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Weakly null sequenes with upper estimatesbyDaniel Freeman (College Station, TX)Abstrat. We prove that if (vi) is a seminormalized basi sequene and X is a Banahspae suh that every normalized weakly null sequene in X has a subsequene that isdominated by (vi), then there exists a uniform onstant C ≥ 1 suh that every normalizedweakly null sequene in X has a subsequene that is C-dominated by (vi). This extendsa result of Knaust and Odell, who proved this for the ases in whih (vi) is the standardbasis for ℓp or c0.1. Introdution. In some irumstanes, loal estimates give rise touniform global estimates. An elementary example of this is that every on-tinuous funtion on a ompat metri spae is uniformly ontinuous. Uniformestimates are espeially pertinent in funtional analysis, as one of the orner-stones to the subjet is the Uniform Boundedness Priniple. Beause uniformestimates are always desirable, it is important to determine when they our.In this paper, we are onerned with uniform upper estimates of weakly nullsequenes in a Banah spae. Before stating preisely what we mean by this,we give some historial ontext.For eah 1 < p < ∞, Johnson and Odell [JO℄ have onstruted a Banahspae X suh that every normalized weakly null sequene in X has a sub-sequene equivalent to the standard basis for ℓp, and yet there is no �xed
C ≥ 1 suh that every normalized weakly null sequene in X has a subse-quene C-equivalent to the standard basis for ℓp. A basi sequene (xi) isequivalent to the unit vetor basis for ℓp if it has both a lower and an upper
ℓp estimate. That is, there exist onstants C, K ≥ 1 suh that
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80 D. Freemanestimate an always be hosen uniformly. Spei�ally, they proved that forevery Banah spae X, if eah normalized weakly null sequene in X has asubsequene with an upper ℓp estimate, then there exists a onstant C ≥ 1suh that eah normalized weakly null sequene in X has a subsequenewith a C-upper ℓp estimate. They also proved earlier the orresponding the-orem for upper c0 estimates [KO1℄. The standard bases for ℓp, 1 < p < ∞,and c0 enjoy many strong properties whih Knaust and Odell employ intheir papers. It is natural to ask what are neessary and su�ient propertiesfor a basi sequene to have in order to guarantee the uniform upper esti-mate. In this paper we show that atually all seminormalized basi sequenesgive uniform upper estimates. We make the following de�nition to formalizethis.Definition 1.1. Let V = (vn)∞n=1 be a seminormalized basi sequene.A Banah spae X has property SV if every normalized weakly null sequene
(xn) in X has a subsequene (yn) suh that for some onstant C < ∞,(1) ∥
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X has property UV if C may be hosen uniformly. We say that (yn) hasa C-upper V-estimate (or that V C-dominates (yn)) if (1) holds for C, andthat (yn) has an upper V-estimate (or that V dominates (yn)) if (1) holdsfor some C.Using these de�nitions, we an formulate the main theorem of our paper:Theorem 1.2. A Banah spae has property SV if and only if it hasproperty UV .
SV and UV are isomorphi properties of V , so it is su�ient to prove The-orem 1.2 for only normalized bimonotone basi sequenes. This is beause ev-ery seminormalized basi sequene is equivalent to a normalized bimonotonebasi sequene. Indeed, if 0 < A ≤ ‖vi‖ ≤ B for all i ∈ N, then we an de�nea new norm ||| · ||| on [vi] by |||x||| = B−1 supn<m ‖P[n,m]x‖ ∨ supi∈N |v∗i (x)|for all x ∈ [vi], where P[n,m] denotes the projetion of [vi] onto the spanof {vn, . . . , vm}. The norm ||| · ||| is equivalent to ‖ · ‖ on [vi] and (vi) isnormalized and bimonotone in the new norm.In Setion 2 we present the neessary de�nitions and reformulate ourmain results. We break up the main proof into two parts whih we give inSetions 3 and 4. In Setion 5 we give some illustrative examples whih showin partiular that our result is a genuine extension of [KO2℄ and not just aorollary.For a Banah spae X we use the notation BX to mean the losed unitball of X and SX to mean the unit sphere of X. If F ⊂ X we denote by [F ]



Weakly null sequenes with upper estimates 81the losed linear span of F in X. If N is a sequene in N, we denote by [N ]ωthe set of all in�nite subsequenes of N .This paper forms a portion of the author's dotoral dissertation, whihis being prepared at Texas A&M University under the diretion of ThomasShlumpreht. The author thanks Dr. Shlumpreht for his invaluable helpand guidane.2. Main results. Here we introdue the main de�nitions and theoremsof the paper. Many of our theorems and lemmas are diret generalizationsof orresponding results in [KO2℄. We speify when we are able to follow thesame outline as a proof in [KO2℄, and also when we are able to follow a proofexatly.Definition 2.1. Let X be a Banah spae and V = (vn)∞n=1 be a nor-malized bimonotone basi sequene. With the exeption of (ii), the followingde�nitions are adapted from [KO2℄.(i) A sequene (xn) in X is alled a uV-sequene if ‖xn‖ ≤ 1 for all
n ∈ N, (xn) onverges weakly to 0, and
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< C.(ii) A sequene (xn) in X is alled a hereditary uV-sequene if everysubsequene of (xn) is a uV-sequene, and is alled a hereditary

C-uV-sequene if every subsequene of (xn) is a C-uV-sequene.(iii) A sequene (xn) in X is alled an M -bad uV-sequene for a onstant
M < ∞ if every subsequene of (xn) is a uV-sequene, and nosubsequene of (xn) is an M -uV-sequene.(iv) An array (xn

i )∞i,n=1 in X is alled a bad uV-array if eah sequene
(xn

i )∞i=1 is an Mn-bad uV-sequene for some onstants Mn with
Mn → ∞.(v) (yk

i )∞i,k=1 is alled a subarray of (xn
i )∞i,n=1 if there is a subsequene

(nk) of N suh that every sequene (yk
i )∞i=1 is a subsequene of

(xnk

i )∞i=1.(vi) A bad uV-array (xn
i )∞i,n=1 is said to satisfy the V-array proedureif there exists a subarray (yn

i ) of (xn
i ) and there exists (an) ⊆ R

+with an ≤ 2−n, for all n ∈ N, suh that the weakly null sequene
(yi) with yi :=

∑∞
n=1 anyn

i has no uV-subsequene.



82 D. Freeman(vii) X satis�es the V-array proedure if every bad uV-array in X sat-is�es the V-array proedure. X satis�es the V-array proedure fornormalized bad uV-arrays if every normalized bad uV-array in Xsatis�es the V-array proedure.Note. A subarray of a bad uV-array is a bad uV-array. Also, a bad uV-array satis�es the V-array proedure if and only if it has a subarray whihsatis�es the V-array proedure.Our Theorem 1.2 is now an easy orollary of the theorem below.Theorem 2.2. Every Banah spae satis�es the V-array proedure fornormalized bad uV-arrays.Theorem 2.2 implies Theorem 1.2 beause if a Banah spae X has prop-erty SV and not UV then there exists a normalized bad uV-array, and the
V-array proedure gives a weakly null sequene in BX whih has no uV-subsequene. The sequene must be seminormalized, so we ould pass to abasi subsequene on whih the norm of eah element is essentially onstant,and then renormalize. This would give a normalized weakly null sequenewith no uV-subsequene, ontraditing X being UV .The proof for Theorem 2.2 will be given �rst for the following speialase.Proposition 2.3. Let K be a ountable ompat metri spae. Then
C(K) satis�es the V-array proedure.The ase of a general Banah spae redues to this speial ase by thefollowing proposition.Proposition 2.4. Let (xn

i )∞i,n=1 be a normalized bad uV-array in a Ba-nah spae X. Then there exists a subarray (yn
i ) of (xn

i ) and a ountable
w∗-ompat subset K of BY ∗ , where Y := [yn

i ]∞i,n=1, suh that (yn
i |K) is a baduV-array in C(K).Theorem 2.2 is an easy onsequene of Propositions 2.3 and 2.4. Note thatProposition 2.4 is only proved for normalized bad uV-arrays. This makes theproof a little less tehnial.Before we prove anything about subarrays though, we need to �rst on-sider just a single weakly null sequene. One of the many nie propertiesenjoyed by the standard basis for ℓp, whih we denote by (ei), is that (ei)is 1-spreading. This is the property that every subsequene of (ei) is 1-equivalent to (ei). Spreading is of partiular importane beause it impliesthe following two properties whih are impliitly used in [KO2℄:(i) If (ei) C-dominates a sequene (xi) then (ei) C-dominates everysubsequene of (xi).



Weakly null sequenes with upper estimates 83(ii) If (ei) does not C-dominate a sequene (xi) then no subsequene of
(ei) C-dominates (xi).Throughout the paper, we will be passing to subsequenes and subarrays,so properties (i) and (ii) would be very useful for us. In our paper we have toget by without property (ii). On the other hand, for a given sequene thatdoes not have property (i), we may use the following two results, whih areboth easy onsequenes of Ramsey's theorem (f. [O℄), and will be needed insubsequent setions.Lemma 2.5. Let V = (vi)
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.Thus (ykn

)∞n=1 being C-dominated by V is ontradited.The following lemma is used for a given (xi) to �nd a subsequene (yi)and a onstant C ≥ 1 suh that (vi) C-dominates every subsequene of (yi)and that C is approximately minimal for every subsequene of (yi).



84 D. FreemanLemma 2.6. Let V = (vn)∞n=1 be a normalized bimonotone basi se-quene, (xn)∞n=1 be a sequene in the unit ball of some Banah spae X,and an ր ∞ with a1 = 0. If every subsequene of (xn)∞n=1 has a further sub-sequene whih is dominated by V then there exists a subsequene (yn)∞n=1of (xn)∞n=1 and an N ∈ N suh that every subsequene of (yn)∞n=1 is aN+1-dominated by V but not aN -dominated by V .Proof. By the previous lemma, we may assume by passing to a subse-quene that there exists C < ∞ suh that every subsequene of (xn)∞n=1is C-dominated by V . Let M ∈ N be suh that aM < C ≤ aM+1. For
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ω ⊂ AN .Every subsequene of (yn) := (xmn) is aN+1-dominated by V and not aN -dominated by V .3. Proof of Proposition 2.3. Proposition 2.3 will be shown to followeasily from a haraterization of ountable ompat metri spaes along withtrans�nite indution using the following result.Lemma 3.1. Let (Xn) be a sequene of Banah spaes eah satisfying the
V-array proedure. Then (
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n=1 Xn)c0 satis�es the V-array proedure.To prove Lemma 3.1 we will need the following lemma whih is statedin [KO2℄ for ℓp as Lemma 3.6. The proof for general V losely follows itsproof.Lemma 3.2. Let (Xn) be a sequene of Banah spaes eah satisfying the

V-array proedure and let (xn
i ) be a bad uV-array in some Banah spae X.Suppose that for all m ∈ N there is a bounded linear operator Tm : X → Xmwith ‖Tm‖ ≤ 1 suh that (Tmxm
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Weakly null sequenes with upper estimates 85Case 2: Case 1 is not satis�ed. Then for all m ∈ N and every subarray
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86 D. FreemanBy (10), for all n ∈ N we have(11) ∞
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i ) satis�es the V-array proedure, whih provesLemma 3.2.Now we are prepared to give a proof of Lemma 3.1. We follow the outlineof the proof of Lemma 3.5 in [KO2℄.Proof of Lemma 3.1. Let (xn

i ) be a bad uV-array in X = (
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Xn)c0 and
Rm : X → Xm be the natural projetions.



Weakly null sequenes with upper estimates 87Claim. For all M < ∞ there exist n, m ∈ N and a subsequene (yi)
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i=1of (xn

i )∞i=1 suh that (Rmyi)
∞
i=1 is an M -bad uV-sequene.Assuming the Claim, we an �nd (Nn)∞n=1 ∈ [N]ω, (m(n))∞n=1 ⊂ N, andsubsequenes (yn
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[N]ω, let Tn := Rm(n)|[yr
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∞
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∞
i=1 is a hereditary

M -uV-sequene for all m ≤ m1.For k > 1, given mk−1 ∈ N and a sequene (yk−1,i)
∞
i=1, hoose mk > mk−1so that supm>mk

‖Rmyk−1,k‖ ≤ 2−k, thus satisfying (13). Let (yk,i)
∞
i=1 be asubsequene of (yk−1,i)

∞
i=1 so that (Rmyk,i)

∞
i=1 is a hereditary M -uV-sequenefor all m ≤ mk, thus satisfying (14) and (15). This ompletes the indution.We de�ne yk = yk−1,k for all k ∈ N. By (14), (yk,i)

k
i=1 ∪ (yi)

∞
i=k+1 is asubsequene of (yk,i)

∞
i=1. Therefore, (15) shows that

(16) (vi)
∞
i=k+1 M -dominates (Rmyqi

)∞i=k+1 ∀m ≤ mk, (qi) ∈ [N]ω, k ∈ N.Sine (xn
i )∞i=1 is an (M + 3)-bad uV-sequene, there exists (αi) ∈ B[V ]suh that(17) ∥

∥

∥

∞
∑

i=1

αiyi

∥

∥

∥
> M + 3.



88 D. FreemanFor all k ∈ N and m ∈ (mi−1, mi] (with m0 = 0) we have
∥

∥

∥

∞
∑

i=1

Rm(αiyi)
∥

∥

∥
≤

k−1
∑

i=1

|αi| ‖Rmyi‖ + ‖Rm(αkyk)‖ +
∥

∥

∥

∞
∑

i=k+1

Rm(αiyi)
∥

∥

∥

≤
k−1
∑

i=1

2−i + 1 +
∥

∥

∥

∞
∑

i=k+1

αiRmyi

∥

∥

∥
by (13)

≤ 1 + 1 + M by (16),whih implies
∥

∥

∥

∞
∑

i=1

αiyi

∥

∥

∥
= sup

m∈N

∥

∥

∥

∞
∑

i=1

Rm(αiyi)
∥

∥

∥
≤ M + 2.This ontradits (17), so the Claim, and hene Lemma 3.1, is proved.The proof for Proposition 2.3 now follows in exatly the same way as in[KO2℄.Proof of Proposition 2.3. If K is a ountable ompat metri spae thenthere is a ountable limit ordinal α suh that C(K) is isomorphi to C(α)(see [BP℄). Thus if the V-array proedure fails for C(K), then there is a �rstlimit ordinal α suh that the V-array proedure fails for C(α). If α is the�rst in�nite ordinal then C(α) is isomorphi to c0 and satis�es the V-arrayproedure. Otherwise, we an �nd a sequene βn < α of limit ordinals suhthat C(α) is isomorphi to (

∑

C(βn))c0 . Thus C(α) satis�es the V-arrayproedure by Lemma 3.1.4. Proof of Proposition 2.4. The proof of Theorem 2.2 will be om-plete one we have proven Proposition 2.4. To make notation easier, we nowonsider the triangulated version (xn
i )1≤n≤i<∞ of the square array (xn

i )∞i,n=1.The bene�t of using a triangular array is that a natural sequential order anbe put on a triangular array. As the following proposition shows, we an thenpass to a basi sequene in that order.Lemma 4.1. For all ε > 0, a triangular bad uV-array (xn
i )n≤i admits atriangular subarray (yn

i )n≤i whih is basi in its lexiographial order (wherei is the �rst letter and n is the seond letter), and its basis onstant is notgreater than 1 + ε. In other words , y1
1 , y

1
2, y

2
2 , y

1
3, y

2
3, y

3
3 , y

1
4, . . . is a basi se-quene.Proof. The proof is an easy adaptation of the proof that a weakly nullsequene has a basi subsequene.The following lemma shows that we need to prove Proposition 2.4 onlyfor triangular arrays.



Weakly null sequenes with upper estimates 89Lemma 4.2. A square array satis�es the V-array proedure if and only ifits triangulated version does.Proof. If (yn
i )∞i,n=1 is a subarray of (xn

i )∞i,n=1 then (yn
i )1≤n≤i<∞ is a tri-angular subarray of (xn

i )1≤n≤i<∞. Also, if (yn
i )1≤n≤i<∞ is a triangular sub-array of (xn

i )1≤n≤i<∞ then (yn
i )1≤n≤i<∞ may be extended to a subarray of

(xn
i )∞i,n=1 by letting (yn

i )i<n = (xmn

i )i<n, where (mn) ∈ [N]ω is suh that
(yn

i )∞i=1 ⊂ (xmn

i )∞i=1 for all n ∈ N.We now show that applying the V-array proedure to (yn
i )∞i,n=1 and

(yn
i )1≤n≤i<∞ yields sequenes whih either both satisfy the V-array proe-dure or both fail the V-array proedure. For all n ∈ N let 0 ≤ |αn| ≤ 2−n,

zi =
∑i

n=1 αnyn
i , and yi =

∑∞
n=1 αnyn

i . For all m ∈ N if (βi)
∞
i=1 ∈ B[V ] then

∥

∥

∥

m
∑

i=1

βizi −
m

∑

i=1

βiyi

∥

∥

∥
=

∥

∥

∥

m
∑

i=1

βi

∞
∑

n=i+1

αnyn
i

∥

∥

∥

≤
m

∑

i=1

|βi|
∞

∑

n=i+1

|αn| ≤
m

∑

i=1

2−i < 1.

Thus supm∈N ‖
∑m

i=1 βizi‖ = ∞ if and only if supm∈N ‖
∑m

i=1 βiyi‖ = ∞,whih implies the laim.We now assume that the given bad uV-array (xn
i ) is labeled triangularlyand that it is a bimonotone basi sequene in its lexiographial order. Thisassumption is valid beause the properties of �being a bad uV-array� and�satisfying the V-array proedure� are invariant under isomorphisms. Wealso assume that (xn

i ) is normalized.The following theorem is our main tool used to onstrut the subarray
(yn

i ) of (xn
i ) and the ountable w∗-ompat set K ⊂ B[yn

i ] for Proposition 2.4.Theorem 4.3. Assume that (xn
i )1≤n≤i is a normalized triangular arrayin X suh that for every n ∈ N the sequene (xn

i )∞i=1 is weakly onverging to 0.Let V = (vi) be a normalized basi sequene and let (Cn) ⊂ [0,∞) and ε > 0.Then (xn
i ) has a triangular subarray (yn

i ) with the following property :For all m, s ∈ N and all m ≤ m1 < · · · < ms all (αj)
s
j=1 ∈ BV with

‖
∑s

j=1 αjy
m
mj

‖ ≥ Cn there is a g ∈ (2 + ε)BX∗ and (βj)
s
j=1 ∈ BV sothat

s
∑

j=1

βjg(ym
mj

) ≥ Cn,(18)
g(ym′

j ) = 0 whenever m′ ≤ j and j 6∈ {m1, . . . , ms}.(19)If we also assume that (xn
i )1≤n≤i is a bimonotone basi sequene in its lex-iographial order then there exists (ji) ∈ [N]ω so that we may hoose the



90 D. Freemansubarray (yn
i ) by setting yn

i = xn
ji

for all n ≤ i. In this ase we have theabove onlusion for some g ∈ (1 + ε)BY ∗ .Proof. After passing to a subarray using Lemma 4.1 we an assume that
(xn

i ) is a basi sequene in its lexiographial order and that its basis onstantdoes not exeed the value 1 + ε. We �rst renorm Z = [xn
i ] by a norm ||| · |||in the standard way so that ‖z‖ ≤ |||z||| ≤ (2 + 2ε)‖z‖ and so that (xn

i )is bimonotone in Z. We an therefore assume that (xn
i ) is a bimonotonebasis and need to show the laim of Theorem 4.3 for (1 + ε)BX∗ instead of

(2 + ε)BX∗ .Let (εk) ⊂ (0, 1) with ∑∞
k=1 kεk < ε/4. By indution on k ∈ N0 wehoose ik ∈ N and a sequene Lk ∈ [N]ω, and de�ne ym

j = xm
ij
for m ≤ k and

m ≤ j ≤ k so that the following onditions are satis�ed:(i) ik = minLk−1 < minLk and Lk ⊂ Lk−1, if k ≥ 1 (L0 = N).(ii) For all s, t ∈ N0, all 1 ≤ m ≤ k, all m ≤ m1 < · · · < ms ≤ k and
l0 < l1 < · · · < lt in Lk, if there is an f ∈ BX∗ with

(20)
s

∑

j=1

αjf(ym
mj

) +
t

∑

j=1

αj+sf(xm
lj ) ≥ Cm for some (αj)

s+t
j=1 ∈ B[V ]

(21) then there exists g ∈ BX∗ suh that(a) ∑s
j=1 βjg(ym

mj
)+

∑t
j=1 βj+sg(xm

lj
) ≥ Cm for some (βj)

s+t
j=1 ∈ B[V ],(b) |g(ym′

j )| < εj if m′ ≤ k and j ∈ {m′, . . . , k} \ {m1, . . . , ms},() |g(xm′

l0
)| < εk+1 if m′ ≤ k + 1(in the ase s = 0 ondition (b) is de�ned to be vauous; also notethat in () we allow m′ = k + 1).We �rst note for (ij) ∈ [N]ω that (xn

ij
)n≤j is a subsequene of (xn

j )n≤j intheir lexiographi orders. Thus (xn
ij
)n≤j is a bimonotone basi sequene inits lexiographi order.For k = 0, if f ∈ BX∗ satis�es (20) then g = P ∗

[xn
l1

,∞)f satis�es (21) byour bimonotoniity assumption.Assume k ≥ 1 and that we have hosen i1 < · · · < ik−1. We let ik =
minLk−1.Fix an in�nite M ⊂ Lk−1 \ {ik}, a positive integer m ≤ k, an integer
0 ≤ s ≤ k−m+1, and positive integers m ≤ m1 < · · · < ms ≤ k, and de�ne

A = A(m, s, (mj)
s
j=1) =

⋂

t∈N0

At, where
At =

{

(lj)
∞
j=0 ∈ [M ]ω

∣

∣

∣

∣

if (mj)
s
j=1 and (lj)

t
j=0 satisfy (20)then they also satisfy (21) }

.



Weakly null sequenes with upper estimates 91For t ∈ N the set At is losed as a subset of 2N in the produt topology,thus A is losed, and thus Ramsey. We will show that there is an in�nite
L ⊂ M so that [L]ω ⊂ A. One we have veri�ed that laim we an �nishour indution step by applying that argument suessively to all hoies of
m ≤ k, 0 ≤ s ≤ k and m ≤ m1 < · · · < ms ≤ k, as there are only �nitelymany.Assume our laim is wrong and, using Ramsey's theorem, we ould �ndan L = (lj)

∞
j=1 so that [L]ω ∩ A = ∅.Let n ∈ N be �xed, and let p ∈ {1, . . . , n}. Then L(p) = {lp, ln+1, . . .} isnot in A and we an hoose tn ∈ N0, (αn

j )tn+s
j=1 and fn ∈ BX∗ so that (20) issatis�ed (for (ln+1, . . . , ll+t) replaing (l1, . . . , lt) and lp replaing l0) but forno (βj)

s+tn
j=1 ∈ B[V ] does ondition (21) hold. By hoosing tn to be minimalso that (20) is satis�ed, we an have tn, (αn

j )tn+s
j=1 and fn independent of p.We now show that there is a gn ∈ BX satisfying (a) and (b) of (21).Let k′ = max

{

m − 1 ≤ i ≤ k | i 6∈ {m1, . . . , ms}
}. If k′ ≤ m then

{m1, . . . , ms} = {k′ + 1, k′ + 2, . . . , k} and by our assumed bimonotoniity
gn := P ∗

[ym
k′+1

,∞)fn ∈ B∗
X satis�es (a) and (b) of (21). If k′ > m let 0 ≤ s′ ≤ ssuh that m1 < · · · < ms′ < k′, and apply the k′ − 1 step of the indutionhypothesis to fn, (αn

j )tn+s
j=1 , m ≤ m1 < · · · < ms′ (replaing m ≤ m1 <

· · · < ms), and k′ < k′ + 1 < · · · < ms < ln+1 < · · · < ltn (replaing
lp < ln+1 < · · · < ltn) to obtain a funtional gn ∈ BX∗ whih satis�es (a)and (b) of (21).Sine gn annot satisfy all three onditions of (21) (for any hoie of
1 ≤ p ≤ n), we dedue that |gn(x

mp

lp
)| ≥ εk+1 for some hoie of mp ∈

{1, . . . , k + 1}.Let g be a w∗ luster point of (gn)n∈N. As the set {1, . . . , k + 1} is �nite,for all p ∈ N0 we have |g(x
mp

lp
)| ≥ εk+1 for some mp ∈ {1, . . . , k + 1}. Thisimplies there exists 1 ≤ m ≤ k + 1 suh that |g(xm

lp
)| ≥ ε for in�nitely many

p ∈ N. This is a ontradition with the sequene (xm
li

)∞i=1 being weakly null.Our laim is veri�ed, and we are able to ful�ll the indution hypothesis.The onlusion of our theorem now follows by the following perturba-tion argument. If we have n ≤ i1 < · · · < iq and (αj)
q
j=1 ∈ BV with

‖
∑q

j=1 αjy
n
ij
‖ ≥ Cn, then there exists f ∈ BX∗ so that ∑q

j=1 αjf(yn
ij
) ≥

Cn. Our onstrution gives an h ∈ BX∗ with ∑q
j=1 αjh(yn

ij
) ≥ Cn and

|h(ym
j )| < εj if m ≤ q and j ∈ {m′, . . . , k} \ {i1, . . . , iq}. Beause (yn

i ) isbimonotone, we may assume that h(yn
i ) = 0 for all i ≥ n with i > iq.We perturb h by small multiples of the biorthogonal funtionals of (yn

i ) toahieve g ∈ X∗ with g(yn
i ) = h(yn

i ) for i ∈ {i1, . . . , iq} and g(yn
i ) = 0 for

i 6∈ {i1, . . . , iq}. Thus g satis�es (18) and (19). All that remains is to hekthat g ∈ (1 + ε)BX∗ . Beause (yn
i ) is normalized and bimonotone, we an



92 D. Freemanestimate ‖g‖ as follows:
‖g‖ ≤ ‖h‖ + ‖g − h‖ ≤ 1 +

iq−1
∑

j=1

jεj < 1 +
ε

4
.We are now prepared to give the proof of Proposition 2.4. We follow thesame outline as the proof given in [KO2℄ for Proposition 3.4.Proof of Proposition 2.4. Let (xn

i ) be a normalized bad uV-array in Xand let Mn, for n ∈ N, be hosen so that the sequene (xn
i )∞i=n is an Mn-bad

uV-sequene and limn→∞ Mn = ∞. By Lemma 4.2 we just need to onsiderthe triangular array (xn
i )n≤i. By passing to a subarray using Lemma 4.1 andthen renorming, we may assume that (xn

i )n≤i is a normalized bimonotonebasi sequene in its lexiographial order.We apply Theorem 4.3 for ε = 1 and (Cn) = (Mn) to obtain a subarray
(yn

i )n≤i that satis�es onditions (18) and (19). Moreover, (yn
i ) in its lexi-ographial order is a subsequene of (xn

i ) in its lexiographial order, andthus is bimonotone. Furthermore, (yn
i )∞i=n is a subsequene of (xn

i )∞i=n for all
n ∈ N. We write Y = [yn

i ]n≤i.Let F (n) be a �nite (1/2n2n)-net in [−2, 2] whih ontains the points 0,
−2, and 2. Whenever we have a funtional g ∈ 2BX∗ whih satis�es ondi-tions (18) and (19) we may perturb g by small multiples of the biorthogonalfuntions of (yn

i )n≤i to obtain f ∈ 3BX∗ whih satis�es (18), (19), and thefollowing new ondition:(22) f(yn
i ) ∈ F (n) for all n ≤ i.We now start the onstrution of K. Let Y = [yn

i ]n≤i and m ∈ N. We de�ne
Lm =











(k1, . . . , kq)

∣

∣

∣

∣

∣

∣

∣

m ≤ k1 < · · · < kq,

‖
∑q−1

i=1 αiy
m
ki
‖ ≤ Mm for all (αi) ∈ BV ,

‖
∑q

i=1 αiy
m
ki
‖ > Mm for some (αi) ∈ BV











.

It is important to note that if (ki) ∈ [N]ω and k1 ≥ m then there is a unique
q ∈ N suh that (k1, . . . , kq) ∈ Lm.Whenever ~k = (k1, . . . , kq) ∈ Lm, an appliation of Theorem 4.3 andthen perturbation gives a funtional f ∈ 3BY ∗ whih satis�es onditions(18), (19), and (22). In partiular, ∑q

i=1 f(αiy
m
ki

) > Mm for some (αi) ∈ BV .We denote f/3 by f~k
and let, for any n ∈ N,
Kn = {Q∗

mf~k
| m ∈ N, ~k ∈ Ln}.Here Qm denotes the natural norm 1 projetion from Y onto [(yn

i )]1≤n≤i≤m.Finally, we de�ne
K =

∞
⋃

n=1

Kn ∪ {0}.



Weakly null sequenes with upper estimates 93We �rst show that (yn
i |K)n≤i is a bad uV-array as an array in Cb(K).Fix an n0 ∈ N. Then (yn0

i )∞i=n0
is an Mn0

-bad uV-sequene. Consequently,given a subsequene (yn0

ki
)∞i=1 of (yn0

i )∞i=n0
we have ~k := (k1, . . . , kq) ∈ Ln0for some q ∈ N. By (22), f~k

= Q∗
q+1f~k

and thus f~k
∈ Kn0

⊂ K. Now,
∑q

i=1 f~k
(αiy

n0

ki
) > Mn0

/3 for some (αi) ∈ BV , and so (yn0

i |K)∞i=n0
is an

(Mn0
/3)-bad sequene in Cb(K), thus proving that (yn

i |K)n≤i is a bad uV-array.
K is obviously a ountable subset of BY ∗ . Sine Y is separable, K is

w∗-metrizable. Thus we need to show that K is a w∗-losed subset of BY ∗in order to �nish the proof.Let (gj) ⊂ K and assume that (gj) onverges w∗ to some g ∈ BY ∗ . Wehave to show that g ∈ K. Every gj is of the form Q∗
mj

f~kj
for some mj ∈ N,

~kj ∈ Lnj
, and some nj ∈ N.By passing to a subsequene of (gj), we may assume that either nj → ∞as j → ∞, or there is an n ∈ N suh that nj = n for all j ∈ N. We will startwith the �rst alternative. Let ij be the �rst element of ~kj . Sine ij ≥ nj , wehave ij → ∞. Also, f~kj

(yn
i ) = 0 for all n ≤ i < ij. Thus f~kj

→ 0 in the w∗topology as j → ∞, so g = 0 ∈ K.From now on we assume that there is an n ∈ N suh that ~kj ∈ Lnfor all j ∈ N. Sine Ln is relatively sequentially ompat as a subspae of
{0, 1}N endowed with the produt topology, we may assume by passing toa subsequene of (gj) that ~kj → ~k for some ~k ∈ Ln, the losure of Ln in
{0, 1}N.We now show that ~k is �nite. Suppose to the ontrary that ~k = (ki)

∞
i=1.As ~k ∈ Ln, for all r ∈ N there exists Nr ∈ N suh that ~kj = (k1, . . . , kr,

l1, . . . , ls) for some l1, . . . , ls for all j ≥ Nr. Beause ~kj ∈ Ln, we have
k1 ≥ n, whih implies that there exists q ∈ N suh that (k1, . . . , kq) ∈ Ln.By uniqueness, Ln does not ontain any sequene extending (k1, . . . , kq).Therefore, ~kNq+1

= (k1, . . . , kq+1, l1, . . . , ls) 6∈ Ln, a ontradition.Sine BY ∗ is w∗-sequentially ompat, we may assume that f~kj
onverges

w∗ to some f ∈ BY ∗ . We laim that f ∈ K. To prove this we �rst show that
Q∗

mf ∈ K for all m ∈ N. By (19) and (22) the set {Q∗
mf~kj

(yn
i ) | j ∈ N,

1 ≤ n ≤ i} has only �nitely many elements. Sine Q∗
mf~kj

→ Q∗
mf as j → ∞we obtain Q∗

mf~kj
= Q∗

mf for j ∈ N large enough. In partiular, Q∗
mf ∈ K.Next let q = max~k. Sine ~kj → ~k and ~k is �nite, we have Q∗

qf = f and thus
f ∈ K.Now we show that g ∈ K. By passing again to a subsequene of (gj) wean assume that either mj ≥ max~k for all j ∈ N, or there exists m < max~ksuh that mj = m for all j ∈ N. If the �rst ase ours, then gj = Q∗

mj
f~kj



94 D. Freemanonverges w∗ to f , and hene g = f ∈ K. If the seond ase ours, then
gj = Q∗

mf~kj
onverges w∗ to Q∗

mf , and hene g = Q∗
mf ∈ K.

5. Examples. In previous setions, we introdued for any seminormal-ized basi sequene (vi) the property U(vi), and then proved that if a Banahspae X is U(vi) then there exists a onstant C ≥ 1 suh that X is C-U(vi).As Knaust and Odell proved that result for the ases in whih (vi) is thestandard basis for c0 or ℓp with 1 ≤ p < ∞, we need to show that our resultis not a orollary of theirs. For example, if (vi) is a basis for ℓp ⊕ ℓq with
1 < q < p < ∞ whih onsists of the union of the standard bases for ℓp and
ℓq then a Banah spae is U(vi) or C-U(vi) if and only if X is Uℓp

or C-Uℓprespetively. Thus the result for this partiular (vi) follows from [KO2℄. Wemake this idea more formal by de�ning the following equivalene relation:Definition 5.1. If (vi) and (wi) are normalized basi sequenes then wewrite (vi) ∼U (wi) (or (vi) ∼CU (wi)) if eah re�exive Banah spae is U(vi)(or C-U(vi)) if and only if it is U(wi) (or C-U(wi)).We de�ne the equivalene relation stritly in terms of re�exive spaes toavoid the unpleasant ase of ℓ1. Beause ℓ1 does not ontain any normalizedweakly null sequene, ℓ1 is trivially U(vi) for every (vi). This is ounter tothe spirit of what it means for a spae to be U(vi). By onsidering re�exivespaes, we avoid ℓ1, and we also make the propositions inluded in this setionformally stronger. Re�exive spaes are also espeially nie when onsideringproperties of weakly null sequenes beause the unit ball of a re�exive spaeis weakly sequentially ompat. That is, every sequene in the unit ball of are�exive spae has a weakly onvergent subsequene.In order to show that our result is not a orollary of the theorem ofKnaust and Odell, we give an example of a basi sequene (vi) suh that
(vi) 6∼U (ei) where (ei) is the standard basis for c0 or ℓp with 1 ≤ p < ∞.To this end we onsider a basis (vi) for a re�exive Banah spae X withthe property that ℓp is not U(vi) for any 1 < p < ∞, but that X is U(vi)and not Uc0 . In partiular, we will be interested in the dual of the followingspae.Definition 5.2. Tsirelson's spae, T , is the ompletion of c00 under thenorm satisfying the impliit relation

‖x‖ = ‖x‖∞ ∨ sup
n∈N, (Ei)n

i=1
⊂[N]ω, n≤E1<···<En

1

2

n
∑

i=1

‖Ei(x)‖.

(ti) is the unit vetor basis of T and (t∗i ) are the biorthogonal funtionalsto (ti).



Weakly null sequenes with upper estimates 95Tsirelson onstruted the dual of T as the �rst example of a Banahspae whih does not ontain c0 or ℓp for any 1 ≤ p < ∞ [T℄. Though weare more interested in T ∗ and (t∗i ), we use the impliit de�nition of T (whihwas formulated by Figiel and Johnson in [FJ℄) as it is nie to work with. Theproperties of (t∗i ) that will be most useful for us are that (t∗i ) dominates allof its normalized blok bases, and has a spreading model equivalent to thestandard basis for c0. The sequenes (ti) and (t∗i ) have the further interestingproperty of being blok stable. Casazza, Johnson, and Tzafriri showed in[CJT℄ that (ti) has the property that if (xi) is a normalized blok basisof (ti) then (xi) is equivalent to (tni
) where ni ∈ supp(xi) for all i ∈ N. Theorresponding statement for (t∗i ) follows from the result for (ti). As we havede�ned T , but wish to know about sequenes in T ∗, we need the followingproposition whih relates sequenes in a spae to sequenes in its dual.Proposition 5.3. If (vi) and (xi) are normalized basi sequenes, then:(i) (vi) dominates (xi) if and only if (v∗i ) is dominated by (x∗

i ).(ii) If (vi) is unonditional , then (vi) dominates all of its normalizedblok bases if and only if (v∗i ) is dominated by all of its normalizedblok bases.Proof. Without loss of generality we may assume that (vi) and (xi) arebimonotone. We assume that (vi) C-dominates (xi) and let (ai) ∈ c00. Be-ause (vi) is bimonotone, there exists (bi) ∈ c00 suh that ∑

aiv
∗
i (

∑

bivi) =
‖
∑

aiv
∗
i ‖ and ‖

∑

bivi‖ = 1. We have
∥

∥

∥

∑

aiv
∗
i

∥

∥

∥
=

∑

aibi =
∑

aix
∗
i

(

∑

bixi

)

≤ C
∥

∥

∥

∑

aix
∗
i

∥

∥

∥
.Thus (v∗i ) is C-dominated by (x∗

i ). The onverse is true by duality in thesense that we replae the roles of (vi) and (xi) by (x∗
i ) and (v∗i ) respetively.We �nd that (x∗∗

i ) is equivalent to (xi) and (v∗∗i ) is equivalent to (vi) andthus the onverse follows and hene (i) is proven.After possibly renorming, we may assume that (vi) is 1-unonditional.For the �rst diretion in (ii), we assume that (vi) C-dominates all of itsnormalized blok bases. Let ai ∈ c00 and (w∗
i ) be a normalized blok basisof (v∗i ). As (vi) is bimonotone, there exists a normalized blok basis (wi)of (vi) be suh that w∗

i (wj) = δij . Let x ∈ S[vi] be suh that ∑

aiv
∗
i (x) =

‖
∑

aiv
∗
i ‖. We now have

∥

∥

∥

∑

aiv
∗
i

∥

∥

∥
=

∑

aiv
∗
i (x) =

∑

aiw
∗
i

∑

v∗j (x)wj

≤
∥

∥

∥

∑

aiw
∗
i

∥

∥

∥

∥

∥

∥

∑

v∗j (x)wj

∥

∥

∥

≤ C
∥

∥

∥

∑

aiw
∗
i

∥

∥

∥

∥

∥

∥

∑

v∗j (x)vj

∥

∥

∥
= C

∥

∥

∥

∑

aiw
∗
i

∥

∥

∥
.Thus (v∗i ) is C-dominated by (w∗

i ), and we have proven the �rst diretion.



96 D. FreemanFor the onverse, assume that (v∗i ) is C-dominated by all of its normalizedblok bases. Let (ai) ∈ c00 and (wi) be a normalized blok basis of (vi). Thereexists f ∈ B[vi]∗ suh that f(
∑

aiwi) = ‖
∑

aiwi‖. Choose (kn) ∈ [N]ω suhthat supp(wn) ⊂ [kn, kn+1) for all n ∈ N. There is a normalized blok basis
(fi) of (v∗i ) and (bi) ∈ c00 suh that f =

∑

bifi and supp(fn) ⊂ [kn, kn+1) forall n ∈ N. As (vi) is 1-unonditional, we may assume that ai, bi, fi(wi) ≥ 0.This gives ∑

aibifi(wi) ≤
∑

aibi, as fi(wi) ≤ 1. We now have
∥

∥

∥

∑

aiwi

∥

∥

∥
=

(

∑

bifi

)(

∑

aiwi

)

≤
(

∑

biv
∗
i

)(

∑

aivi

)

≤ C
∥

∥

∥

∑

aivi

∥

∥

∥
.Hene,(vi) C-dominates (wi) and (ii) is proven.We will use Proposition 5.3 together with some basi properties of (ti)to prove the following proposition.Proposition 5.4. (t∗i ) 6∼U (ei), where (ei) is the standard basis for c0or ℓp for 1 ≤ p < ∞.Proof. It easily follows from the de�nition that (ti) is an unonditionalnormalized basi sequene and that (ti) is dominated by eah of its nor-malized blok bases. Also, the spreading model for (ti) is isomorphi to thestandard ℓ1 basis. By Proposition 5.3, (t∗i ) is an unonditional basi sequenethat dominates all of its blok bases and has its spreading model isomorphito the standard basis for c0. Furthermore, T ∗ is re�exive beause (t∗i ) is un-onditional and T ∗ does not ontain an isomorphi opy of c0 or ℓ1. As (t∗i )has the standard basis for c0 as its spreading model, ℓp is not U(t∗i ) for all

1 < p < ∞. Therefore (t∗i ) 6∼U ℓp for all 1 ≤ p < ∞. As (t∗i ) dominates allof its normalized blok bases and every normalized weakly null sequene in
T ∗ has a subsequene equivalent to a normalized blok basis of (t∗i ), it fol-lows T ∗ is U(t∗i ). Sine T ∗ does not ontain c0 isomorphially, T ∗ is not Uc0 .Therefore, (t∗i ) 6∼U c0.We have shown that (t∗i ) 6∼ (ei) where (ei) is the usual basis for c0 or
ℓp for 1 ≤ p < ∞, but we an atually show something muh stronger thanthis. One of the main properties of ℓp used in [KO2℄ is that ℓp is subsym-metri. If for eah basi sequene (vi) there existed a onstant C ≥ 1 and asubsymmetri basi sequene (wi) suh that (vi) ∼CU (wi) then atually the�rst half of [KO2℄ would apply to all basi sequenes without hanging any-thing. The following example shows in partiular that this is not true evenfor the weaker ondition of spreading (the property that all subsequenes areequivalent).Proposition 5.5. If (vi) is a normalized spreading basi sequene, then
(vi) 6∼U (t∗i ).In general, it an be fairly di�ult to hek if a Banah spae is U(vi), asevery normalized weakly null sequene in the spae needs to be heked. In



Weakly null sequenes with upper estimates 97ontrast to this, it is very easy to hek if T ∗ is U(vi). This is beause (ti) isdominated by all of its blok bases, and thus by Proposition 5.3, T ∗ is U(vi)if and only if (vi) dominates a subsequene of (t∗i ). In proving Proposition5.5 we will arry this idea further by onsidering a lass of spaes eah ofwhih has a subsymmetri basis (ei) suh that (ei) is dominated by all ofits normalized blok bases. The additional ondition of subsymmetry impliesthat [e∗i ] is U(vi) if and only if (vi) dominates (e∗i ). Hene, we need to hekonly one sequene instead of all weakly null sequenes in [e∗i ].We onsider generalizations of the spaes introdued by Shlumpreht[S℄ as the �rst known arbitrarily distortable Banah spaes. We put lessrestrition on the funtion f given in the following proposition, but we alsoinfer less about the orresponding Banah spae. The tehniques from [S℄are used to prove the following proposition.Proposition 5.6. Let f : N → [1,∞) inrease to ∞, f(1) = 1 < f(2),and limn→∞ n/f(n) = ∞. If X is de�ned as the losure of c00 under thenorm ‖ · ‖ whih satis�es the impliit relation
‖x‖ = ‖x‖∞ ∨ sup

m≥2, E1<···<Em

1

f(m)

m
∑

j=1

‖Ej(x)‖ for all x ∈ c00,then X is re�exive.Proof. Let (en) denote the standard basis for c00. It is straightforward toshow that the norm ‖ · ‖ as given in the statement of the proposition exists,as well as that (en) is a normalized, 1-subsymmetri and 1-unonditionalbasis for X. Furthermore, (en) is 1-dominated by all of its normalized blokbases. We will prove that X is re�exive by showing that (en) is boundedlyomplete and shrinking.We �rst prove that (en) is boundedly omplete. As (en) is unonditional,if (en) is not boundedly omplete then it has some normalized blok basiswhih is equivalent to the standard c0 basis. However, (en) is 1-dominatedby all its normalized blok bases, so (en) is also equivalent to the stan-dard c0 basis. Hene supN∈N ‖
∑N

n=1 en‖ < ∞. This ontradits the fat that
‖
∑N

n=1 en‖ ≥ N/f(N) → ∞. Thus (en) is boundedly omplete.We now assume that (en) is not shrinking. As (en) is unonditional, ithas a normalized blok basis (xn) whih is equivalent to the standard basisfor ℓ1. We will use James' bloking lemma [J℄ to show that this leads to aontradition. In one of its more basi forms, James' bloking lemma statesthat if (xn) is equivalent to the standard basis for ℓ1 and ε > 0 then (xn) hasa normalized blok basis whih is (1 + ε)-equivalent to the standard basisfor ℓ1. Let 0 < ε < 1
2(f(2)−1). By passing to a normalized blok basis usingJames' bloking lemma, we may assume that (xn) is (1 + ε)-equivalent tothe standard basis for ℓ1, and thus any normalized blok basis of (xn) will



98 D. Freemanalso be (1 + ε)-equivalent to the standard basis for ℓ1. Let εn > 0 be suhthat ∑∞
n=1 εn < ε.We denote by ‖ · ‖m the norm on X whih satis�es

‖x‖m = sup
E1<···<Em

1

f(m)

m
∑

j=1

‖Ej(x)‖ for all x ∈ c00.We will onstrut by indution on n ∈ N a normalized blok basis (yi) of (xi)suh that for all m ∈ N we have(23) if ‖yj‖m > εj for some 1 ≤ j < n, then ‖yn‖m <
1 + εn

f(m)
.For n = 1 we let y1 = x1, and note that (23) is vauously satis�ed.We now assume that we are given n ≥ 1 and a �nite blok sequene

(yi)
n
i=1 of (xi) whih satis�es (23). We have

lim
m→∞

‖yi‖m ≤ lim
m→∞

# supp(yi)

f(m)
= 0(where supp(yi) denotes the support of yi). Thus, there exists N > supp(yn)suh that ‖yi‖m < εi for all 1 ≤ i ≤ n and all m ≥ N . Using James' blok-ing lemma, we blok (xi)

∞
i=N into (zi)

∞
i=1 suh that (zi)

∞
i=1 is (1 + εn+1/3)-equivalent to the standard ℓ1 basis. Let M ≥ 6N/εn+1 and de�ne

yn+1 =
1

‖
∑M

i=1 zi‖

M
∑

i=1

zi.Let m ∈ N be suh that ‖yj‖m > εj for some 1 ≤ j ≤ n. By our hoie of
N ∈ N, we have m < N . There exist disjoint intervals E1 < · · · < Em in Nand integers 1 = k0 ≤ k1 ≤ · · · ≤ km suh that

f(m)‖yn+1‖m =
1

‖
∑M

i=1 zi‖

m
∑

i=1

∥

∥

∥
Ei

ki
∑

j=ki−1

zj

∥

∥

∥

≤
1 + εn+1/3

M

m
∑

i=1

(

‖Eizki−1
‖ +

∥

∥

∥

ki−1
∑

j=ki−1+1

zj

∥

∥

∥
+ ‖Eizki

‖
)

≤
1 + εn+1/3

M
(M + 2m) < (1 + εn+1/3)(1 + 2N/M)

≤ (1 + εn+1/3)(1 + εn+1/3) < 1 + εn+1.Hene, the indution hypothesis is satis�ed.We now show that property (23) leads to a ontradition with (yi) being
(1 + ε)-equivalent to the standard ℓ1 basis. Let n ∈ N. For some m ≥ 2 wehave ‖

∑n
i=1 yi/n‖ = ‖

∑n
i=1 yi/n‖m. By (23) there exists 1 ≤ j ≤ n + 1 suhthat ‖yi‖m < εi for all 1 ≤ i < j and f(m)‖yi‖m < 1 + εi for all j < i ≤ n.
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∥

∥

∥

∥

n
∑

i=1

yi

n

∥

∥

∥

∥

=

∥

∥

∥

∥

n
∑

i=1

yi

n

∥

∥

∥

∥

m

≤
1

n

j−1
∑

i=1

‖yi‖m +
1

n
‖yj‖m +

1

n

n
∑

i=j+1

‖yi‖m

<
1

n

j−1
∑

i=1

εi +
1

n
+

1

nf(m)

n
∑

i=j+1

1 + εi <
ε

n
+

1

n
+

1

f(2)
+

ε

nf(2)

<
ε

n
+

1

n
+

1

1 + 2ε
+

ε

n(1 + 2ε)
.Thus infn∈N ‖

∑n
i=1 yi/n‖< 1/(1+2ε). This ontradits the fat that (yi) is

(1+ε)-equivalent to the standard ℓ1 basis. Hene (ei) is shrinking, and X isre�exive.Using the re�exive spaes presented in Proposition 5.6, we an prove thefollowing lemma. Proposition 5.5 will then follow easily.Lemma 5.7. If (vi) is a 1-suppression unonditional normalized basisequene suh that (vki
) dominates (vi) for all (ki) ∈ [N]ω and (vi) is notequivalent to the unit vetor basis for c0, then there exists a re�exive Banahspae X whih is U(vi) and not U(t∗i ).Proof. There exists K ≥ 1 suh that (vki

) K-dominates (vi) for all (ki) ∈
[N]ω. We de�ne 〈·〉 to be the norm on (vi) determined by

〈

∑

i∈N

aiv
∗
i

〉

= sup
(ki)∈[N]ω

∥

∥

∥

∑

i∈N

aiv
∗
ki

∥

∥

∥
for all (ai) ∈ c00,where (v∗i ) is the sequene of biorthogonal funtionals to (vi). The norm 〈·〉is K-equivalent to the original norm ‖ · ‖. Furthermore, under the new norm

(vki
) 1-dominates (vi) for all (ki) ∈ [N]ω. Thus after possibly renorming, wemay assume that K=1.Let ε > 0 and εi ց 0 be suh that ∏

(1 − εi)
−1 < 1 + ε. Sine (vi) isunonditional and is not equivalent to the unit vetor basis of c0, there exists

(Nk) ∈ [N]ω suh that for all k ∈ N we have Nk ≥ k2 and(24) ∥

∥

∥

Nk
∑

i=1

vi

∥

∥

∥
>

k + 1

εk+1
.We de�ne the funtion f : N → [1,∞) by

f(n) =







1 if n = 1,
1/(1 − ε1) if 1 < n ≤ N1,
k + 1 if Nk < n ≤ Nk+1 for k ∈ N.We denote by ||| · ||| the norm on c00 determined by the following impliitrelation:
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|||x||| = ‖x‖∞ ∨ sup

m≥2, E1<···<Em

1

f(m)

m
∑

j=1

|||Ej(x)||| for all x ∈ c00.The ompletion of c00 under the norm ||| · ||| is denoted by X, and itsstandard basis is denoted by (ei). We have Nk > k2, whih implies that
limk→∞ k/f(k) = ∞ and hene X is re�exive by Proposition 5.5.We now show by indution on k ∈ N that if (ai)

Nk

i=1 ∈ c00 then(25) ( k
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
≥

∥

∥

∥

Nk
∑

i=1

aiv
∗
i

∥

∥

∥
.For k = 1, we have

1

1 − ε1

∣

∣

∣

∣

∣

∣

∣

∣

∣

N1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
≥

N1
∑

i=1

|ai| ≥
∥

∥

∥

N1
∑

i=1

aiv
∗
i

∥

∥

∥
.Thus (25) is satis�ed. Now we assume that k ∈ N and that (25) holds for k.Let (ai)

Nk+1

i=1 ⊂ R be suh that ‖∑Nk+1

i=1 aiv
∗
i ‖ = 1. There exists (βi)

Nk+1

1=1

⊂ R suh that ∑

βiai =‖
∑

βivi‖=1. Let I ={j ∈N | |βj| < εk+1/(k + 1)}.If ∑

i∈I |ai| ≥ k + 1 then
∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk+1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
≥

1

k + 1

∑

i∈I

|ai| ≥ 1 =
∥

∥

∥

∑

aiv
∗
i

∥

∥

∥and we are done. Therefore we assume that ∑

i∈I |ai| < k + 1, and thus
∑

i∈I

βiai ≤
∑

i∈I

εk+1

k + 1
|ai| < εk+1.We let {ji}

♯Ic

i=1 = Ic, and laim that ♯Ic ≤ Nk. Indeed, if we assume to theontrary that ♯Ic > Nk, then
1 ≥

∥

∥

∥

♯Ic

∑

i=1

βji
vji

∥

∥

∥
≥

∥

∥

∥

♯Ic

∑

i=1

βji
vi

∥

∥

∥
≥

εk+1

k + 1

∥

∥

∥

Nk
∑

i=1

vi

∥

∥

∥
>

εk+1

k + 1

k + 1

εk+1
= 1.The �rst inequality is due to (vi) being 1-suppression unonditional, and theseond to (vi) being 1-dominated by (vji

). Thus we have a ontradition andour laim that ♯Ic ≤ Nk is proven. Now
1 =

∑

βiai =
∑

I

βiai +
∑

Ic

βiai

< εk+1 +
∥

∥

∥

♯Ic

∑

i=1

aji
v∗ji

∥

∥

∥
≤ εk+1 +

∥

∥

∥

♯Ic

∑

i=1

aji
v∗i

∥

∥

∥

≤ εk+1 +

( k
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

♯Ic

∑

i=1

aji
ei

∣

∣

∣

∣

∣

∣

∣

∣

∣
by indution hypothesis

≤ εk+1 +

( k
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk+1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
by 1-subsymmetry.
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1 ≤

( k+1
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk+1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
.Thus the indution hypothesis is satis�ed.We see that (ei) dominates (v∗i ), and hene (vi) dominates (e∗i ). As (e∗i )is subsymmetri and dominates all its blok bases, [e∗i ] is U(vi). Sine (e∗i ) isweakly null and is not equivalent to the unit vetor basis of c0, we deduethat [e∗i ] is not U(t∗i ).The proof of Proposition 5.5 now follows easily.Proof of Proposition 5.5. Let (vi) be a normalized C-spreading basisequene. Beause (vi) is spreading, Rosenthal's ℓ1 theorem implies that (vi)must be either equivalent to the standard basis for ℓ1, or weakly Cauhy. Inthe �rst ase, it is obvious that (vi) 6∼U (t∗i ) as every Banah spae is Uℓ1 .Thus we assume that (vi) is weakly Cauhy. The di�erene sequene de�nedby (wi) = (v2i−1−v2i) is weakly null. (wi) is weakly null and spreading, andis thus unonditional. For all (ai) ∈ c00 we have

∥

∥

∥

∑

aiwi

∥

∥

∥
≤

∥

∥

∥

∑

aiv2i−1

∥

∥

∥
+

∥

∥

∥

∑

aiv2i

∥

∥

∥
≤ 2C

∥

∥

∥

∑

aivi

∥

∥

∥
.Thus, (vi) dominates (wi). If (wi) is not equivalent to the standard basis for

c0 then, by Lemma 5.7, there exists a Banah spae whih is U(wi) and hene
U(vi), but is not U(t∗i ). If (wi) is equivalent to the standard basis for c0 then

sup
n

∥

∥

∥

n
∑

i=1

(−1)n−1vi

∥

∥

∥
= sup

n

∥

∥

∥

n
∑

i=1

wi

∥

∥

∥
< ∞.However, supn ‖

∑n
i=1(−1)nt∗ki

‖ = ∞ for all (ki) ∈ [N]ω. Thus T ∗ is not U(vi),and (vi) 6∼U (t∗i ).We also onsidered the question: �Does there exist a basi sequene (vi)suh that (vi) 6∼U (wi) for any unonditional (wi)?�. This is a muh harderquestion, whih is urrently open. Neither the summing basis for c0 nor thestandard basis for James' spae give a solution, as these are overed by thefollowing proposition:Proposition 5.8. If (vi) is a basi sequene suh that supn∈N‖
∑n

i=1εivi‖
< D for some (εi) ∈ {−1, 1}N and onstant D < ∞, then (vi) ∼U c0.Proof. Let X be a C-UV Banah spae, and let (xi) ∈ SX be weakly null.By Ramsey's theorem, we may assume by passing to a subsequene that (vi)
C-dominates every subsequene of (xi). By a theorem of John Elton [E℄, thereexists K < ∞ and a subsequene (yi) of (xi) suh that if (ai)

∞
i=1 ∈ [−1, 1]Nand I ⊂ {i | |ai| = 1} is �nite then ‖

∑

I aiyi‖ ≤ K supn∈N ‖
∑n

i=1 εiyi‖. Thus



102 D. Freemanfor all A ∈ [N]<ω we have
∥

∥

∥

∑

i∈A

εiyi

∥

∥

∥
≤ K sup

n∈N

∥

∥

∥

n
∑

i=1

εiyi

∥

∥

∥
≤ KC sup

n∈N

∥

∥

∥

n
∑

i=1

εivi

∥

∥

∥
< KCD.As this is true for all A ∈ [N ]<ω, (yi) is equivalent to the unit vetor ba-sis of c0. Every normalized weakly null sequene in X has a subsequeneequivalent to c0, so X is Uc0 .

Referenes[BP℄ C. Bessaga and A. Peªzy«ski, Spaes of ontinuous funtions IV, Studia Math.19 (1960), 53�62.[CJT℄ P. G. Casazza, W. B. Johnson, and L. Tzafriri, On Tsirelson's spaes, Israel J.Math. 47 (1984), 81�98.[E℄ J. Elton, Weakly null normalized sequenes in Banah spaes, dissertation, YaleUniv., 1978.[FJ℄ T. Figiel and W. B. Johnson, A uniformly onvex Banah spae whih ontainsno ℓp, Compos. Math. 29 (1974), 179�190.[J℄ R. C. James, Uniformly nonsquare Banah spaes, ibid. 80 (1964), 542�550.[JO℄ W. B. Johnson and E. Odell, Subspaes of Lp whih embed into ℓp, Compos.Math. 28 (1974), 37�49.[KO1℄ H. Knaust and E. Odell, On c0-sequenes in Banah spaes, Israel J. Math. 67(1989), 153�169.[KO2℄ �, �, Weakly null sequenes with upper ℓp-estimates, in: Funtional Analysis(Austin, TX, 1987/1989), E. Odell and H. Rosenthal (eds.), Leture Notes inMath. 1470, Springer, Berlin, 1991, 85�107.[O℄ E. Odell, Appliations of Ramsey theorems to Banah spae theory, in: Notesin Banah Spaes, H. E. Laey (ed.), Univ. of Texas Press, Austin, TX, 1980,379�404.[S℄ Th. Shlumpreht, An arbitrarily distortable Banah spae, Israel J. Math. 76(1991), 81�95.[T℄ B. S. Tsirelson, Not every Banah spae ontains an imbedding of ℓp or c0, Funk-tsional. Anal. i Prilozhen. 8 (1974), no. 2, 57�60 (in Russian); English transl.:Funt. Anal. Appl. 8 (1974), 138�141.Department of MathematisTexas A&M UniversityCollege Station, TX 77843-3368, U.S.A.E-mail: freeman�math.tamu.eduReeived May 14, 2007Revised version September 3, 2007 (6161)


