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On the characterization of scalar type spectral operators

by

P. A. Cojuhari (Kraków) and A. M. Gomilko (Kiev)

Abstract. The paper is concerned with conditions guaranteeing that a bounded op-
erator in a reflexive Banach space is a scalar type spectral operator. The cases where the
spectrum of the operator lies on the real axis and on the unit circle are studied separately.

1. Introduction. In [1], [11], [12] (see also [2]) necessary and sufficient
conditions were established for an operator defined on a Hilbert space to be
similar to a unitary or self-adjoint operator. These conditions were formu-
lated in terms of the resolvent of the operator. The main purpose of this
paper is to extend these results to the case of reflexive Banach spaces. In
this case unitarity or self-adjointness are replaced by the property that the
operator is scalar and its spectrum lies on the unit circle or on the real axis,
respectively. Our results strengthen the corresponding results from [5], [8]
(see also [4, p. 304]). Moreover, integral estimates for the resolvent ensuring
that the corresponding operator is power-bounded are described. In the case
of Hilbert spaces these estimates become necessary conditions as well.

The following notation will be used throughout the paper. B will denote
a Banach space with the norm ‖ · ‖, and B∗ its dual space. The norm in
B∗ will be denoted by ‖ · ‖∗. We shall denote by (x, y) the value of the
functional y at the vector x. All operators are assumed to be linear and
defined on B; I is the identity operator on B. For an operator T on B the
resolvent set and the spectrum are denoted by ̺(T ) and σ(T ), respectively.
The resolvent operator (T − λI)−1, λ ∈ ̺(T ), will be denoted by R(T ; λ);
r(T ) denotes the spectral radius of T. Throughout the paper, c (with or
without subscripts) will denote various positive constants, the exact values
of which are not essential.
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2. Operators whose spectra lie on the unit circle. In the case of
a reflexive Banach space the following result is known [5], [8]: a bounded
operator T whose spectrum lies on the unit circle is a scalar type operator
if and only if there exists a c > 0 such that for every collection an ∈ C (n =
0,±1, . . . ,±N) one has

(2.1) ‖Q(T )‖ ≤ c sup
|λ|=1

|Q(λ)|, Q(λ) =

N
∑

n=−N

anλn.

We recall that an operator T is said to be power-bounded if

(2.2) sup
n∈N

‖Tn‖ < ∞,

and polynomially bounded if there exists a c > 0 such that

(2.3) ‖P (T )‖ ≤ c sup
|λ|=1

|P (λ)| for all P (λ) =
N

∑

n=0

anλn.

We note that (2.1) is equivalent to T being polynomially bounded with

(2.4) sup
m∈{0}∪N

1

m + 1

m
∑

k=0

‖T−kx‖ ≤ c‖x‖

for some c > 0 and all x ∈ B. In fact, we observe that

Q(T ) =
1

N

2N
∑

l=N+1

N
∑

n=−N

anT l+nT−l

and so, by (2.3) for T ∗ and (2.4), we have

|(Q(T )x, y)| ≤
1

N

2N
∑

l=N+1

∣

∣

∣

(

N
∑

n=−N

anT l+nT−lx, y
)
∣

∣

∣

=
1

N

2N
∑

l=N+1

∣

∣

∣

(

T−lx,

N
∑

n=−N

anT ∗l+ny
)∣

∣

∣

≤
1

N

2N
∑

l=N+1

‖T−lx‖
∥

∥

∥

N
∑

n=−N

anT ∗l+ny
∥

∥

∥

∗

≤
1

N

2N
∑

l=N+1

‖T−lx‖ sup
|λ|=1

∣

∣

∣

N
∑

n=−N

anλl+n
∣

∣

∣
‖y‖∗

≤ c sup
|λ|=1

|Q(λ)| ‖x‖ ‖y‖∗

for all x ∈ B and y ∈ B∗. By the uniform boundedness principle (see, for
instance, [3, II.1]) the desired estimate (2.1) follows.

The following statement will be needed.
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Lemma 2.1. Let S be a bounded operator on the Banach space B with

r(S) ≤ 1 and

(2.5) sup
r>1

r2 − 1

r

2π\
0

|(R2(S; reiθ)x, y)| dθ ≤ c‖x‖ ‖y‖∗

for all x ∈ B and y ∈ B∗, where c is a positive constant. Then S is power-

bounded.

Proof. We use the following identity [2]:

Sn =
1

2πi(n + 1)

\
|λ|=r

λn+1R2(S; λ) dλ, r > 1,

which can be obtained from the Riesz integral by repeated integration by
parts. For all x ∈ B, y ∈ B∗, n = 1, 2, . . . and r > 1, according to (2.5), we
have

2π|(Snx, y)| ≤
rn+2

n + 1

2π\
0

|(R2(S; reiθ)x, y)| dθ

≤
crn+2

(r2 − 1)(n + 1)
‖x‖ ‖y‖∗.

Letting r = 1 + 1/n, we obtain

sup
n∈N

|(Snx, y)| ≤ c‖x‖ ‖y‖∗, x ∈ B, y ∈ B∗,

and the assertion follows.

The main result of this section is the following

Theorem 2.2. Let T be a bounded operator on a reflexive Banach spaceB
whose spectrum lies on the unit circle. A necessary and sufficient condition

for T to be a scalar type spectral operator is that one of the following condi-

tions holds:

(1) T and T−1 satsfy (2.5), i.e. there is a constant c > 0 such that

sup
r>1

(r2−1)

2π\
0

[|(R2(T−1; reiθ)x, y)|+|(R2(T ; reiθ)x, y)|] dθ≤c‖x‖‖y‖∗.

(2) T satisfies (2.5) and T−1 is power-bounded.

(3) T satisfies (2.5) and T−1 satisfies (2.4).
(4) There is a constant c > 0 such that for all x ∈ B and y ∈ B∗,

(2.6) sup
r>1

r2 − 1

r

2π\
0

|(R(T ; reiθ)R(T ; r−1eiθ)x, y)| dθ ≤ c‖x‖ ‖y‖∗.

Theorem 2.2 is an immediate consequence of the following auxiliary
statement, valid for an arbitrary Banach space and of independent interest.
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Lemma 2.3. Let T be a bounded operator on a Banach space with spec-

trum on the unit circle. Then each of conditions (1)–(4) of Theorem 2.2 is

equivalent to the estimate (2.1).

Proof. First we prove that (2.1) implies (1). By arguments used in [10],
for each x ∈ B and y ∈ B∗ there exists a function g(t) with bounded
variation, depending on x, y, such that

(Tnx, y) =

2π\
0

eint dg(t), n ∈ Z.

From this it is easy to deduce that

(R2(T ; λ)x, y) =

2π\
0

dg(t)

(eit − λ)2
, |λ| > 1.

Then, putting λ = reiθ, r > 1, one can obtain

2π\
0

|(R2(T ; λ)x, y)| dθ ≤

2π\
0

2π\
0

|dg(t)|

|eit − λ|2
dθ

≤ var(|g|) sup
t∈(0,2π)

2π\
0

dθ

|eit − λ|2
≤

c(g)

r2 − 1
.

By applying the uniform boundedness principle twice, we obtain (2.5) for T .
Similarly, (2.5) holds for the resolvent of T−1.

The implication (1)⇒(2) follows by applying Lemma 2.1 to S = T−1.
The implication (2)⇒(3) is evident.

Now, we show that (3) implies (2.6). Note that

R(T ; λ)R(T ; λ−1) = R(T ; λ)[R(T ; λ−1) − R(T ; λ)] + R2(T ; λ)(2.7)

= (|λ|2 − 1)R2(T ; λ)T−1R(T−1; λ) + R2(T ; λ)

for |λ| > 1. On the other hand, since r(T−1) = 1, we have

R(T−1; λ) = −
∞
∑

m=0

T−m

λm+1
, |λ| > 1.

From this and (2.7) it follows that

R(T ; λ)R(T ; λ−1) = −(|λ|2 − 1)R2(T ; λ)

∞
∑

m=1

T−m

λm
+ R2(T ; λ),
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and, by applying (2.5) for S = T, we obtain

sup
r>1

r2 − 1

r

2π\
0

|(R(T ; reiθ)R(T ; r−1eiθ)x, y)| dθ

≤ c‖y‖∗

[

(r2 − 1)r−2
∞

∑

m=0

r−m‖T−mx‖ + ‖x‖
]

, r > 1.

Now, by using the inequality [1]

r2 − 1

r2

∞
∑

k=0

αk

rk
≤ 2 sup

m∈N

1

m + 1

m
∑

k=0

αk, r > 1, αk ≥ 0,

for the sequence αk = ‖T−kx‖, and taking into account (2.4), it is easy to
obtain (2.6).

To complete the proof it remains to show that (2.6) implies (2.1). From
the equality [1]

2πr−|n|Tn

= (r2 − 1)

2π\
0

einθR(T ; reiθ)R(T−1; re−iθ) dθ, r > 1, n = 0,±1, . . . ,

it follows that

2π
N

∑

n=−N

anr−|n|(Tnx, y) = (r2 − 1)

2π\
0

Q(eiθ)(R(T ; reiθ)R(T−1, re−iθ)x, y) dθ

for all Q(λ) as in (2.1) and all x ∈ B, y ∈ B∗. Hence, by (2.6),

∣

∣

∣

N
∑

n=−N

anr−|n|(Tnx, y)
∣

∣

∣
≤ c sup

|λ|=1
|Q(λ)| ‖x‖ ‖y‖∗,

where c > 0 does not depend on r > 1. Letting r → 1, and then using the
uniform boundedness principle, we obtain (2.1).

Remark 2.4. By the uniform boundedness principle, condition (2.5) is
equivalent to

sup
r>1

(r2 − 1)

2π\
0

|(R2(S; reiθ)x, y)| dθ < ∞, x ∈ B, y ∈ B∗.

A similar remark can be made with respect to (2.6).
By using Lemma 2.1 and methods from [1], [2] (see also [11], [12]) one can

prove the following result concerning power-bounded operators on Hilbert
spaces. This result was announced in [6].

Corollary 2.5. Let T be a bounded operator on a Hilbert space H and

r(T ) ≤ 1. Then the following statements are equivalent :
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(1) T is power-bounded.

(2) For each x ∈ H,

(2.8) sup
r>1

(r2 − 1)

2π\
0

[‖R(T ; reiθ)x‖2 + ‖R(T ∗; reiθ)x‖2] dθ < ∞.

(3) For x, y ∈ H,

(2.9) sup
r>1

(r2 − 1)

2π\
0

|(R2(T ; reiθ)x, y)|dθ < ∞.

Proof. It is easy to see that (2) implies (3). Hence, by Lemma 2.1, it is
sufficient to prove that (2.8) holds for S power-bounded. But this follows
immediately from the relations (cf. [12])

2π
∞
∑

n=0

‖Snx‖2r2n =

2π\
0

∥

∥

∥

∞
∑

n=0

(reiθS)nx
∥

∥

∥

2
dθ(2.10)

=
1

r

\
|µ|=1/r

‖R(S; µ)x‖2 |dµ|.

It follows from some results of van Casteren [1], [2] (see also [11] and [12])
that in a Hilbert space H an operator S is power-bounded if and only if

sup
m∈N

1

m

m
∑

k=1

(‖T kx‖2 + ‖T ∗kx‖2) < ∞

for every x ∈ H. Note that for general Banach spaces condition (2.5) is not
necessary for uniform boundedness with respect to the natural powers. This
can be seen even for a unitary operator acting on a reflexive space. In [5]
(see also [9]) it was shown that the shift operator U defined in the space
lp(Z) (1 < p < ∞) of two-sided sequences (xn)n∈Z by

U(xn) = (xn+1) ((xn) ∈ lp(Z))

is not spectral for p 6= 2. Therefore, by Theorem 2.2, condition (2.5) cannot
be valid. Note also that if condition (2.4) holds for S = T−1, then, as is easy
to observe, ‖Sn‖ ≤ cn, n = 1, 2, . . . . This estimate is exact in the power
scale, i.e. it is not possible to replace it by ‖Sn‖ ≤ cnα, n = 1, 2, . . . , with
α < 1. The corresponding examples can be derived from [2].

3. Operators whose spectra lie on the real axis. Similar consider-
ations to those of Section 2 can be carried out for a bounded operator with
real spectrum. For this case it is known [8] that an operator A on a reflexive
space B is of scalar type if and only if there exists a constant c > 0 such
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that for each x ∈ B and y ∈ B∗, we have

(3.1) sup
σ>0

∞\
−∞

|((R(A; s + iσ) − R(A; s − iσ))x, y)| ds ≤ c‖x‖ ‖y‖∗.

Further, we need the following result [7]: let G be a closed densely defined
operator on a Banach space B, with spectrum contained in the half-plane
Im λ ≥ 0 and with

(3.2) sup
σ>0

σ

∞\
−∞

|(R2(G; s − iσ)x, y)| ds ≤ c‖x‖‖y‖∗

for x ∈ B and y ∈ B∗. Then the operator iG generates an exponentially
bounded C0-semigroup eitG, t ≥ 0, i.e. ‖eitG‖ ≤ M for 0 ≤ t < ∞ and
constant M ≥ 1. We note that in the case of Hilbert spaces the estimate
(3.2) is necessary for iG to be the generator of a uniformly bounded C0-
semigroup. For general Banach spaces, the last assertion is not true (see, for
instance, [7]).

We will use the inequality (see [1, Lemma 1.1])

sup
σ>0

σ

∞\
0

e−σtf(t) dt ≤ sup
t>0

1

t

t\
0

f(s) ds,

holding for every nonnegative measurable function f(t) on t > 0. We will
also use the following simple auxiliary statement.

Lemma 3.1. Let f(t) be a nonnegative continuous function on t ≥ 0
satisfying the condition f(t + s) ≤ f(t)f(s) for each t, s ≥ 0. If

sup
t>0

1

t

t\
0

f(s) ds = c < ∞

then

f(t) ≤ 2act, t ≥ 2,

where a = max0≤t≤2 f(t).

Proof. Since f is continuous on the interval [n, n+1] (n = 1, 2, . . .), there
is a point tn such that

f(tn) =

n+1\
n

f(t) dt ≤

n+1\
0

f(t) dt ≤ c(n + 1).

Further, for each t ∈ [tn, tn+1], we have t ≥ n, 0 < t − tn ≤ 2, t1 ≤ 2, and
also

f(t) = f(t − tn + tn) ≤ f(t − tn)f(tn) ≤ ac(n + 1) ≤ 2acn ≤ 2act

for t ≥ 2.
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Corollary 3.2. Let T (t), t≥0, be a C0-semigroup in a Banach space B.

Suppose that , for all x ∈ B,

sup
t>0

1

t

t\
0

‖T (s)x‖ ds ≤ c‖x‖.

Then

(3.3) sup
σ>0

σ

∞\
0

e−σt‖T (t)x‖ dt ≤ c‖x‖,

and there exists a constant c0 > 0 such that

(3.4) ‖T (t)‖ ≤ c0(t + 1), t ≥ 0.

Note that the estimate (3.4) is exact in the power scale on t (the cor-
responding examples can be obtained by arguments of [1, cf. Example 2,
p. 254], for instance).

Theorem 3.3. Let A be a bounded operator on a reflexive Banach spaceB
with spectrum lying on the real axis. Then A is a scalar type spectral operator

if and only if one of the following conditions holds:

(1) For all x ∈ B and y ∈ B∗,

(3.5) sup
σ>0

σ

∞\
−∞

|(R2(A; s ± iσ)x, y)| ds ≤ c‖x‖ ‖y‖∗.

(2) For all x ∈ B and y ∈ B∗,

(3.6) sup
σ>0

σ

∞\
−∞

|(R2(A; s + iσ)x, y)| ds ≤ c‖x‖ ‖y‖∗,

and for all x ∈ B,

(3.7) sup
t>0

1

t

t\
0

‖eitAx‖ dt ≤ c‖x‖.

Theorem 3.3 follows from the criterion (3.1) and the following lemma,
in which A is allowed to be unbounded.

Lemma 3.4. Let A be a densely defined closed linear operator on a Ba-

nach space B, with spectrum lying on the real axis. Then each of conditions

(1) and (2) of Theorem 3.3 is equivalent to the estimate (3.1).

Proof. In order to prove (1)⇒(2) we observe that by arguments from
[7] the estimate (3.2) implies in particular that iA is the generator of a
uniformly bounded C0-semigroup, and therefore (3.7) holds as well.
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Next, we prove that (2) implies (3.1). To this end, we observe that from
(3.7), by Corollary 3.2, it follows that

(3.8) R(A; s − iσ) = iR(iA; σ + is) = −i

∞\
0

e−σte−isteitA dt, σ > 0.

Also,

(3.9) R(A; λ) − R(A; λ) = 2iσR(A; λ)[R(A; λ) − 2iσR(A; λ)R(A; λ)]

for λ = s + iσ, σ 6= 0. By (3.8) and (3.9),

(3.10) (R(A; λ)x, y) − (R(A; λ)x, y)

= 2iσ(R2(A; λ)x, y) − 4iσ2
∞\
0

e−σte−ist(R2(A; λ)eitAx, y) dt

for all x ∈ B, y ∈ B∗ and λ = s + iσ, σ > 0.
On the other hand, by applying (3.6) and (3.3) to the semigroup T (t) =

eitA, we obtain

(3.11) σ2
∞\
−∞

∣

∣

∣

∞\
0

e−σte−ist(R2(A; s + iσ)eitAx, y) dt
∣

∣

∣
ds

≤ σ2
∞\
0

e−σt
∞\
−∞

|(R2(A; s + iσ)eitAx, y)| ds dt

≤ cσ‖y‖∗

∞\
0

e−σt‖eitAx‖ dt ≤ c‖x‖ ‖y‖∗.

Now (3.10), (3.11) and (3.6) yield (3.1).
It remains to show that (3.1) implies (3.5). We apply similar arguments

to those used in [1] (in particular, see [1, Lemma 1.2 and Theorem 3.1]).
For fixed x ∈ B and y ∈ B∗ we consider the following harmonic function of
s ∈ R and σ > 0:

G(s, σ) = (R(A; s + iσ)x, y) − (R(A; s − iσ)x, y).

By (3.1), we have

sup
σ>0

∞\
−∞

|G(s, σ)| ds < ∞

and thus (cf. [13])

G(s, σ) =
σ

π

∞\
−∞

dµ(η)

σ2 + (s − η)2
,

where µ(η) is a finite (complex) measure on R. Since

2σ

σ2 + (s − η)2
=

1

σ + i(s − η)
+

1

σ − i(s − η)
,
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one has

(3.12) (R(A; λ)x, y) − (R(A; λ)x, y)

=
1

2πi

∞\
−∞

dµ(η)

λ − η
−

1

2πi

∞\
−∞

dµ(η)

λ − η
, λ = s + iσ, σ > 0.

By differentiating (3.12) with respect to λ and λ, it follows that

(R2(A; λ)x, y) =
1

2πi

∞\
−∞

dµ(η)

(λ − η)2
,

(R2(A; λ)x, y) =
1

2πi

∞\
−∞

dµ(η)

(λ − η)2
,

where λ = s + iσ, σ > 0. Thus
∞\
−∞

|(R2(s + iσ)x, y)| ds =
1

2π

∞\
−∞

∣

∣

∣

∣

∞\
−∞

dµ(η)

(s + iσ − η)2

∣

∣

∣

∣

ds

≤
M

2π
sup
η∈R

∞\
−∞

ds

(s − η)2 + σ2
=

M

2σ
, σ > 0,

where

M =

∞\
−∞

|dµ(η)| < ∞.

Hence,

sup
σ>0

σ

∞\
−∞

|(R2(A; s + iσ)x, y)| ds < ∞,

and, analogously,

sup
σ>0

σ

∞\
−∞

|(R2(A; s − iσ)x, y)| ds < ∞.

By the uniform boundedness principle, (3.5) follows.

4. Comments. In the case of Hilbert spaces a bounded operator whose
spectrum lies on the unit circle is of scalar type if and only if it is similar to
a unitary operator. Therefore in the case of Hilbert spaces it is natural to
compare conditions (1)–(4) of Theorem 2.1 with known criteria for similarity
to unitaries. In view of Corollary 2.5 conditions (1) and (2) of Theorem 2.1
for the Hilbert space case amount to the condition that T and T−1 are
power-bounded, a classical criterion of B. Sz.-Nagy [14]. In turn, condition
(4) coincides with the criterion for similarity to a unitary operator obtained
in [1] (see also [11], [12]).
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Let us turn to condition (3) of Theorem 2.2. For the Hilbert space case,
by Corollary 2.5, this condition is equivalent to the condition that T is
power-bounded and satisfies (2.4). On the other hand, in [1] it is established
that a power-bounded operator T on a Hilbert space is similar to a unitary
operator if and only if

(4.1) sup
|λ|≤1

(1 − |λ|)‖R(T ; λ)‖ < ∞.

Moreover, the implication (2.4)⇒(4.1) is valid, but the converse is not.
Thus, in the case of Hilbert spaces condition (3) of Theorem 2.2 is weaker
than the criterion of similarity to a unitary operator ((2.2) and (4.1)). In
this connection there remains an open question: is it true that in the case of
reflexive Banach spaces conditions (2.2) and (4.1) give a criterion for T to be
a scalar operator? A more general question is the following (cf. Lemma 2.3):
is it true that in an arbitrary Banach space for a power-bounded operator T
conditions (2.4) and (4.1) are equivalent? Analogous remarks can be made
with reference to Theorem 3.3. In particular, the following question arises:
is it true that in the case of reflexive Banach spaces condition (3.6) and the
estimate

sup
Im λ<0

(‖R(A; λ)‖ |Imλ|) < ∞

give a criterion for A to be a scalar type spectral operator?
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