (Diisseldorf)

Abstract. Extending previous work by Meise and Vogt, we characterize those con-
volution operators, defined on the space £, (R) of (w)-quasianalytic functions of Beurling
type of one variable, which admit a continuous linear right inverse. Also, we character-
ize those (w)-ultradifferential operators which admit a continuous linear right inverse on
Ewla, b] for each compact interval [a,b] and we show that this property is in fact weaker
than the existence of a continuous linear right inverse on &, (R).

1. Introduction. For a weight function w let £, (IR) denote the space
of all (w)-ultradifferentiable functions of Beurling type on R. Then each
W e Séw)(R) induces a convolution operator T, : £)(R) — &) (R). If w is
non-quasianalytic, i.e., if £¢,)(R) admits non-trivial functions with compact
support, then Meise and Vogt [21] characterized by various equivalences
those convolution operators T), on &) (R) that admit a continuous linear
right inverse. The arguments which they apply in their proofs use the non-
quasianalyticity in an essential way, in particular through the existence of
cut-off functions and fundamental solutions.

In the present paper we first show that for each quasianalytic weight func-
tion w which satisfies condition (a1), a convolution operator T), on &, (R)
admits a continuous linear right inverse only if its Fourier—Laplace trans-
form fi is (w)-slowly decreasing and satisfies [Ima| = O(w(a)) for a € V(i)
as |a| tends to infinity. Conversely, if these two conditions hold and if w
is a (DN)-weight function, then 7}, admits a continuous linear right in-
verse on &(,)(R), even without the assumption that w satisfies condition
(a1). Accordingly, when w is a quasianalytic (DN)-weight function satis-
fying condition (o), we obtain a characterization (see Theorem 3.4). To
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prove these results we use an idea of Langenbruch [13] who characterized
the convolution operators on the real-analytic functions on R which ad-
mit a solution operator. Also, we work with the space of Fourier-Laplace
transforms of the (w)-quasianalytic functionals, where we apply methods
that go back to Berenstein and Taylor [2], Meise [15], and Meise and Tay-
lor [17]. An important step in proving the necessity of the conditions given
above is a recent result of Vogt [30] and Bonet and Domanski [4] on topo-
logical invariants of spaces of {w}-ultradifferentiable functions of Roumieu
type.

We also investigate (w)-ultradifferential operators 7), on &(,)(R) and on
E(w)la, b] for compact intervals [a, b]. It turns out that the surjectivity of such
an operator on 5(w)(R) already implies the existence of a continuous linear
right inverse for 7}, restricted to &(,,[a, b]. As a consequence we deduce that
an analogue of a result of Domanski and Vogt [9, Theorem 4.7] in the real-
analytic case also holds for the class £, provided that w is a quasianalytic
(DN)-weight function which satisfies condition (7). More precisely, we show
that each (w)-ultradifferential operator 7, which is surjective on &) (R)
admits a continuous linear right inverse on &) (R) if and only if for each
compact interval [a,b] and each f € & a,b] satisfying T),(f) = 0 there
exists g € £,)(R) satisfying T),(g) = 0 and f = glq 4
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2. Preliminaries. In this section we introduce the notation that will
be used throughout the entire paper.

2.1. Weight functions. A function w : R — [0,00[ is called a weight
function if it is continuous, even, increasing on [0, oo[, satisfies w(0) = 0,
and also the following conditions:

(o) There exists K > 1 such that w(2t) < Kw(t) + K for all t > 0.
(B8) w(t) =o(t) as t tends to infinity.

(7) log(t) = o(w(t)) as t tends to infinity.

(0) ¢ :t— w(eh) is convex on [0, ool.
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(a) If a weight function w satisfies

o0
w(t)
(Q) § >z dt = oo,
then it is called a quasianalytic weight function. Otherwise it is called non-
quastanalytic.

(b) If a weight function w satisfies the condition
(¢) there exists C' > 0 such that {°(w(yt)/t?)dt < Cw(y) + C for all
y >0,
then w is called a strong weight function. Obviously, each strong weight
function is non-quasianalytic. The reverse implication does not hold.
(c) A weight function w satisfies condition («) if

sup lim su w(Xt)

This condition was introduced by Petzsche and Vogt [26] and is equivalent
to the existence of Cy > 0 such that for each W > 1 there exists Cy > 0
such that
wWt+ W) < WCiw(t)+ Ca, t > 0.
(d) The radial extension @ of a weight function w is defined as
w:C"— (0,00, w(z):=w(|z|).

It will also be denoted by w, by abuse of notation.

(e) The Young conjugate of the function ¢ = ¢, which appears in (9),
is defined as

¢*(x) :=sup{zy —p(y) :y >0}, x>0

2.2. ExaMPLE. The following are easily seen to be weight functions:

(1) w(t):=|t|(log(e + |t]))~%, a > 0.

(2) wt):=t|* 0 < a< 1.

(3) w(t) = (max(0,logt))*, s > 1.

2.3. Ultradifferentiable functions defined by weight functions. Let w be

a given weight function, let K be a compact and G be an open subset of
RY | and denote by C*°(K) the space of all C*°-Whitney jets on K.

(a) The space £,,)(G) of (w)-ultradifferentiable functions of Beurling type
on G is defined as

Ew(G) == {f € C(G) : for each K C G compact and m € N,

pic(f) = sup sup |f1¥)(@)] exp(—mep*(|al/m)) < oo}.
zeK aEN{)V

It is easy to check that £, (G) is a Fréchet space if we endow it with the
locally convex topology given by the seminorms pg ,,. We also define the
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space
Ew)(K) i={f € C®(K) : prem(f) < o0 ¥m € N}.
(b) For m € N let
(K = {f € C™(K):
1
| £l &m0 = sup sup !f(a)(wﬂexp(__ 90*(m|04|)> < OO}
r€K aeNY m

and define the space E¢,1(G) of {w}-ultradifferentiable functions of Roumieu
type on G as

&) (G) :=={f € C7(G) : for each K C G compact
there is m € N so that || f||x,m < oo}
It is endowed with the topology given by the representation
£y (G) = proj._g indy_. 11 (K),

where K runs over all compact subsets of G.

Note that £,1(G) is a countable projective limit of (DFN)-spaces, which
is ultrabornological, reflexive and complete. This follows from Rdsner [27,
Satz 3.25] and Vogt [30, Theorem 3.4].

If a statement holds in the Beurling and the Roumieu case then we will
use the notation &,(G). It means that in all cases * can be replaced either

by (w) or by {w}.

2.4. DEFINITION. Let w be a weight function and G an open convex set
in RV.

(a) We define
Ay = {feH(ICY):IneN: | f|n:= ig((;:) |f(2)|exp(—nw(z)) <oo}.
Endowed with its natural (LB)-topology, A, is a (DFN)-space.
(b) For each compact set K in G, the support functional of K is
hig :RY =R,  hg(z) :=sup{(z,y):y € K}.
(¢) For K asin (b) and A > 0 let
A(K,\) = {f € H(CN):

1f 1l = Sup. £ (2)] exp(=hr (Im 2) — Aw(]z])) < oo}

and define
A (CY,G) := indg . A(K, n),
A{w}(CN, G) := indg_, proj_,, A(K,1/n).
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It is easy to check that A(K,\) is a Banach space, that A(w)((CN, G) is
an (LB)-space, and that A{w}((CN, G) is an (LF)-space.

2.5. The Fourier—Laplace transform. Let w be a weight function and let
G be an open convex set in RY. For each u € £,(G)’ it is easy to check that

:CN =, U(2) = ug(e7HA),
is an entire function which belongs to A,(C",G) and that
F:E(GQ) — A(CN,G),  F(u):=7,
is linear and continuous.

The following result was proved for N = 1 by Meyer [23] and for N > 1
in the Roumieu case by Rosner [27]. For a unified proof we refer to Heinrich
and Meise [10, Theorems 3.6 and 3.7].

2.6. THEOREM. For each weight function w and each conver open set
G C RN the Fourier-Laplace transform

F:E(GQ) — A (CN,G)
s a linear topological isomorphism.
2.7. Convolution operators. For p € E(R), p # 0, and ¢ € E(R) we
define
i(e) = (@), @) :=¢(-z), zekR
The convolution operator T), : £.(R) — &£,(R) is defined by

Tu(f) = pxfo (pxf)e) :=p(flx =), zekR
It is a well-defined, linear, continuous operator; see Meyer [23] and [24].
For g € A,(C,R) we define the multiplication operator M, : A,(C,R) —
A (C,R) by My(f) = gf. It is well-known that for u € &.(R) we have
FoTy = MgoF on E(R).

By the work of S. Momm [25, Proposition 2 and Corollary 1] (see also
[5, Proposition 2.6 and Theorem 2.7]) we have

2.8. THEOREM. For each weight function w the following conditions are
equivalent for u € Séw)(R), p# 0:

(1) Ty : Euy(R) — &) (R) is surjective.

(2) The principal ideal [iA(,)(C,R) is closed in A(,)(C,R).

(3) 1 is (w)-slowly decreasing in the sense of Ehrenpreis, i.e., there exist
k,xo > 0 such that for each x € R with |x| > xy there exists t € R
with |t — x| < kw(x) such that

[1(t)] = exp(—kw(t)).
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(4) 1 is (w)-slowly decreasing, i.e., there exists C > 0 such that for each
x € R with |x| > C there exists £ € C such that

jz =&l < Cw(z), [p(§)] = exp(—CIm¢| = Cw(9)).

(5) 1 is slowly decreasing for A(,)(C,R) in the sense of Berenstein and
Taylor, i.e., for p(z) := |Im z| + w(z), z € C, there exist ¢,C, D > 0
such that each conmected component S of

S(i,e,C) :={z € C: |u(z)| < eexp(=Cp(2))}
satisfies

supp(z) < D(1+ inf p(z)).
2€8 zesS

(6) There exist k € N, m € N, and R > 0 such that for each z € C
with |z| > R there is a circle T surrounding z with diameter d(T') <
|Im z| + kw(z) and |F(w)| > exp(—mp(w)) for each w € T.

In the next section we will use the following definitions.

2.9. DEFINITION. Let a=(c;);en be an increasing, unbounded sequence
in [0, 00[. For R € {0,00} the power series spaces Ar(a) are defined as

oo
Ag(a) := {:U = (7)) jen € CV : ||z||y = Z |zj| exp(ra;) < oo Vr < R}.
j=1
Aoo(@) is called a power series space of infinite type, while Ag(«) is said to
be of finite type. Note that Agr(«) is a Fréchet—Schwartz space for each «
and each R.

The following linear topological invariants are related to power series
spaces of infinite type. For details we refer to Meise and Vogt [22, Section 29].

2.10. DEFINITION. Let E be a Fréchet space and let (|| - ||;)jen be a
fundamental sequence of seminorms for E.

(a) E has property (DN) if there exists p € N such that for each k € N
there exist » € N and C' > 0 such that

Izl < Cllzllpllalln, =€ E.

(b) E has property () if for each p € N there exists ¢ € N such that for
each kK € N and 0 < © < 1 there exists C' > 0 such that

lylly < Cllyll;' ~Cllylli®,  veFE,
where for y € F/,
lyllk := sup{ly(@)] : |=[lx <1} € RU {400}

Note that each subspace of a power series space of infinite type has (DN),
while each quotient space has ().

From Meise and Taylor [18], we recall the following definition.
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2.11. DEFINITION. A weight function w is called a (DN)-weight function
if it satisfies:

(2.1)  for each C' > 1 there exist Ry > 0 and 0 < § < 1 such that for each
R > RO?
w(CR)W™(SR) < (wHR))%
For the significance of (DN)-weight functions we refer to Meise and Tay-
lor [18, Theorem 3.4].

2.12. EXAMPLE. Let w be a weight function for which there exists A > 0
such that

2w(t) <w(At)+ A, t>0.

Then w is a (DN)-weight function by Meise and Taylor [18, Example 3.5(4)].
In particular, the following functions are quasianalytic (DN)-weight func-
tions which also satisfy (a1):

(1) w(t) :==|t|(log(e + |t])) ™, 0 < a < 1.
(2) w(t) = [t|(log(e +log(e + [¢]))) .

3. The global case. In this section we characterize when a convolution
operator T, admits a continuous linear right inverse on &,(IR). To do this
we will use the following lemma.

3.1. LEMMA. Let w be a weight function which satisfies condition (o).
Suppose that there is a sequence (a;)jen of complex numbers with 0 < |a;| <
laj+1| for each j € N and limj_. |aj| = oo such that w(a;) < [Imaj|/j? for
each j € N. Then there is a weight function o satisfying condition () and
w(t) = o(o(t)) ast — oo, and there is a subsequence (ajp))ken of (aj)jen
such that o(ajg)) = O(|Tmajqg,|) as k — oo.

Proof. CASE 1: |Imaj| = o(|a;|) as j — oo. Then we write a; = oj+1/3;,
J € N, and choose j(1) € N such that |3;| < |o;|/2 and w(ej) > 1if j > j(1).
By the properties of w, there exists D > 1 such that for all j > j(1),

w(ay) < w(la;]) < w(lay] +16]) < w(3lay]) < Dw(|ay]) + D < 2Dw(ay).

Without restriction we may assume that «; > 0 for j > j(1). Then we
define z; := 0 and x5 := «;(1). Proceeding by induction suppose that j(n) >
max(n, j(n — 1)) and Zn41 = aj(n) > 27, are already selected satisfying

W) > 2" o(z), 1<i<n, and w(z)<z/n? ifz>z,.
Since (|aj|)jen tends to infinity and w satisfies condition 2.1(v) and
limy—oo w(t)/t = 0, we can find j(n + 1) > max(n + 1,7(n)) such that
Wjnt1) > 2Tng1, w(nyn) = 2" w(y), 1 < i < n+1, and w(z) <
z/(n+1)?if x> Qj(nt1)- Now define 42 := aj(ny1)-
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As in Braun, Meise, and Taylor [7, Lemma 1.6], define
n
(3.1) o:[0,00[ = [0,00], o(x):=nw(z)— Zw(mi), x € [T, Tpt].
i=1
Then it follows as in the proof of [7, Lemma 1.6] that o is continuous, has
properties (a) and (0) of 2.1, and w(t) = o(o(t)) as t — oo, which implies
that o has property () as well. On the other hand, for each ¢ € [z, Z,11],
we get o(t) < nw(t) < t/n, and therefore o(t) = o(t) as t — oo. Moreover,
since w satisfies condition (aq) it follows from [7, Lemma 1.7] that o also
satisfies (aq).
To show that o(aj)) = O(|Tma;y)|) as k — oo, we first fix k(0) € N
such that o(a;y)) > 1if & > k(0). Then we apply property 2.1(a) for the
weight function o to find L > 1 such that for all & > £(0),

a(aj(k)) < a(3|aj(k)|/2) < La(aj(k)) = Lo(xps1) < Lkw(xgsq)
. ) 1
< Lj(k)w(ajr)) < Lj(k) HOE Tma;p| < LlImajg|-
CASE 2: liminf;_ [Ima;|/|aj| > 0. Then there are § > 0 and a subse-

quence (a;())ren such that [Ima;y| > dlajy| for each k € N. Next choose
inductively a sequence (xy,)nen in [0, 0o] which satisfies

1 =0, Tpp1>2T,, w@)>0, wl)/t<1/n? ift>x,,

and
w(Tpt1) > 2”+1_iw(xi), 1<i<mn,

and define o as in (3.1). Then o is a weight function which satisfies w(t) =
o(a(t)), o(t) = o(t) as t — oo, and condition («1). Next choose ky € N such
that o(aj)) > 1if k > ko. By the property 2.1(3) of the weight o, we find
C > 1 such that, for k > ko,

C
o(ajm) < Clajpl < 5 tmajg]. =
3.2. PROPOSITION. Let w be a weight function which satisfies (1) and
let p e Séw)(R). If the convolution operator
T, : 5(w)(R) — 5(0.1) (R)

admits a continuous linear right inverse, then the following two conditions
are satisfied:

(a) p is (w)-slowly decreasing.
(b) There ezists C' > 0 such that

Imal <C(1+4+w(a)), acC, j(a)=0.
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Proof. 1T}, : £ (R) — &) (R) admits a continuous linear right inverse,
then T), is surjective. Hence Momm’s Theorem 2.8 implies that 1 is (w)-
slowly decreasing, which proves (a).

To prove that condition (b) holds we argue by contradiction and assume
that it is not satisfied. Then there exists a sequence (a;)jen of complex
numbers such that fi(a;) = 0 and w(a;) < j72[Ima;| for each j € N. By
Lemma 3.1 we can choose a weight function ¢ with w = o(c), which also
satisfies condition (ay), such that by passing to a subsequence, we have
o(aj) = O(|Imaj|) as j — oo. Proceeding by recurrence, we extract a sub-
sequence of (a;);jen, which we denote in the same way, such that, for n(t) :=
card{j € N : |a;| < t},

(i) faja] = 4layl,
(ii) n(t)logt = o(w(t)) as t — oo.

As in Braun, Meise, and Vogt [8, 3.11], define

oo
z
F(z):= - — .
(2) H (1 aj), zeC
7j=1
By Rudin [28, Theorem 15.6], F' is an entire function such that its set of

zeros consists of the sequence (a;)jen, and satisfies the following condi-
tions:

(1) There exists C' > 0 such that |F(z)| < Cexp(w(z)), z € C.

(2) There exists €9 > 0 such that |F(¢)| > epexp(—w(()) for all ¢ €
C\ U(])il B(aj, 1).

(3) There exist g, Ko > 0 such that, if ( € C satisfies 1 < |( —a;| < 2
for some j, then

|[F(Q)] = eo exp(—Kow(ay)).

This can be achieved by the arguments given in [6, proof of Lemma 3.5],
based on [8, 3.11]. In particular, F' is (w)-slowly decreasing.

Since each a; is a zero of [i, it follows that g := i/ F' is an entire function.
Since F is (w)-slowly decreasing, we conclude that g € A(,)(C,R) (notation
as in 2.4). This implies, in particular, that My : A(,)(C,R) — A, (C,R) is
continuous.

By hypothesis T}, : £)(R) — &) (R) admits a continuous linear right
inverse. Therefore, Mj : A(,,)(C,R) — A(,)(C,R) admits a continuous linear
left inverse L;. The operator Lp := Ly o My : A)(C,R) — A,)(C,R) is
continuous, and it is a left inverse of Mg since

LpMp(h) = LaM,Mp(h) = La(gFh) = La(ih) = h,  h € A)(C.R).
Thus Mp : A,y (C,R) — A(,)(C,R) admits a continuous linear left inverse.
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Since the weight o constructed at the beginning of the proof by the
use of Lemma 3.1 satisfies w(t) = o(o(t)) as t — oo, we conclude that
AW (CR) C A5y (C,R) and that the inclusion map is continuous. More-
over, the growth estimate for F' in (1) implies that Mp also defines a con-
tinuous linear operator from Ay, (C, R) into itself. Next define

0: H(C) = CY,  o(f) = (f(aj))jen.
Proceeding as in the proof of [6, Lemma 3.8] (based on the method of
Meise [15, Theorem 3.7]), we can conclude from the properties (1)—(3) of
F that
MpA,)(CR) ={f € A)(C,R) : f(a;) =0 Vj € N}
=ker 0N A(,,)(C,R),
MFA{O'}(C7R) = {f € A{J}(CvR) : f(a’j) =0 Vj € N}
= ker 0N A5 (C,R).

Moreover, the map o defined above induces an isomorphism between the
quotient A,,)(C,R)/MpA,(C,R) and the sequence space
E:={(z;)jen €CY : 3n: 2|, := sug |zj| exp(—n|Ima;| — nw(a;)) < oo},
j€
as well as an isomorphism between Ay (C,R)/MrA;)(C,R) and the (LF)-
sequence space
G :=ind_,, proj_;, K(n, k),

where
K(n,k) = {.Z‘ e CN: || @)k = ?gg | exp(—n\lmaj] - %U(@)) < oo}.
We then obtain the diagram
0— A (C,R) X5 A4, (C,R) 25 E—0
N N

0— Ay (CR) X5 A (CR) 25 G —0

where 91 and g9 are the restrictions of p. Since Mg has a continuous linear
left inverse, p; has a continuous linear right inverse Ry : F — A(w)((C, R).

Next note that w(a;) < j~2?|Ima;l|, j € N, implies, for each n € N,
(3.2) 0<nlImaj| <n|lma;| + nw(a;) < <n + ]%) Im a;| < 2n|Ima;l,

while the choice of o implies the existence of C' € N such that o(a;) <
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C|lma;| + C, j € N. Hence for each n € N we have
C

1 C
(3.3) 0<n|llma;| <n|lma;|+ Z o(aj) < n|lma;| + = Ima;| + -

< (n+C)|Imaj|+C.

From (3.2) and (3.3) it follows easily that the sequence spaces E and G coin-
cide algebraically and topologically with the dual of P := A ((|Ima;l)jen).
If we identify £ and G and use the fact that A.)(C,R) C Ay (C,R),
then the map Ry : £ = G — A;)(C,R) is a continuous linear right in-
verse for go. Hence G = P’ is isomorphic to a complemented subspace of
A (CR) = SEJ}(]R). Since o satisfies condition (1), a result of Vogt
[30, Theorem 1.8], and Bonet and Domaniski [4, Theorem 6.2 in connection
with Propositions 5.3(a) and 5.4(b)] implies that each Fréchet quotient of

E(w}(R) and hence P has the topological invariant (£2). However, this is a

contradiction since no power series space satisfies (2). Hence condition (b)
is satisfied. m

REMARK. For w(t) = t we get &,)(R) = H(C). By Taylor [29, The-
orem 5.1] or Meise [16, Theorem 3.5], each convolution operator on H(C)
admits a continuous linear right inverse. This is the reason why we require
in 2.1(0) that w(t) = o(t) as t tends to infinity.

Next we show that the necessary conditions in Proposition 3.2 are suffi-
cient if w is a (DN)-weight function.

3.3. PROPOSITION. Let w be a (DN)-weight function. Then for p €
Eéw) (R) the convolution operator
T, : 5(w)(R) — &) (R)
admits a continuous linear right inverse if conditions (a) and (b) in Propo-
sitton 3.2 hold.

Proof. Obviously, it is no restriction to assume that V(zi) := {a € C :

i(a) = 0} is infinite. To simplify the notation we let
Fi=pe A, (CR), p(z):=[Imz|+w(z).

Note that then A(,)(C,R) coincides with the algebra A,(C) of Berenstein
and Taylor [2] and Meise [15]. Since F' = [i is (w)-slowly decreasing, it
follows from Theorem 2.8 that there are k,m € N and R > 0 such that for
each a € V(F), |a| > R, there is a circle T, surrounding a with diameter
d(T,) < kw(a) + [Imal and |F(w)| > exp(—mp(w)) for each w in T,. By
condition (b), d(Tg) < (k+ C)w(a) + C.

We apply again the fact that F is (w)-slowly decreasing to find 0 <
o < 1, Cy > 0, Dy > 0 such that every component of S(F,eg,Cp) :=
{z € C:|F(z)| < egexp(—Cop(z))} (is bounded and) satisfies sup,cqp(z) <
Do(1 + inf.esp(2)). Without restriction, we may assume that Co > m.
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Let S be a connected component of S(F,eq,Cy) which has a non-empty
intersection with V(F) and let a € SNV (F). If |a| > R, then S is contained
in the disc D, limited by the circle T,. In particular, if z € S, then

Im z| < |Ima| 4+ d(Ty) < 2|Imal + kw(a) < (k+ 2C)w(a) + 2C.

On the other hand, if z € Dy, |z —a| < d(T,), and if Kj is chosen according
to condition 2.1(«) such that w(2t) < Ko(w(t) + 1) for ¢ > 0, then

w(a) < Kow(z) + Kow(d(T,)) + K¢
< Kow(2) + Kow(C + (k + C)w(a)) + K§
< Kow(2) + Kiw(C) 4+ Kiw((k + C)w(a)) + 2K3.
Thus

w((k w(a
w(a) (1 —(k+C)K3 ng —:_C?)L(Ez)))) < Kow(z) + Kjw(C) + 2K3.
Since w(t) = o(t), if |a| > Ry > R, we get w(a) < 2Kow(2)+2K3w(C)+4K2,
and the existence of A; > 0 such that |Im z| < 2(k + 2C)Kow(z) + A; for
each z € S.

Since there are only finitely many components S which meet V(F) at
a point a with |a| < Rj, and they are bounded, we conclude that there
is Ay > 1 such that for each component S of S(F, ey, Cy) which satisfies
SNV(F) # () we have

Im z| < Asw(z) + A2, 2z€S.

Denote by Ijoc(F) the ideal of A, (C,R) of all g € A,(C,R) such that
V(g) D V(F) and at each a € V(F') the order of vanishing of ¢ is at least
as high as the one of F' at a, i.e., ord(g,a) > ord(F,a).

Since F is (w)-slowly decreasing, Iioc(F) = FA(,,)(C,R) and it is closed;
see [2] and [15, 3.5]. We select the connected components of S(F,eg,Cp)
which intersect V/(F) and label them as (S;)jen so that v; := sup,cg, p(2),
7 € N, is increasing. Recall that there is D; > 0 such that

(3.4) w(z) <p(z) < D1+ Diw(z), z€8;jeN.
Put v = (7)) jen. Following the proof of [15, Theorem 3.7, pp. 77-78] we let
(3.5) Ej= J] cm®), jeN,

beS;NV (F)

and we define p; : H>(S;) — E; by

(3.6) << F® (b > > .
0<k<ord(F,b)/ beS;NV (F)
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We endow E; with the quotient norm

lej(9)|l := inf{[[hllgeo(s;) : 0j(h) = 0j(9)}, g € H™(S).
Then p; is linear, continuous and surjective. Now, for each j € N there is
R; : B — H*(S;) continuous and linear such that ¢; R; = idg; and || R;|| <
2d1mE If f € Ay (CR), then || fll, := sup,ec|f(2)|exp(—np(z)) < oo
for some n € N. This implies

1f 15l oo 55y < €] f |-

Therefore, [|o;(f]s;)|l; < ™| f[l, and consequently (o;(f|s;))jen is in
Koo (7, (Ej);), where

Kosl () = {(23); € [T 85 30 el = sup s e ™ < oo},
jEN

By the above, the map

0 Aw)(CR) = Keo(7, (Ej)jen),  o(g) = (0(gls;))jen
is linear and continuous. The arguments of Meise [15, pp. 77-78], which
involve the semilocal to global extension theorem of Berenstein and Taylor
[3, 2.2] (see also [2, p. 110]), show that g is surjective and ker o = [, (F'). In
particular, Koo (7, (E}) en) is nuclear, so we can apply [15, 1.3] to conclude
that for each n € N there exist £ € N and d > 0 such that

(3.7) 2(dim E;)e™i < de*i,  j e N.

We want to show that p has a continuous linear right inverse. To do
this, fix ¥ = (y;)jen € Koo(7, (Ej);j). Then there is n € N with |||y||, :=
supJeNHy]H]e " <oo. Now A;j := Rjy; is in H°(S;) and satisfies ||\;[| goo(s;)
< 2(dim Ej)||y;]l; < 2(dim E; )H]y”\nemﬂ By (3.7) this implies

1Ny < dlllylllne®™ < dlllyllln exp(kDo(1 + Inf p(2))).
J

Therefore, we deduce by (3.4) that for each z € S; we have
i ()] < de*P0llyllln exp(kDop(2)) < dekDﬁkDODlHlyHlneXp(kDoDM(Z))-

We define P(y) € H(S(F,e0,Co)) by P(y)(z) = Rjy;(z) if z € S; and
P(y)(z) = 0 otherwise. Clearly, P : K (v, (Ej);) — H(S(F, 50,00)) is
well-defined and linear. Moreover,

(38)  |P(y)(z)| <deM PtV |y |||, exp(kDoDiw(2)),  z€S(F,e0,Co).
As in the proof of Bernstein and Gay [1, Theorem 2.1.4], it follows that

there exist 0 < g1 < g9, C; > C, Ag > 0, By > 0, and x € C°°(C) satisfying

0<x<1,x=1lonS(F,e,C),suppx C S(F,e0,Cp) and

Ix

5(2) < Agexp(Bop(z)), z¢€C.
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Then xP(y) is in C*°(C) and is holomorphic on S(F,e1,Cy). This implies
= (XP()) = FEP(y). We set
1 0 1 dx

Clearly, v is a C*-function on C which vanishes on S(F,e1,C1). To de-
rive an estimate for v, note that |F(z)| > €1 exp(—C1p(z)) whenever z ¢
S(F,e1,Ch) for some j € N. From this estimate and (3.8) as well as (3.4) we
get the existence of Az, A4, B1, Bo > 0 such that

(3.9) ()| < AzeB1(?) 1 eC1P(2) g eBor(2) < g, eB2w(2)
€1

To use this estimate we let
K(©) 1= {7 € 0O+ Il 1= sup suplf ()l < oo vk € 1)

Then K (w) is a nuclear Fréchet space. Since w is a (DN)-weight function, it
follows from Meise and Taylor [18, Proposition 1.9 and Theorem 2.17] that

(3.10) 0— Ay — K'(w) 2 K'(w) =0

is an exact sequence which splits. Hence there exists a continuous linear
operator L : K'(w) — K'(w) which satisfies 0 o L = idg(,,). Now note that
the estimate (3.9) and the fact that w satisfies condition 2.1(vy) imply that
v defines an element of K'(w) by

v(f) = {v(2)f(2)dz, e Kw).
C

Next we define

Q: Koo(7: (Ej)jen) — K'(w),  Q(y) = xP(y) + FL(v).
Then it follows from (3.8) and an easy computation that @ is well-defined,
linear and continuous. Moreover,

0 195% 0 ox B
%Q() 8_P()+F82L() 82P()+FU—0.

Hence Q(y) € kerd and by (3.10) this implies Q(y) € A(w)- Since the se-
quence (3.10) is exact and consists of (DFN)-spaces, it follows from Meise
and Vogt [22, Propositions 26.4 and 26.24] that it is topologically exact.
Hence @ is in fact a continuous linear map from Koo (7, (Ej)jen) into A,
Since A,y C A,)(C,R) with continuous inclusion,

Q: Koo('% (Ej)j) - A(w)<C7R)

is linear, continuous, and satisfies o(Q(y)) = y for each y in K (v, (Ej);).
In particular, ker o = F'A(,)(C,R) is complemented in A, (C,R).
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To complete the proof, we must show that 7}, has a continuous linear
right inverse. It is enough to see that T}, : S(’w) (R) — 5€w) (R) has a con-

tinuous linear left inverse. Since F o T;i = My o F for Mg := jig, we have
proved that the image of My is id(,)(C,R) = FA(,)(C,R), and that it is
complemented in A,)(C,R). This yields the conclusion. m

3.4. THEOREM. Let w be a quasianalytic (DN)-weight function which
satisfies condition (a1). Then for p € E’Ew)(R) the convolution operator

Ty Ewy(R) = £y (R)

admits a continuous linear right inverse if and only if conditions (a) and (b)
in Proposition 3.2 hold.

Proof. This follows immediately from Propositions 3.2 and 3.3. =

REMARK. Note that Theorem 3.4 extends the main result of Meise and
Vogt [21] from the non-quasianalytic to the quasianalytic case. In the non-
quasianalytic case, however, it was not required that w is a (DN)-weight
function, nor that w satisfies (7). In fact, the theorem holds for w(t) =
(log(1+t))%, o > 1, which is not a (DN)-weight function, however, it satisfies
condition (o).

4. Ultradifferential operators on compact intervals. In this sec-
tion we prove that (w)-ultradifferential operators can behave differently on
the real line than on compact intervals. Also, we show that for them the
characterization in Theorem 3.4 can be complemented by a condition which
is similar to the one which was given by Domanski and Vogt [9, Theorem
4.7]. To do so we need two lemmas and more notation.

4.1. DEFINITION. Let w be a weight function and assume that for p €
Eéw) (R) its Fourier-Laplace transform 7i is in A(,,). Then the operator T},

will be called an (w)-ultradifferential operator since for each f € £ (R) we
have

4.2. LEMMA. Letw be a weight function. Assume that F' € A, satisfies
(4.1) |F(z)| < Bexp(Bw(z)), z¢€C,

for some B > 0 and that F is (w)-slowly decreasing. Then there exist m > 0
and Ry > 0 such that for each z € C with |z| > Ry there exists ( € C with
|z — ¢| < mw(z) such that

[F(¢)] = exp(—mw(()).
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Proof. Since F is slowly decreasing, it follows from Theorem 2.8(3) that
there exist k,zo > 0 such that for each z € R with |x| > z( there exists
t € R with |t — | < kw(z) such that

|F(t)] > exp(—kw(t)).
Next we fix z = x + iy in C with |z| > z¢ and consider two cases:

CASE 1: |y| < kw(z). Since |z| > xo we can choose t € R according to
2.8(3). Then ( :=t satisfies

C— 2l = [t =2 — iyl < [t — 2| + |y] < 2hw(@) < 2hw(2).
Hence the assertion follows for m = 2k in this case.
CASE 2: |y| > kw(z). Select n > 2 (depending on z) with |y|/n < kw(zx)

and t € R according to 2.8(3). We apply the minimum-modulus theorem
[14, Chap. I, Theorem 11] with

1
1— (14 m)
16
to find 0 > 0 with [t — 2] < 0 < (1 + ﬁ)h‘— z| =: R such that for
H =2 +log(3e/2n) we have

(4.2) [F ()] = !F(t)\H“(‘ Sup R!F(w)\)_H

for each ¢ € C with |¢€ — | = 0. We now choose ¢ € C with |¢ — t| = ¢ and
|¢ — 2| < |t — 2|/(v/2n). Then
+_ f— 2|2 2Y1/2 k 2 2Y1/2
!C—Z\<‘ A (t—alP+ )7 ((Rw(@)” + 1)yl

V2n V2n o V2n n
< kw(z) < kw(z).

To derive the desired lower bound for F'({) we estimate w(§) for [ —t| < 2eR
(in particular for & = t). To do this, we note first that by 2.1(«) there exists
K > 1 such that for each a,b € R we have

(4.3) wla+b) < K(w(a)+w()+1), w(2a)<Kw(a)+ K.
This implies
w) <w(E—t|+t]) < Kw(t)+ Kw(l§ —t]) + K < Kw(t) + Kw(2eR) + K.

On the other hand, it follows from (4.3) that w(t) < Kw(|t — z|) +
Kw(z) + K. From the hypotheses in the present case we get

[t — 2| < |t — 2|+ |y| < kw(z) +[y| < 2Jy|

-1

=

and hence

(4.4) w(lt —2]) < w(2ly]) < Kw(y) + K.
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This implies
(4.5) w(t) < K2w(y) + Kw(z) + K* + K < 2K%w(z) + 2K*>
and consequently
w(€) < 2K3w(2) + 2K3 + Kw(2eR) + K.
From 2eR < 12|t — z| and (4.4) we get
w(2eR) < w(12]t—z|) < w2t —2|) < K'w(|t —2|) +4K* < K5w(z) +5K°.
Therefore,
(4.6)  w(€) <2K3w(z) + K%w(2) + 2K3 + 5K° + K < 3K°%w(2) + SK°.
On the other hand, |z — ¢| < |y|/n and
jyl = [Tm 2| < [Tm| + iz — )] < [Tm¢| + |2 — | < [Tm ] + yl/n
imply
lyl < — [im¢| < 2[im],

and consequently |y|/n < 2|Im{|/n < |Im|. Therefore, we have

(4.7) w(z) < Kw(() + Kw(|¢ = 2[) + K < Kw(() + Kw(ly|/n) + K
< Kw(()+ Kw(|Im(|) + K <2Kw(¢) + K.

Since |( —t| = p, it follows from (4.2) together with (4.5)—(4.7) that

(O] = [F@)1( max | [P(©)) "

> exp(—(H + 1)kw(t))[‘£_1ﬂi)2<eRBexp(Bw(§))]*H

> B~ exp(—(H + 1)kw(t))[exp(3BKw(z) + 8BK®)| 74
> B~ exp(—~HSBK®) exp(—(H + 1)kw(t) — 3BBKSHw(z))
> B~ exp(—8HBK?Y)
x exp(—2(H + 1)kK?w(z) —3BK%Hw(z) — 2(H + 1)kK?)
> B " exp(—8HBK® — 2(H + 1)kK?)
x exp(—(2(H + 1)kK? + 3BK°H)w(z))
> B " exp(—8HBK® — 2(H + 1)kK?
—[2(H + 1)kK + 3BK®H](2kw(¢) + K)).
Hence there exists d; independent of z (very small) and [ large, depending
on B, k, and K, but not on z, such that |F(¢)| > dj exp(—Iw(()). Selecting
Ry > 0 such that exp(—w({)) < d; if || > Ry we conclude that
F(Q)] > exp(—~(1 + 1)w(0))

Hence the assertion follows for m = max(k,l + 1) in this case.
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For z = z + iy € C satisfying |z| < xg let Z := x¢ + iy and choose ¢ € C
for Z according to what we proved so far. Then
=2l < [C =2+ |2 = 2] S mw(Z) + |20 — 2 < mw(Z) + 2|z0l.
Note that by (4.3) we also have
w(z) < Kw(z) + Kw(2x9) + K.
Since limy_,oo w(t) = oo this shows that there is m’ > m such that the

statement of the lemma holds with m replaced by m’. =

4.3. LEMMA. Let w be a weight function and assume that F € A,
satisfies the hypotheses of Lemma 4.2. Then there exist positive numbers g,
Cy, and D such that each component S of

Su(Fye0,Co) :={z€ C:|F(z)| <egexp(—Cow(z))}

satisfies

diam S < D ingw(z) + D.
zE

Proof. By Lemma 4.2 there exist m > 0 and Ry > 0 such that the
conclusion of that lemma holds. We fix z € C with |z| > Ry and choose
¢ =((z) € C with |¢ — 2| < mw(z) such that

[F(¢)] = exp(=mw(()).

In order to apply the minimum-modulus theorem we let

1 3e
= — H:=2+1 — = 2|C — z|.
1= 55 + 0g<277>, R:=2|¢ - 2|
Then there exists o with |( — z| < 0 < 2|¢ — z| such that
(4.8) [FE)] = FOI( sup  [F(w)))™ "

lw—(|=2eR

for each £ € C with |£ — (| = 0. Next choose § > 0 so small that § < 1/28m.
Since w(t) = o(t) by 2.1 (), we may assume that Ry is so large that

w(t) <ot  for t > Ry.
Now fix any £ € C with |£ — (| = p and note that by our choices we have
2] < |z = ¢l +1C = €l + 1€] < 3mw(z) + [¢] < 312] + €]
and hence |z| < 2|¢|. This implies
I 181+ 1€ = €] < [&] + 2mew(z) < €] + g12] < 2[¢]-

If we assume that K > 1 is a constant for which (4.3) holds, then it follows
from this that

(4.9) w(() < Kw(@)+K, (eCl(—¢l=0
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Similarly we get for any w € C with |w — (| = 2eR the estimate
] < [¢] + 26R < [C] + 12muw(z) < J¢] + ¢ — €] + 12me(2)
< 8]+ 1dmw(z) < [¢] +[2]/2 < 2(¢]
and hence
w(w) < Kw(f) + K
for each w,§ € C satisfying |w — (| = 2¢eR, |£ — (| = p. From this estimate

together with (4.9) and (4.8) it follows that for each £ € C with |{ — (| =0
we have the estimate

[F(§)] = exp(—m(H + 1)(Kw(§) + K)) exp(—H (Kw(§) + K))
=exp(—[m(H + 1) + H|K)exp(—K(m(H + 1) + 1)w(§)).
If we let €g := exp(—[m(H + 1) + H|K) and Cy := K(m(H + 1) + 1) then
it follows that for each zy € S, (F,ep,Co) with |z9] > Ry the connected

component S of S, (F,ep,Cp) which contains zy is contained in the open
disk B(((z0),2mw(zp)). In particular, we have

diam S < 4mw(zp).

By our choice of §, we have 4mw(z) < |20|/7. Now we choose 21 € S such
that inf,cgw(z) = w(z1). Then we get
20| < 21| + |20 — 21| < |21] + diam S < |z1] + 1|20
and consequently |zo| < %|zl| < 2|z1|. This implies
diam S < dmw(zp) < dmw(2z1) < 4mK ;Ielgw(z) +4mK.

If we choose D = max(rg,4mK), then we deduce the estimate diam .S <
Dinf,csw(z)+ D. »

4.4. DEFINITION. For a weight function w and R > 1 we define the
space
A(%R) = indn_> A([—R, R], n)

4.5. LEMMA. Let w be a (DN)-weight function or a strong weight func-
tion. Then for each R > 0 the following assertions hold:

(a) F: 5(’w)[—R, R] — Ay, Rr) is a linear topological isomorphism.
(b) Aw,r) is a (DFN)-space.
(c) A’(w Rr) has properties (DN) and (2).

Proof. (a) This follows from the proof of Meise and Taylor [17, Propo-
sition 3.6], since the proof of the surjectivity of the map G defined in that
proposition does not use the assumption that w is a non-quasianalytic weight
function.

(b) The properties of a weight function and well-known results imply
that the (LB)-space A, gy is in fact a (DFN)-space.
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(c) A’(w Ry has (©2) by Meise and Taylor [19, Lemma 1.10(c)]. If w is
a (DN)-weight function, the proof of [19, Proposition 5.3] shows that
Ew)[—R, R] and hence A’(W’R) has (DN). If w is a strong weight function,
then &£,)[—R, R] has (DN) by [19, Corollary 5.6].

4.6. LEMMA. Let w be a weight function. Then for F' € A, the follow-
ing conditions are equivalent:

(1) F is (w)-slowly decreasing.
(2) For each R > 0 the multiplication operator

Mrp : A(w,R) - A(w,R)a MF(g) = Fy,

s an injective topological homomorphism.
(3) There exist positive numbers €g, Cy, and D such that for S,,(F, g, Co)
the conclusion of Lemma 4.3 holds.

Proof. (1)=(2). Fix R > 0 and note first that A, )y is a (DFN)-space
by Lemma 4.5. Hence (2) follows from the Baernstein lemma (see Meise and
Vogt [22, Proposition 26.26]) if we show that for each bounded set B in
A, r) the set M (B) is bounded. Since the sets

By = {f € AR : sup ]f(z)]e_R‘Imz‘_"“(Z) <1}, neN,
zeC

form a fundamental sequence of bounded sets in A, g), it suffices to show
that M *(B,) is bounded for each n € N. To do so, fix n € N. Since F is
(w)-slowly decreasing by hypothesis, it follows from Lemma 4.2 that there
exist m, Rgp > 0 such that for each z € C, |z| > Ry, there exists ¢ € C such
that |( — 2| < mw(z) and |F(¢)| > exp(—mw(()). Since F' is in A(,,), there
exists A > 0 such that

(4.10) |F(z)] < Aexp(Aw(z)), zeC.
Next fix h € M'(B,) and let g := Fh € B,. Then
(4.11) lg(2)| < exp(R|Im z| + nw(z)), =ze€C.

Now we apply Hérmander [11, Lemma 3.2] for r = mw(z) > 0 to get, for

|z| > Ro,

SUD|yy— 2| <amuw () 19(W)| SUD |y 2| <ameo(z) [ F(w))]
(SUP 2| <mu(z) [ F'(w)])?

To derive further estimates from (4.12), note that limy_,.o w(t)/t = 0

implies the existence of ¢y > 0 such that w(t + 4mw(t)) < w(2t) for t > to.
Since w satisfies 2.1(«), this implies the existence of K1 > K such that

(4.13) w(t+4mw(t)) < Kw(t) + K1, t>0.

112) Jhia)| = | 43 <

F(z)




Convolution operators on quasianalytic classes 69

Next note that for ( = ((z) we similarly get the existence of C7 > 1 such
that
1 < [zl +1¢ = 2] < [2] + mw(z) < 2z[ + Ch.
By (4.3), this implies
(4.14)  2mw(¢) < 2mw(2|z| + C1) < 2m(K%w(z) + K(K + 1+ w(CY))).
Now from (4.12) by (4.10), (4.11), (4.13), and (4.14) we get
|h(2)]/A < exp(R|Im z| + (4Rm +nK + AK)w(z) + Ki(n + A))
x exp(2mw(())
< exp(R|Im z| 4+ (4Rm + nK + AK 4 2mK?)w(z))
xexp(Ki(n+A)+2mK(K +1+w(Ch))).
Hence there exist D; > 1 and Dy > 1, not depending on h, such that
|h(2)| < Dyexp(R|Im z| + Daw(z)), =z € C, |z| > Ryp.

This estimate implies that we can enlarge the constant D; to have the
inequality for all z € C. Since h was an arbitrary element of My Y(B,) we
have proved that M'(B,) is bounded in Aw,R)-

(2)=-(1). By Theorem 2.8, condition (1) is equivalent to

(4.15)  For each bounded set B in A(,)(C,R) the set M*(B) is bounded
in A,)(C,R).

To show that (4.15) holds, let B be any bounded set in A, (C, R). Since
Ay (C,R) is a (DFN)-space, it follows easily that there exists R > 0 such
that B is contained in A, py and bounded there. Now (2) implies that
MEI(B) is bounded in A, gy and hence bounded in A, (C,R).

(1)=(3). This holds by Lemma 4.3.

(3)=(1). Obviously, (3) implies condition (3) in Theorem 2.8. Hence (1)
holds. =

4.7. LEMMA. Let w be a weight function and assume that F' € A, is
(w)-slowly decreasing. Then for each R > 0 the space A, ry/MrA, Ry is
either finite-dimensional or isomorphic to the strong dual of a nuclear power
series space of infinite type.

Proof. Fix R > 0 and note that Mp : A, ry — A(,,g) has closed range
by Lemma 4.6. Note also that A, r)/MrA(, gy is finite-dimensional if and
only if F' has only finitely many zeros. Therefore, we assume from now
on that V(F) := {a € C : F(a) = 0} is an infinite set. Next we choose
€9, Cp, and D according to Lemma 4.3 and we label the components S of
Su(F,e0,Cp) which satisfy SNV (F) # 0 in such a way that the sequence o
defined by

aj :=supw(z), jeEN,
2€8;
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is increasing. Also, we define the sequence 3 by
Bj = sup [Imz|, jeN
ZESj

Then we define the spaces E; and the maps g; : H*(S;) — E; as in (3.5)
and (3.6). Moreover, we let

Koo(a, B, (Ej)jen) == {(%‘)jeN c[E;:
JEN
In € Nt [[lefln = sup [zl < oo},
JEN
If f € Ay, r) satisfies

1flln = sup |f(z)] exp(=FR|lm z| = nw(z)) < oc

then for each j € N we have

1f15; o0 (s;) < [1f [ln exp(na; + RB;).
This implies that

log (£1s,)llze™"* =% <||flln, j€N.

Consequently,

0: A r) — Koo, B, (Ej)jen), o(f) = (0i(fls;))jen
is a linear and continuous map.

Next we claim that ker o = MpA(, ry. To show this, note first that by
the definition of ¢ we obviously have MpA, gy C ker o. To prove the reverse
inclusion, let g € ker p. Then g/F is an entire function. Using Lemma 4.3
and standard arguments, it follows as in the proof of Berenstein and Taylor
2, Proposition 3] that g/F € A, ry and hence g € MpA(, g)-.

To show that p is surjective, we argue similarly to the proof of The-
orem 3.7 in Meise [15]. Let y = (y;)jen € Koo(a, B, (Ej)jen) and choose
n € N such that |||y|/|[, < oco. By the definition of the norm in E; we can
choose \j € H*(S;) with g;()\j) = y; so that

Xl ooy < 2lllylllne” %, j e N.

Next define A : S, (F,e9,Cp) — C by A(z) := \j(2) if z € Sj and A(2) := 0
if z € Su(F,€0,Co) \ U ey Sj- Then the diameter estimate from Lemma 4.3
and the definition of a and 3 imply the existence of D; > 0 such that

(4.16) )] < 2l exp(RlTm 2| + Dyno(z) + Dy).
If K is a constant for which the estimate (4.3) holds then it follows that
OF

< efBexp(KBw(¢)), (eC.

5(0
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From this and Lemma 4.3 it follows that there exist €1, C7, L > 0 such that
for each z € S, (F,e1,C1) the distance to C\ S, (F,eq,Cp) is at least as
large as L~! exp(—Lw(z)). Therefore, there are Ay, By > 0 and y € C*°(C)
having the following properties:

OSXS 17 XE]-OD Sw(F)el)Cl)v SuprCSw(FaSOaCO)7

(4.17) o
o ()| < Adoexp(Bow(2),  z€C.
Next let 1 8 .
N __ - 9X
VTTF az(x)‘) F 0z A

and note that v is in C°°(C) and vanishes on S(F,e1,C1). The estimates
(4.16) and (4.17) imply that

1
[0(2)] < = Ao 2llylllne” exp(R[m 2| + (C1 + Bo + Dinju(2))

= Ay exp(R|Im z| + Biw(z)), z¢€C,

for suitable numbers A;, By > 0. Since w satisfies condition 2.1(7), it follows
from this that

S [[v(2)|exp(—R|Im 2| — (By + 1)w(2))]?dz < cc.

C
By Hérmander [12, Theorem 4.4.2], there exists ¢ € L{ (C) satisfying
0g/0z = v and

(4.18) S [lg(2)|exp(—R|Tm z| — (B + 1)w(2) — log(1 + |2|*))]* dz < 0.

C
Since v is in C*°(C) and since 9/907 is elliptic, g is in C°°(C). Hence
fi=x -A+gF
is in C°°(C) and satisfies
of _9x, , 99
95 _ 9X Y9 —
oz~ Tzt =0

by the choice of g. Consequently, f € H(C) and the estimates (4.16) and
(4.18) together with well-known arguments imply the existence of Ay > 0
and By > 0 such that

|f(2)| < Agexp(R|Im z| + Baw(z)), z€C.
This shows that f € A, r). By the definition of f and A we have
o(f) = (ej(fls;))jen = (0j(Aj))jen = ¥

Therefore, ¢ : A, r) — K(a, 3, (Ej)jen) is surjective. Thus we have proved
that A, ry/MrA, r) = Keo(, B, (Ej)jen) by the open mapping theorem.
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Since A, g is a (DFN)-space by Lemma 4.5(a), also Kuo(a, 8, (Ej)jen) is
a (DFN)-space. It is easy to check that

D: Koo(a, 3, (Ej)jen) = Koo(a, (Ej)jen),  D((x5)jen) := (e_ﬁjxj)jeN
is a linear topological isomorphism. Hence Ko (a, (E}) en) is a (DFN)-space.
By Meise [15, Propositions 1.3 and 1.4], this implies that K (a, (Ej);en)
and hence also Ko (a, 3, (Ej)jen) is isomorphic to the strong dual of a nu-
clear power series space of mﬁmte type. =

4.8. LEMMA. Let w be a (DN)-weight function or a strong weight func-
tion. If F' € A, is (w)-slowly decreasing then for each R > 0 the map
Mp : A ry — Aw,r) admits a continuous linear left inverse.

Proof. By Lemma 4.6, the following sequence is exact:

M
0= Ar) —2 Awr) = Aw.r)/Mr(Aw,r) — 0,

where ¢ denotes the quotient map. Since the maps Mg and ¢ are linear and
continuous, it follows from Meise and Vogt [22, Proposition 26.4] that the
dual sequence

/ M’
(4.19) 0 — (Aw,r)/Mr(Awr)) = Alyr) — Alyr) — 0

isexact as well. By Lemma 4.5, the space A’(w’ R) has (DN), while by Lemma 4.7,
the space (A, r)/Mr(A,r))) has (Q). Hence the exact sequence (4.19)
splits by the splitting theorem of Vogt and Wagner (see [22, 30.1]), which
finishes the proof. =

4.9. PROPOSITION. Let w be a (DN)-weight function or a strong weight
function. Assume that for p € 5 )( ) its Fourier—Laplace transform [ is
(w)-slowly decreasing and is in A( ). Then for each a,b € R with a < b the
sequence

Ty la
0 — ker T,u,[a,b] — E(M) [CL, b] M g(w) [a, b] — 0
18 exact and splits.

Proof. From Lemma 4.5 we know that for each R >0 the space Séw) [—R,R]
is isomorphic to A(,, g via the Fourier-Laplace transform. From this and the
fact that 7, commutes with translations it follows that for R := (a + b)/2
and up to isomorphism the present sequence is identical with the exact
sequence (4.19). Hence it is exact and splits. m

REMARK. If we replace in Proposition 4.9 the condition “fi is (w)-slowly
decreasing” by “T), 4y is surjective for some interval [a,b]”, then it follows
as in the proof of Proposition 4.9 that T), 1,4 : Ewyla, b] — E,la, b] admits
a continuous linear right inverse.
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REMARK. If w is a strong weight function then the existence of a contin-
uous linear right inverse for T}, as in Proposition 4.9 can also be proved in the
following way. By Meise and Taylor [20, Theorem 3.1], there exists a continu-
ous linear extension operator Ep : £,)[a,b] — £,y (R). If we fix ¢ € D, (R)
such that ¢ = 1 in some neighborhood of [a, b], then E : f — @FEy(f) defines
a continuous linear operator from &, [a, b] into Dy,)(R). Since T), admits a

/

fundamental solution v € D) (R) it is easy to check that the map
R:Eylab] = Ewyla,b],  R(f) :==v* (E(f)la;

is a continuous linear right inverse for T,.

4.10. EXAMPLE. Let w be a quasianalytic (DN)-weight function which
satisfies condition (o). Then there exist (w)-ultradifferential operators T},
which admit a continuous linear right inverse on £, [a, b], but which do not
admit a continuous linear right inverse on &, (R).

To show this, let (b;)jen be an increasing sequence in |0, co[ which sat-
isfies, for n(t) := card{j € N:b; <t},

(i) bj+1 > 4bj, 7 €N,
(ii) n(t)logt = o(w(t)) as t — oo.

Then define
z
F(z):= 1—— e C.
@=T(-7) -
jEN

By Rudin [28, Theorem 15.6], F' is an entire function. Arguing as in [6,
Lemma 3.5] we get the existence of B > 0 such that

|F(2)] < Bexp(Bw(z)), =z¢€C,
and the existence of ¢ > 0 and Cy > 0 such that for each w € C\
Ujen B(ibj, 1) we have

IF(w)] > o exp(—Cow(w)).

Therefore, F' is in A,y and it follows from Lemma 4.6 that F' is (w)-slowly
decreasing. By Theorem 2.6 we can find pu € SE w)(]R) such that g = F'. It then
follows from Proposition 4.9 that T}, admits a continuous linear right inverse
on &)|a, b] for each a,b € R with a < b. However, since condition 3.2(b) does
not hold for F, it follows from Proposition 3.2 that T, : £,)(R) — & (R)
does not admit a continuous linear right inverse.

From Theorem 3.4 we now get the following corollary.

4.11. COROLLARY. Letw be a quasianalytic (DN)-weight function which

satisfies condition (a1). Assume that for u € Eéw)(R) its Fourier—Laplace

transform [ is (w)-slowly decreasing and is in A,). Then the following
assertions are equivalent:
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(1) Ty : Ey(R) = Ey(R) admits a continuous linear right inverse.

(2) There exists C > 0 such that |Ima| < C(w(a)+1) for each a € V(ii).

(3) For each/some a,b € R with a < b and each f € kerT), oy there
exists g € ker T), such that f = g|a4)-

Proof. (1)=(2). This holds by Proposition 3.2.

(2)=-(3). Fix any R > 0 and consider the following commutative diagram
with exact rows:

0 — kerT), Ew)(R) Ew)(R)

ok ]

T
0 —> ker T}, g — ([~ R, R] % £,y [-R, R — 0

0

where the vertical maps ¢ are defined by o(f) := f|_g - They are lin-
ear and continuous. Therefore, the dual diagram is commutative as well.
If we apply the Fourier-Laplace transform to it, then we get the following
commutative diagram with exact rows:

My ~

b, b k

A R) " AR an Ao,R)/BA @, R)

0 0

where the maps j are obvious inclusions and where J is induced by j. As we
proved in Proposition 3.3 the quotient A, (C,R)/1iA,,)(C, R) is isomorphic
to Koo (7, (Ej)jen)- Since condition (2) holds, we also know from the proof
of this proposition that there exists Ao > 0 such that for each component S
of S(1,e0,Co) which satisfies S NV (f1) # 0 we have [Imz| < Asw(z) + A
for each z € S. This implies that the space Koo (A, (Ej)jen) is identical with
Ky (a, B, (Ej)jen) defined in the proof of Lemma 4.7. Moreover, the map J
in the diagram above is the identity if we identify both spaces. Hence J and
consequently o : kerT), — kerT), g is an isomorphism. Since 7T, commutes
with translations, this implies (3) for each a < b in R.

(3)=-(1). Assume that condition (3) holds for some a,b € R. Then let
R := (a+ b)/2 and note that the present hypothesis and Proposition 4.9
imply that T, g : Eu)[—R, R] — &u)[—R, R] admits a continuous linear
right inverse Sgi. To use it in order to define a continuous linear right inverse
for T),, we fix any g € £¢,)(R). Since T}, is surjective by hypothesis, there
exists f € £ (R) with T),f = g. We denote by o : £.)(R) — &,)[—R, R]
the restriction map o(h) := h||_g g and we let

hr = o(f) — Sr(e(g))-
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Then hg belongs to £[—R, R| and

Tyur(hr) =Ty r(0(f)) —TuroSr(0(9)) = o(Tu(f)) —0(g9) = 0(g9) —0(g9) =0

implies hr € kerT), g. By the present hypothesis we can choose H € ker T},
satisfying o(H) = hr. Now we let

Slg)=f—-H
and claim that S(g) is well-defined, i.e., that it does not depend on the
choice of f. To show this, assume that fi € £, (R) satisfies T}, f; = g. Then
hi,r = o(f1) — Sr(o(g)) is again in ker T}, p and we can choose H; € kerT),
satisfying o(Hp) = h1,r. Now note that our choices imply

o(f —H) = o(f) — o(H) = o(f) — hr = Sr(e(9)),
o(fi — H1) = o(f1) — o(H1) = o(f1) — h1,r = Sr(e(9))-
Hence f — H and f; — H; coincide on the interval [—R, R]. Since w is a
quasianalytic weight function, this implies f — H = f; — H1 and proves that

S(g) is well-defined. From this it follows easily that S : £)(R) — &£,)(R)
is a linear map. By the definition of S we have

o(5(9)) = o(f) — o(H) = o(f) — hr = Sr(e(9))-
In order to show that S is continuous, we apply the closed graph theorem.
To do so, let (gj)jen be any sequence in &, (R) which satisfies g; — g and
S(gj) — fin &) (R). Then the equality o(S(g;)) = Sr(e(g;)), j €N, implies
that the sequence (0(S(g;)));jen converges to o( f) as well as to Sr(o(g)) =
0(S(g)). Hence f and S(g) coincide on [—R, R] and consequently f = S(g).
Thus S has a closed graph and therefore is continuous. Since

Tu(S(9)) = Tu(f — H) = Tu(f) = Tu(H) = Tu(f) = 9
for each g € £,)(R), we proved (1). =
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