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L
p-Lq boundedness of analytic families

of fractional integrals

by

Valentina Casarino and Silvia Secco (Torino)

Abstract. We consider a double analytic family of fractional integrals Sγ,α
z along the

curve t 7→ |t|α, introduced for α = 2 by L. Grafakos in 1993 and defined by

(Sγ,α
z f)(x1, x2) :=

1

Γ ( z+1

2
)

\\
|u− 1|zψ(u− 1)f(x1 − t, x2 − u|t|α) du |t|γ

dt

t
,

where ψ is a bump function on R supported near the origin, f ∈ C∞
c (R2), z, γ ∈ C,

Re γ ≥ 0, α ∈ R, α ≥ 2.

We determine the set of all (1/p, 1/q,Re z) such that Sγ,α
z maps Lp(R2) to Lq(R2)

boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove
that the kernel Ki̺,α

−1+iθ is a product kernel on R
2, adapted to the curve t 7→ |t|α; as a

consequence, we show that the operator Si̺,α
−1+iθ, θ, ̺ ∈ R, is bounded on Lp(R2) for

1 < p <∞.

1. Introduction. In this paper, we discuss Lp-Lq boundedness for a
double analytic family of fractional integrals, introduced, in the parabolic
case, by L. Grafakos in 1993 [Gr2]. More precisely, we consider the analytic
family of operators Sγ,α

z defined by

(Sγ,α
z f)(x1, x2) :=

1

Γ
(

z+1
2

)
\\

|u− 1|zψ(u− 1)f(x1 − t, x2 − u|t|α) du |t|γ dt
t

if Re γ ≥ 0, where the outer integral is interpreted in some appropriate
sense if Re γ = 0. Here ψ is a bump function supported near the origin
on R, f ∈ C∞

c (R2), z, γ ∈ C, Re γ ≥ 0, α ∈ R, α ≥ 2. Notice that for z = −1
and Re γ > 0 the operator Sγ,α

z coincides with the fractional integration
operator along the curve t 7→ |t|α, which was studied in [RS] and in [Ch2].

Some authors recognized a product structure in this analytic family of
singular integral operators with convolution kernels supported on curves in
the plane. In particular, Grafakos pointed out that the failure of certain
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standard H1-L1 estimates when Re z = −1 is due to this product structure,
while A. Seeger and T. Tao used it to obtain sharp Lorentz space inequali-
ties [Gr1, SeeT]. Anyway, product structures for these problems go back to
Melrose and Greenleaf and Uhlmann [M, GU].

In this spirit, we prove here a strong endpoint bound for Sγ,α
z by using

the theory of product-type kernels, which was introduced by R. Fefferman
and E. Stein at the beginning of the eighties [FS]. For the precise definition of
product kernels and a complete bibliography we refer the reader to a recent
paper by A. Nagel, F. Ricci and E. M. Stein [NRS]; we only recall here
that product kernels on R2 are singular distributions, satisfying differential
inequalities and cancellation properties similar to those of the distribution
pv

(
1

x1x2

)
.

More specifically, the question is for which p, q,Re z,Re γ the operators
Sγ,α

z are bounded from Lp(R2) to Lq(R2). Since a necessary condition for
Sγ,α

z to map Lp to Lq is that 1/p−1/q = Re γ/(α+ 1), it suffices to consider
the set Σα consisting of all (1/p, 1/q,Re z) such that Sγ,α

z is bounded from
Lp to Lq. When α = 2, Grafakos showed that the interior of the set Σ2 of
all (1/p, 1/q, Re z) for which Sγ

z := Sγ,2
z maps Lp(R2) to Lq(R2) boundedly

coincides with the interior of the closed tetrahedron ABCD with vertices
A = (0, 0,−1), B = (1/2, 1/2,−3/2), C = (1, 1,−1), D = (1, 0, 0), and that
Σ2 contains, moreover, the open faces ABD, BCD, and the closed edge BD.

Furthermore, he established some weak-type inequalities. More precisely,
he proved that no strong-type bound holds on the open segments CD and
AD, that Sγ

z maps the parabolic real Hardy space H1 (that is, the Hardy
space on R2 defined with respect to the non-isotropic scaling (x1, x2) 7→
(tx1, t

2x2) [CT1, CT2]) to weak Lp on CD and that, by duality, Sγ
z maps

Lp′,1 to parabolic BMO on AD.

Weak-type bounds on AB and CB are subtler. Grafakos proved Lp,p′

results, by using methods in [Ch1]. He showed, in particular, that Sγ
z maps

Lp to Lp,p′ on the open segment BC and that, by duality, Sγ
z maps Lp′,p to

Lp′ on AB. Then M. Christ showed the failure of endpoint Lp bounds on AB
for Sγ,α

z , α ≥ 2 [Ch3]; finally, Seeger and Tao proved the sharp Lp → Lp,2

bound [SeeT].

Along the open segment AC (that is, when Re z = −1 and Re γ = 0)

Grafakos proved that Sγ,2
z maps the parabolic Hardy space H1 to L1,∞ and

that it is not of weak type (1, 1) when Im z 6= 0.

Anyway, as a consequence of a real interpolation approach, it may be
reasonably expected that the operators Sγ,α

z are bounded on Lp, for all
1 < p < ∞, along AC. Here, we prove this fact in a direct way. More
precisely, we prove that for all α ≥ 2 the operators Sγ,α

z are bounded on
Lp, for 1 < p < ∞, on the open diagonal AC and therefore on the open
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faces ACB and ACD as well; in this way we completely characterize the
set Σα, which turns out to be independent of α. Our proof relies on the
fact that the convolution kernel of Sγ,α

z along AC, Ki̺,α
−1+iθ, ̺ := Im γ, is a

product-type kernel adapted to the curve x1 7→ |x1|α on R2. Such kernels,
whose singularities are concentrated along the coordinate axis x1 = 0 and
the curve x2 = |x1|α, have been recently introduced and studied by one
of the authors [Se], who proved in particular the Lp boundedness of the
associated convolution operators for 1 < p < ∞. More precisely, we first
prove that the distribution Hµ,ν , where µ, ν ∈ R, µ 6= 0, defined by

〈Hµ,ν , f〉 := lim
ε→0+

\\
|x2|−1+iµψ

(
x2

|x1|α
)
|x1|−1+ε+iν sgnx1 f(x1, x2) dx1 dx2

for f ∈ S(R2), is a product kernel on R2; then we show that Ki̺,α
−1+iθ essen-

tially coincides with the kernel Hµ,ν , with µ = θ and ν = ̺ − αθ, adapted
to the curve x2 = |x1|α, so that, as a consequence of Theorem 1.3 in [Se],
Sγ,α

z is bounded on Lp, 1 < p <∞, along the diagonal AC.

It is worth noticing that if Si̺
−1+iθ were exactly a product of a Hilbert

transform on the parabola and a singular integral in the vertical direction,
then the argument would be much simpler. Anyway, the Si̺

−1+iθ turn out to
be more general product-type operators.

As underlined in a recent paper of A. Seeger and S. Wainger [SeeW],
the operators Sγ,α

z provide a model family of operators in the class I̺′,−σ

defined by A. Greenleaf and G. Uhlmann in [GU], consisting of oscillatory
integrals with singular symbols.

The authors would like to thank Fulvio Ricci for many stimulating dis-
cussions on the subject of this paper and the referee for helpful suggestions
and comments.

2. A particular product kernel. Let ψ be an even smooth function
on R such that ψ = 1 on [0, 1/2] and ψ = 0 on (1,∞), with 0 ≤ ψ ≤ 1 on
(1/2, 1) and such that ψ′ changes sign only once.

Take α, µ, ν ∈ R, α ≥ 2, µ 6= 0. Define

(2.1) 〈Hµ,ν , f〉

:= lim
ε→0+

\\
|x2|−1+iµψ

(
x2

|x1|α
)
|x1|−1+ε+iν sgnx1 f(x1, x2) dx1 dx2

for every f ∈ S(R2).

We shall prove in Theorem 2.6 that Hµ,ν defines a product kernel on R2

(see Def. 2.1.1 in [NRS]).

The proof of this result, which may be of independent interest, will be
divided into some lemmata.
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Lemma 2.1. Hµ,ν , defined by (2.1), is a tempered distribution.

Proof. For any f ∈ S(R2) we have

〈Hµ,ν , f〉 = lim
ε→0+

\\
|x2|−1+iµψ

(
x2

|x1|α
)
|x1|−1+ε+iν sgnx1f(x1, x2) dx1 dx2

= lim
ε→0+

( \\
|x1|≤1, |x2|≤|x1|α

+
\\

|x1|>1, |x2|≤|x1|α

)
|x2|−1+iµψ

(
x2

|x1|α
)

× |x1|−1+ε+iν sgnx1 f(x1, x2) dx1 dx2

= lim
ε→0+

(I1,ε + I2,ε).

Since ψ is even,\\
|x1|≤1, |x2|≤|x1|α

|x2|−1+iµψ

(
x2

|x1|α
)
|x1|−1+ε+iν sgnx1 dx1 dx2 = 0,

so that, after integration by parts with respect to x2, we may write

I1,ε =
\\

|x1|≤1, |x2|≤|x1|α

|x2|−1+iµψ

(
x2

|x1|α
)
|x1|−1+ε+iν sgnx1

× (f(x1, x2) − f(0, 0)) dx1 dx2

= −
\\

|x1|≤1, |x2|≤|x1|α

sgnx2
|x2|iµ
iµ

|x1|−1−α+ε+iν sgnx1 ψ
′

(
x2

|x1|α
)

× (f(x1, x2) − f(0, 0)) dx1 dx2

−
\\

|x1|≤1, |x2|≤|x1|α

sgnx2
|x2|iµ
iµ

ψ

(
x2

|x1|α
)

(∂x2
f)(x1, x2)|x1|−1+ε+iν

× sgnx1 dx1 dx2.

As a consequence of the mean value theorem, we find that

|I1,ε| ≤
4
√

2

|µ| ‖ψ′‖∞‖f‖(1) +
4

α|µ| ‖ψ‖∞‖f‖(1) ≤
c1
|µ| ‖f‖(1)

for some positive constant c1, uniformly with respect to ε ∈ (0, 1). An anal-
ogous computation shows that

|I2,ε| ≤
4

|µ| ‖ψ
′‖∞‖f‖(3) +

4

|µ| ‖ψ‖∞‖f‖(2[α]+5) ≤
c1
|µ| ‖f‖(2[α]+5),

yielding, together with the previous estimate,
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|〈Hµ,ν , f〉| ≤ C

|µ| ‖f‖(2[α]+5) = Cµ‖f‖(2[α]+5),

where the constant Cµ grows at most exponentially in µ.

It is not hard to show that the kernel Hµ,ν defined by (2.1) coincides
with the function

(2.2) Hµ,ν(x1, x2) = |x2|−1+iµψ

(
x2

|x1|α
)
|x1|−1+iν sgnx1

on R2 \({x1 = 0} ∪ {x2 = 0}), so that we shall now prove that Hµ,ν satisfies
the right differential inequalities. We will need the following lemma.

Lemma 2.2. For any positive integer β we have

(2.3) ∂β
x1

(
ψ

(
x2

|x1|α
))

=

β∑

l=1

cl,β,α(∂β−l+1
x1

ψ)

(
x2

|x1|α
)

xβ−l+1
2

|x1|(α+1)β−αl+α
(sgnx1)

β.

Proof. The proof goes by induction on the order β of derivation and it
is omitted.

In the following the symbols C and Cσ will denote constants which may
vary from one formula to the other and that grow at most exponentially
in |σ| when |σ| tends to ∞. Here σ may denote a set of indices, like, e.g.,
σ = (β, µ, ν); in this case we require that Cσ grows at most exponentially
in |β|, |µ|, |ν| when |β|, |µ|, |ν| tend to ∞. Such constants will be called of

admissible growth.

Proposition 2.3. For any multi-index β = (β1, β2), β1, β2 ∈ N, there

exists a constant Cβ,µ,ν of admissible growth such that

(2.4) |∂β1

x1
∂β2

x2
Hµ,ν(x1, x2)|

≤ Cβ,µ,ν |x1|−1−β1|x2|−1−β2 on R
2 \ ({x1 = 0} ∪ {x2 = 0}).

Proof. Take (x1, x2) ∈ R2 \ ({x1 = 0} ∪ {x2 = 0}). If (β1, β2) = (0, 0),
then

|Hµ,ν(x1, x2)| ≤ |x1|−1|x2|−1‖ψ‖∞ ≤ |x1|−1|x2|−1.

If β1 = 0 and β2 6= 0, the Leibniz rule yields

∂β2

x2
Hµ,ν(x1, x2) = |x1|−1+iν sgnx1

∑

γ1+γ2=β2

cγ1,γ2,µ|x2|−1−γ1+iµ sgnx2

× |x1|−αγ2(∂γ2

x2
ψ)

(
x2

|x1|α
)
.
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On the set where ψ does not vanish we have |x1|−αγ2 ≤ |x2|−γ2 , so that

|∂β2

x2
Hµ,ν(x1, x2)| ≤ |x1|−1

∑

γ1+γ2=β2

|cγ1,γ2,µ| |x2|−1−γ1−γ2

≤ Cβ2,µ|x1|−1|x2|−1−β2.

When β1 6= 0 and β2 = 0, by applying the Leibniz formula and Lemma 2.2
we obtain

∂β1

x1
Hµ,ν(x1, x2) = |x2|−1+iµ

∑

γ1+γ2=β1

cγ1,γ2,ν |x1|−1−γ1+iν(sgnx1)
γ1+1

×
γ2∑

l=1

cl,γ2,α

(
(∂γ2−l+1

x1
ψ)

(
x2

|x1|α
))

xγ2−l+1
2

|x1|(α+1)γ2−αl+α
(sgnx1)

γ2 ,

so that

|∂β1

x1
Hµ,ν(x1, x2)| ≤ |x2|−1

∑

γ1+γ2=β1

|cγ1,γ2,ν | |x1|−1−γ1

×
γ2∑

l=1

cγ2,l|x1|αγ2−αl+α−(α+1)γ2+αl−α

≤ |x2|−1|x1|−1−β1

∑

γ1+γ2=β1

|cγ1,γ2,ν |
γ2∑

l=1

cγ2,l

= Cµ,ν,β |x2|−1|x1|−1−β1,

where we have used, in particular, the fact that |x2|γ2−l+1 ≤ |x1|αγ2−αl+α

and that |(∂γ2−l+1
x1

ψ)(x2/|x1|α)| ≤ cγ2,l for some positive constant cγ2,l on
the set where ψ is not vanishing.

Finally, consider the case β1 6= 0 6= β2. By applying the Leibniz rule and
Lemma 2.2 we obtain

∂β1

x1
∂β2

x2
Hµ,ν(x1, x2) =

∑

γ1+γ2=β2

cγ1,γ2,µ|x2|−1−γ1+iµ(sgnx2)
γ1

×
∑

δ1+δ2=β1

cδ1,δ2,ν |x1|−1−αγ2+iν−δ1

δ2∑

l=1

cl,δ2,α

(
(∂δ2−l+1

x1
∂γ2

x2
ψ)

(
x2

|x1|α
))

× |x2|δ2−l+1

|x1|(α+1)δ2−αl+α
(sgnx1)

1+δ1+δ2 ,

so that
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|∂β1

x1
∂β2

x2
Hµ,ν(x1, x2)|

≤ |x1|−1−β1 |x2|−1−β2

( ∑

γ1+γ2=β2

|cγ1,γ2,µ|

×
( ∑

δ1+δ2=β1

|cδ1,δ2,ν |
( δ2∑

l=1

|cl,δ2,α| · ‖ψ‖(δ2−l+1+γ2)

)))

= Cβ,µ,ν |x1|−1−β1|x2|−1−β2,

where we have used in particular the fact that
∣∣∣∣(∂

δ2−l+1
x1

∂γ2

x2
ψ)

(
x2

|x1|α
)∣∣∣∣ ≤

‖ψ‖(δ2−l+1+γ2)

(|x2| |x1|−α)δ2−l+1+γ2
.

We now have to prove some essential cancellation properties.
In the following, if ϕ1 is a function of x1 and ϕ2 is a function of x2, the

symbol ϕ1 ⊗ ϕ2 will denote the function on R2 defined by (ϕ1 ⊗ ϕ2)(x1, x2)
:= ϕ1(x1)ϕ2(x2).

Let ϕ1(x1) be any normalized bump function in C1(Rx1
) (that is, ϕ1 is a

C1 function on R supported on (−1, 1), with C1-norm bounded by 1). Take
R1 > 0 and put ϕ1,R1

(x1) = ϕ1(x1/R1). Then define the distribution Hµ,ν
ϕ1,R1

on Rx2
by

〈Hµ,ν
ϕ1,R1

, ϕ2〉 = 〈Hµ,ν , ϕ1,R1
⊗ ϕ2〉

for any test function ϕ2 on Rx2
.

The following result holds.

Proposition 2.4.

(i) The distribution Hµ,ν
ϕ1,R1

coincides with the smooth function

Hµ,ν
ϕ1,R1

(x2) = |x2|−1+iµ
\
ψ

(
x2

|x1|α
)
|x1|−1+iν sgnx1ϕ1

(
x1

R1

)
dx1

on Rx2
\ {0}. Moreover , for any positive integer β there exists a

constant Cβ,µ of admissible growth such that

(2.5) |∂β
x2
Hµ,ν

ϕ1,R1
(x2)| ≤ Cβ,µ|x2|−1−β for all x2 ∈ R \ {0},

uniformly in ϕ1, R1.

(ii) For any normalized bump function ϕ2 of class C1(Rx2
) and any

R2 > 0 there exists a constant Cµ,α of admissible growth such that

(2.6) |〈Hµ,ν
ϕ1,R1

, ϕ2,R2
〉| ≤ Cµ,α

independently of ϕ1, R1, ϕ2, R2, where ϕ2,R2
(x2) := ϕ2(x2/R2).

Proof. Since it is not difficult to show that Hµ,ν
ϕ1,R1

coincides with a C∞

function on Rx2
\ {0}, we will only prove that it satisfies the differential

inequalities (2.5) and cancellation condition (2.6).
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Take any positive integer β and x2 ∈ R \ {0}.
If β = 0, since the map x1 7→ ψ(x2/|x1|α)|x1|−1+iν sgnx1 is integrable

on the set {|x1| ≤ R1} and is odd, a standard application of the mean value
theorem yields

|Hµ,ν
ϕ1,R1

(x2)|

= |x2|−1

∣∣∣∣
\

|x1|≤R1

ψ

(
x2

|x1|α
)
|x1|−1+iν

(
ϕ1

(
x1

R1

)
− ϕ1(0)

)
sgnx1 dx1

∣∣∣∣

≤ ‖ϕ1‖C1 |x2|−1
\

|x1|≤R1

ψ

(
x2

|x1|α
)
|x1|−1 |x1|

R1
dx1

≤ 2‖ψ‖∞|x2|−1 = C|x2|−1,

uniformly with respect to R1 and ϕ1. In the last inequality we have used in
particular the fact that ‖ϕ1‖C1 ≤ 1.

Assume now β 6= 0. By applying the Leibniz formula we obtain

|∂β
x2
Hµ,ν

ϕ1,R1
(x2)| =

∣∣∣∣
∑

β1+β2=β

cβ1,β2,µ|x2|−1+iµ−β1(sgnx2)
β1

×
\

|x1|≤R1

(∂β2

x2
ψ)

(
x2

|x1|α
)
|x1|−αβ2

(
ϕ1

(
x1

R1

)
− ϕ1(0)

)
|x1|−1+iν sgnx1 dx1

∣∣∣∣

≤
∑

β1+β2=β

|cβ1,β2,µ| |x2|−1−β1

\
|x1|≤R1

∣∣∣∣(∂
β2

x2
ψ)

(
x2

|x1|α
)∣∣∣∣|x1|−αβ2−1

×
∣∣∣∣ϕ1

(
x1

R1

)
− ϕ1(0)

∣∣∣∣ dx1.

Now observe that
∣∣∣∣(∂

β2

x2
ψ)

(
x2

|x1|α
)∣∣∣∣ ≤ ‖ψ‖(β2)

|x1|αβ2

|x2|β2

and |ϕ1(x1/R1) − ϕ1(0)| ≤ |x1|/R1, whence

|∂β
x2
Hµ,ν

ϕ1,R1
(x2)| ≤

∑

β1+β2=β

|cβ1,β2,µ| |x2|−1−β1−β2‖ψ‖(β2)

\
{x1 : |x1|≤R1}

dx1

R1

≤ 2Cβ,µ ‖ψ‖(β2)|x2|−1−β = Cβ,µ|x2|−1−β

uniformly with respect to ϕ1, R1. This proves (2.5).

It will now be shown that Hµ,ν
ϕ1,R1

fulfills the right cancellation conditions

as well. Choose any normalized bump function ϕ2 of class C1(Rx2
) and take

R2 > 0.
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With a change of variables we find

〈Hµ,ν
ϕ1,R1

, ϕ2,R2
〉 = Riν

1 R
iµ
2 lim

ε→0+
Jε,

where

Jε :=
\\

|x2|−1+iµψ

(
R2

Rα
1

x2

|x1|α
)
|x1|−1+ε+iν sgnx1 ϕ1(x1)ϕ2(x2) dx1 dx2.

To estimate Jε, it is convenient to consider separately the cases R2 ≥ Rα
1

and R2 < Rα
1 .

If R2 ≥ Rα
1 , the proof is similar to the proof of (2.5). Set

A :=

{
(x1, x2) ∈ R

2 : |x1| ≤ 1, |x2| ≤
Rα

1

R2
|x1|α

}
.

Then

Jε =
\\
A

|x2|−1+iµ |x1|−1+ε+iν sgnx1 ψ

(
R2

Rα
1

x2

|x1|α
)

× (ϕ1(x1)ϕ2(x2) − ϕ1(0)ϕ2(0)) dx2 dx1.

Now an integration by parts with respect to x2 yields

Jε = −
\\
A

sgnx2

iµ
|x2|iµ|x1|−1−α+ε+iν(∂x2

ψ)

(
R2

Rα
1

x2

|x1|α
)

× (ϕ1(x1)ϕ2(x2) − ϕ1(0)ϕ2(0)) sgnx1 dx1 dx2

−
\\
A

sgnx2

iµ
|x2|iµ ψ

(
R2

Rα
1

x2

|x1|α
)
ϕ′

2(x2)ϕ1(x1)|x1|−1+ε+iν sgnx1 dx1 dx2

=: J ′
ε + J ′′

ε .

In order to bound J ′
ε we use the mean value theorem and observe that

|ϕ1(x1)ϕ2(x2) − ϕ1(0)ϕ2(0)|
≤ |ϕ1(x1) − ϕ1(0)| |ϕ2(x2)| + |ϕ1(0)| |ϕ2(x2) − ϕ2(0)|

≤
(
|x1| +

Rα
1

R2
|x1|α

)
‖ϕ1‖C1‖ϕ2‖C1 ≤ |x1|

(
1 +

Rα
1

R2

)
≤ 2|x1|,

where we have used in particular the fact that 0 ≤ Rα
1 /R2 ≤ 1 and that

‖ϕ1‖C1 , ‖ϕ2‖C1 ≤ 1. Thus

(2.7) |J ′
ε| ≤

C

|µ| ‖ψ
′‖∞

\
|x1|≤1

( \
|x2|≤

Rα
1

R2
|x1|α

dx2

)
|x1|−α+ε dx1 ≤ C

µ
‖ψ′‖∞,

uniformly with respect to ϕ1, ϕ2, R1, R2, ε.
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A similar estimate may be obtained for |J ′′
ε |, since

|J ′′
ε | ≤

‖ψ‖∞
|µ| ‖ϕ1‖C1 ‖ϕ2‖C1

\
|x1|≤1

( \
|x2|≤

Rα
1

R2
|x1|α

dx2

)
|x1|−1+ε dx1(2.8)

≤ C

|µ| ‖ψ‖∞
Rα

1

R2

1

α+ ε
≤ C

α|µ|
uniformly with respect to ϕ1, ϕ2, R1, R2, ε. By combining (2.7) and (2.8)
we finally get

|Jε| ≤ |J ′
ε| + |J ′′

ε | ≤
C

|µ| .

Let us now consider the case R2 < Rα
1 . Set

A1 :=

{
(x1, x2) ∈ R

2 : |x1| ≤
R

1/α
2

R1
, |x2| ≤

Rα
1

R2
|x1|α

}
,

A2 :=

{
(x1, x2) ∈ R

2 :
R

1/α
2

R1
≤ |x1| ≤ 1, |x2| ≤ 1

}
.

We may now rewrite Jε as

Jε =
(\\

A1

+
\\
A2

)
|x2|−1+iµψ

(
x2

|x1|α
R2

Rα
1

)
|x1|−1+ε+iν

× sgnx1 ϕ1(x1)ϕ2(x2) dx1 dx2

=: Jε,A1
+ Jε,A2

.

The estimate of |Jε,A1
| is obtained by integrating by parts with respect to x2

and then repeatedly applying the mean value theorem. Since the reasoning
is similar to the estimate of |J ′

ε|, we omit it and we only state that

|Jε,A1
| ≤ C/|µ|,

uniformly with respect to ϕ1, ϕ2, R1, R2, ε.

In order to estimate Jε,A2
, we rewrite it after an integration by parts

with respect to x2 as

Jε,A2
= −

\\
A2

sgnx2

iµ
|x2|iµ|x1|−1−α+ε+iν(∂x2

ψ)

(
x2

|x1|α
R2

Rα
1

)
ϕ2(x2)ϕ1(x1)

× sgnx1 dx1 dx2

= −
\\
A2

sgnx2

iµ
|x2|iµψ

(
x2

|x1|α
R2

Rα
1

)
ϕ′

2(x2)ϕ1(x1)|x1|−1+ε+iν

× sgnx1 dx1 dx2.
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At this point it is easy to check that both integrals above are uniformly
bounded by C/|µ|, so that

|Jε| ≤ |Jε,A1
| + |Jε,A2

| ≤ C/|µ|,
where C may depend on α, independently of ϕ1, ϕ2, R1, R2, ε, and this
concludes the proof.

Let ϕ2(x2) be, as in Proposition 2.4, any normalized bump function in
C1(Rx2

). Take R2 > 0 and set, as above, ϕ2,R2
(x2) := ϕ2(x2/R2). Then

define the distribution Hµ,ν
ϕ2,R2

on Rx2
by

〈Hµ,ν
ϕ2,R2

, ϕ1〉 := 〈Hµ,ν , ϕ1 ⊗ ϕ2,R2
〉

= lim
ε→0

\\
|x1|−1+ε+iν sgnx1 |x2|−1+iµ ψ

(
x2

|x1|α
)

× ϕ1(x1)ϕ2

(
x2

R2

)
dx1 dx2

for any test function ϕ1 on Rx1
.

To conclude our proof that Hµ,ν defines a product kernel on R2 we only
need the following cancellation property.

Proposition 2.5.

(i) The distribution Hµ,ν
ϕ2,R2

coincides with the function

(2.9) Hµ,ν
ϕ2,R2

(x1) = |x1|−1+iν sgnx1

\
|x2|−1+iµψ

(
x2

|x1|α
)
ϕ2

(
x2

R2

)
dx2

on Rx1
\ {0}. Moreover , for any positive integer β there exists a

constant Cβ,µ,ν,α of admissible growth such that

(2.10) |∂β
x1
Hµ,ν

ϕ2,R2
(x1)| ≤ Cβ,µ,ν,α|x1|−1−β for all x1 ∈ R \ {0},

uniformly in ϕ2, R2.

(ii) For any normalized bump function ϕ1 of class C1(Rx1
) and any

R1 > 0 there exists a constant Cµ,α of admissible growth such that

(2.11) |〈Hµ,ν
ϕ2,R2

, ϕ1,R1
〉| ≤ Cµ,α

independently of ϕ1, R1, ϕ2, R2.

Proof. First of all, observe that the integral on the right-hand side of
(2.9) is absolutely convergent. Thus (2.9) follows from a routine application
of Fubini’s theorem.

It will now be shown that Hµ,ν
ϕ2,R2

satisfies the right differential inequali-
ties and cancellation conditions.



164 V. Casarino and S. Secco

If x1 ∈ R \ {0} and β = 0, integrating by parts we obtain

|Hµ,ν
ϕ2,R2

(x1)| = |x1|−1

∣∣∣∣
\

|x2|≤|x1|α

ψ

(
x2

|x1|α
)
|x2|−1+iµϕ2

(
x2

R2

)
dx2

∣∣∣∣

= |x1|−1

∣∣∣∣
\

|x2|≤|x1|α

|x2|iµ
iµ

sgnx2|x1|−α(∂x2
ψ)

(
x2

|x1|α
)
ϕ2

(
x2

R2

)
dx2

+
\

|x2|≤|x1|α

|x2|iµ
iµ

sgnx2ψ

(
x2

|x1|α
)

1

R2
ϕ′

2

(
x2

R2

)
dx2

∣∣∣∣

≤ |x1|−1

|µ|

( \
|x2|≤|x1|α

‖ψ′‖∞|x1|−α‖ϕ2‖C2 dx2

+
\

{|x2|≤|x1|α}∩{|x2|≤R2}

‖ψ‖∞
R2

‖ϕ2‖C2 dx2

)

≤ |x1|−1

|µ|

(
2‖ψ′‖∞ +

‖ψ‖∞
R2

\
|x2|≤R2

dx2

)

≤ 2(‖ψ‖∞ + ‖ψ′‖∞)

|µ| |x1|−1 = Cβ,µ|x1|−1

uniformly with respect to R2 and ϕ2.

If β 6= 0, one first applies the Leibniz rule, (2.2) and an integration by
parts to obtain

∂β
x1
Hµ,ν

ϕ2,R2
(x1) =

∑

β1+β2=β

cβ1,β2,ν |x1|−1+iν−β1(sgnx1)
1+β1

β2∑

l=1

cl

×
(
−

\
|x2|≤|x1|α

|x2|iµ
sgnx2

iµ
(∂x2

∂β2−l+1
x1

ψ)

(
x2

|x1|α
)

× xβ2−l+1
2

|x1|(α+1)β2−αl+2α
ϕ2

(
x2

R2

)
dx2

−
\

|x2|≤|x1|α

|x2|iµ
sgnx2

iµ
(∂β2−l+1

x1
ψ)

(
x2

|x1|α
)

(β2 − l + 1)xβ2−l
2

|x1|(α+1)β2−αl+α
ϕ2

(
x2

R2

)
dx2

−
\

|x2|≤|x1|α

|x2|iµ
sgnx2

iµ
(∂β2−l+1

x1
ψ)

(
x2

|x1|α
)

× xβ2−l+1
2

|x1|(α+1)β2−αl+α

1

R2
ϕ′

2

(
x2

R2

)
dx2

)
.
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Set now

cβ2,l := sup
|x2|≤|x1|α

∣∣∣∣(∂
β2−l+1
x1

ψ)

(
x2

|x1|α
)∣∣∣∣,

c′β2,l := sup
|x2|≤|x1|α

∣∣∣∣(∂x2
∂β2−l+1

x1
ψ)

(
x2

|x1|α
)∣∣∣∣.

Then it is easy to check that

|∂β
x1
Hµ,ν

ϕ2,R2
(x1)| ≤

1

|µ|
∑

β1+β2=β

|cβ1,β2,ν | |x1|−1−β1

β2∑

l=1

|cl|

×
(
c′β2,l

\
|x2|≤|x1|α

|x1|−β2−α dx2

+ (β2 − l + 1)cβ2,l

\
|x2|≤|x1|α

|x1|−β2−α dx2

+
cβ2,l

R2

\
|x2|≤R2

|x1|−β2 dx2

)

≤ Cν,β

|µ| |x1|−1−β = Cβ,µ,ν,α|x1|−1−β,

independently of R2 and ϕ2.

Finally, (ii) coincides essentially with (2.6), which has been proved in
Proposition 2.4.

As a consequence of the previous lemmata and propositions, we obtain

Theorem 2.6. The distribution Hµ,ν , defined by (2.1), is a product ker-

nel on R2.

3. A problem of fractional integration. Let ψ be a bump function
as defined at the beginning of Section 2, that is, an even smooth function
on R such that ψ = 1 on [0, 1/2] and ψ = 0 on (1,∞), with 0 ≤ ψ ≤ 1 on
(1/2, 1) and such that ψ′ changes sign only once. Following [Gr1] we define
a family of analytic distributions Dz, Re z > −1, as

〈Dz, f〉 :=
1

Γ
(

z+1
2

)
\
|u− 1|zψ(u− 1)f(u) du

for all f ∈ C∞
c (R). It is straightforward to check that Dz may be extended to

all z ∈ C. Take now α ∈ R, α ≥ 2. Define an analytic family of distributions
Kγ,α

z , for γ and z in C with Re γ ≥ 0, in the following way:

(3.1) 〈Kγ,α
z , f〉 :=

\
〈Dz(u), f(t, u|t|α)〉|t|γ dt

t
.
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We remark that, if Re γ = 0, then

〈Kγ,α
z , f〉 := lim

ε→0

\
〈Dz(u), f(t, u|t|α)〉|t|i̺+ε dt

t
,

where Im γ = ̺, for every f ∈ C∞
c (R2). Observe moreover that Kγ,α

z depends
analytically on both γ and z.

At this point we may introduce the family of convolution operators with
kernel Kγ,α

z defined by (3.1), that is,

(Sγ,α
z f)(x1, x2) := (Kγ,α

z ∗ f)(x1, x2)(3.2)

=
\
〈Dz(u), f(x1 − t, x2 − u|t|α)〉|t|γ dt

t
.

A necessary condition for Sγ,α
z to be a bounded operator from Lp(R2) to

Lq(R2) is that 1/p− 1/q = Re γ/(α+ 1), so that we may define the set

Σα :=

{(
1

p
,
1

q
,Re z

)
: Sγ,α

z maps Lp(R2) to Lq(R2) boundedly

}
.

In order to determine Σα, we shall use the following lemma.

Lemma 3.1. Let λ, ̺, a and ε be real numbers, with ̺ 6= 0, a > 0, |λ| > 1
and 0 < ε < 1. Then ∣∣∣∣

\
|t|<a

e−iλt |t|i̺+ε

t
dt

∣∣∣∣ ≤ C̺,

where C̺ denotes a positive constant , of admissible growth in ̺, independent

of ε and λ.

Proof. First of all, assume λ > 0 (the other case is analogous) and
observe that

I :=
\

|t|<a

e−iλt |t|i̺+ε

t
dt = −2iλ−i̺−ε

λa\
0

sin t · ti̺+ε−1 dt.

Now, if λa < 2, we obtain

|I| ≤ 2

λa\
0

tε dt ≤ C.

If λa ≥ 2, we integrate by parts twice to obtain |I| ≤ C̺.

Proposition 3.2. The operator Sγ,α
z maps L1 to L∞ if Re γ = α + 1

and Re z = 0.

Proof. The proof is similar to that of [Gr2, p. 655] and it is omitted.

In order to obtain an L2-L2 estimate for Sγ,α
z at the height Re z = −3/2,

we compute the Fourier transform of the distribution Ki̺,α
−3/2+iθ. Here we use

the methods of [Gr1] and [Gr2].
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The most interesting situation occurs when ̺ 6= 0 and α > 2. To treat
this case, we introduce the distributions

(3.3) Gi̺+ε,α
−3/2+iθ,N (ξ1, ξ2) :=

\
|t|<N

L−3/2+iθ(ξ2|t|α)e−i(ξ1t+ξ2|t|α) |t|i̺+ε

t
dt,

where ̺ 6= 0, θ ∈ R, ε > 0, N > 0 and Lr, r ∈ C, is an even smooth function
on the real line, defined as

Lr(v) :=
2r+1√π
Γ (−r/2)

(| · |−r−1 ∗ ψ̂)(v), v ∈ R.

Lemma 3.3.

(a) For every ̺ 6= 0 and θ ∈ R the limit limε→0, N→∞Gi̺+ε,α
−3/2+iθ,N exists

almost everywhere on R2.

(b) There exists an admissible constant Cθ,α,̺ such that

(3.4) |Gi̺+ε,α
−3/2+iθ,N (ξ1, ξ2)| ≤ Cθ,α,̺|ξ2|−1/α(1 + |ξ1| |ξ2|−1/α)

for almost all (ξ1, ξ2) ∈ R2, for α > 2, uniformly with respect to

ε > 0 and N > 0.

Proof. (a) Let ξ2 6= 0. By setting N ′ = |ξ2|1/αN , λ = |ξ2|−1/αξ1, ε2 =
sgn ξ2, we obtain

Gi̺+ε,α
−3/2+iθ,N (ξ1, ξ2)

=
( \
|t|<a

+
\

a≤|t|<N ′

)
|ξ2|−(i̺+ε)/αL−3/2+iθ(|t|α)e−i(λt+ε2|t|α) |t|i̺+ε

t
dt

=: I ′a + I ′′a,N ′ ,

where the positive constant a = aθ,̺,α will be chosen later.
We shall now compute the limit of I ′a, which may be rewritten as

I ′a = |ξ2|−(i̺+ε)/α

( \
|t|<a

(L−3/2+iθ(|t|α)e−iε2|t|α − L−3/2+iθ(0))e−iλt |t|i̺+ε

t
dt

+
\

|t|<a

L−3/2+iθ(0)
e−iλt − 1

t
|t|i̺+ε dt

)
.

Now, by applying the mean value theorem and the dominated convergence
theorem it is easy to see that I ′a converges, when ε→ 0, to

(3.5) i̺|ξ2|−i̺/α

( \
|t|<a

(L−3/2+iθ(|t|α)e−iε2|t|α − L−3/2+iθ(0))e−iλt |t|i̺
t
dt

+
\

|t|<a

L−3/2+iθ(0)
e−iλt − 1

t
|t|i̺ dt

)
.
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In order to estimate I ′′a,N ′ , we use Lemma 3.2 in [Gr1], stating that

Lr(v) = cr|v|−r−1 +R(v),

where R(v) = O(|v|−M) for all M > 0 as |v| → ∞, and Re r < 0. Thus

(3.6)
\

a≤|t|<N ′

L−3/2+iθ(|t|α)e−i(λt+ε2|t|α) |t|i̺+ε

t
dt

=
\

a≤|t|<N ′

Cθ|t|α/2−iθαe−i(λt+ε2|t|α) |t|i̺+ε

t
dt

+
\

a≤|t|<N ′

R−3/2+iθ(|t|α)e−i(λt+ε2|t|α) |t|i̺
t
dt.

Since R−3/2+iθ(|t|α) = O(|t|−αM) for all M > 0, it is easy to check that the
limit

lim
ε→0, N→∞

|ξ2|−(i̺+ε)/α
\

a≤|t|<N ′

R−3/2+iθ(|t|α)e−i(λt+ε2|t|α) |t|i̺+ε

t
dt

exists and is equal to

|ξ2|−i̺/α
\

a≤|t|<∞

R−3/2+iθ(|t|α)e−i(λt+ε2|t|α) |t|i̺
t
dt.

To compute the limit of the main term in (3.6), note that\
a≤|t|<N ′

|t|α/2−iθαe−i(λt+ε2|t|α) |t|i̺+ε

t
dt

=
\

a≤t<N ′

tα/2−1+ε+i(̺−αθ)e−iε2 tα(e−iλt + eiλt)
dt

t
.

After a routine integration by parts, it is not hard to conclude the proof
of (a).

(b) It suffices to prove that both |I ′a| and |I ′′a,N ′ | are bounded by
Cθ,α,̺|p(ξ1, ξ2)| for some function p satisfying

|p(ξ1, ξ2)| ≤ Cθ,α,̺|ξ2|−1/α(1 + |ξ1| · |ξ2|−1/α)

for almost all (ξ1, ξ2) ∈ R2. By arguing as in (a), we see that

|I ′a| ≤ Cθ,α,̺|ξ2|−ε/α(1 + |λ|).

Since |ξ2|−ε/α ≤ |ξ2|−1/α for |ξ2| ≤ 1, the right bound for |I ′a| is proved.
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In order to estimate |I ′′a,N ′ |, observe that the main term on the right-hand
side of (3.6) may be written as

N ′\
a

−tα/2−1+ε+i(̺−αθ)ei(λt−ε2tα) dt+

N ′\
a

tα/2−1+ε+i(̺−αθ)e−i(λt+ε2 tα) dt

=: I+ + I−.

If |λ| ≤ 2αaα−1, integrating by parts we obtain

|I+| =
∣∣∣
N ′\
a

tα/2−1+ε+i(̺−αθ)ei(λt−ε2tα) dt
∣∣∣

≤ 1

α

(
N ′−α/2+ε

+ a−α/2+ε

+

N ′\
a

(
√

(−α/2 + ε)2 + (̺− αθ)2 · t−1 + |λ|)t−α/2+ε dt
)
.

For α > 2 the integrals above converge and

|I+| ≤ Cθ,̺,α,a(1 + |λ|),
uniformly with respect to ε and N ′. An analogous estimate may be proved
for |I−|.

Consider now the case |λ| > 2αaα−1. It is convenient to rewrite I+ as

I+ =

((
|λ|
2α

)
1

α−1\
a

+

(
2|λ|
α

)
1

α−1\
(
|λ|
2α

)
1

α−1

+

N ′\
(
2|λ|
α

)
1

α−1

)
tα/2+ε−1+i(̺−αθ)ei(λt−ε2 tα) dt

=: I
(1)
+ + I

(2)
+ + I

(3)
+ .

To estimate I
(1)
+ , we integrate by parts to obtain

|I(1)
+ | ≤

( |λ|
2α

) 1

α−1
(α/2−1+ε)

|λ− |λ|/2| +
aα/2−1+ε

|λ− ε2αaα−1| +

(
|λ|
2α

)
1

α−1\
a

tα/2−2+ε

|λ− ε2αtα−1|2

× (
√

(α/2 − 1 + ε)2 + (̺− αθ)2 · |λ− ε2αt
α−1| + α(α− 1)tα−1) dt.

By using the inequalities

|λ− |λ|/2| ≥ |λ|/2, |λ− ε2αa
α−1| ≥ αaα−1,

|λ|/2 ≤ |λ− ε2αt
α−1| ≤ 3|λ|/2,

we finally get

(3.7) |I(1)
+ | ≤ Cθ,̺,a,α.
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An analogous estimate may be proved for the integral I
(3)
+ . Indeed, integrat-

ing by parts and using the inequalities

|λ− 2|λ| | ≥ |λ|, |λ− ε2αN
′α−1| ≥ α

2
N ′α−1

,

α

2
tα−1 ≤ |λ− ε2αt

α−1| ≤ 3

2
αtα−1,

we obtain in a similar way

(3.8) |I(3)
+ | ≤ Cθ,̺,a,α,

independently of ε and N ′.

In order to estimate I
(2)
+ , we observe that it is an oscillatory integral with

phase

ϕ(t) = (̺− αθ) ln t+ λt− ε2t
α.

By choosing the constant a such that a ≥ max{|̺− αθ|1/(α−2), 1}, we have
|ϕ′′(t)| ≥ (|λ|/2α)(α−2)/(α−1), so that a routine application of van der Cor-
put’s lemma yields

(3.9) |I(2)
+ | ≤ Cθ,̺,a,α|λ|ε/2(α−1).

By collecting (3.7), (3.8) and (3.9) we conclude that |I+| is bounded by
Cθ,̺,a,α|λ|ε/2(α−1) for some admissible constant Cθ,̺,a,α. Since similar esti-
mates hold for |I−| and for the remainder in (3.6), we conclude that

|I ′′a,N ′ | ≤ Cθ,α,̺|ξ2|−ε/α(1 + |λ|ε/2(α−1))

a.e. in R2. Since for |λ| > 2αaα−1 we have |λ|−ε/2(α−1) ≤ |λ|, it is easy to
conclude that

|Gi̺+ε,α
−3/2+iθ,N (ξ1, ξ2)| ≤ Cθ,α,̺|ξ2|−1/α(1 + |ξ1| |ξ2|−1/α)

for almost all (ξ1, ξ2) ∈ R2, uniformly with respect to ε > 0 and N > 0.

Proposition 3.4. The operator Sγ,α
z maps L2 to L2 if Re γ = 0 and

Re z = −3/2.

Proof. We shall first consider the case γ = i̺, ̺, θ ∈ R, ̺ 6= 0 and
we will prove that the Fourier transform of the kernel Ki̺,α

−3/2+iθ is given

by limε→0, N→∞Gi̺+ε,α
−3/2+iθ,N , where the distributions Gi̺+ε,α

−3/2+iθ,N have been

studied in the previous lemma.
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Let f be any Schwartz function on R2 and α > 2. Thus

〈 ̂
Ki̺,α

−3/2+iθ, f〉 = 〈Ki̺,α
−3/2+iθ, f̂〉

= lim
ε→0

\
〈D−3/2+iθ(u), f̂(t, u|t|α)〉 |t|

i̺+ε

t
dt

= lim
ε→0

lim
N→∞

\
|t|<N

\\
̂D−3/2+iθ(ξ2|t|α)f(ξ1, ξ2)e

−iξ1t dξ1 dξ2
|t|i̺+ε

t
dt

= lim
ε→0

lim
N→∞

\
|t|<N

\\
f(ξ1, ξ2)L−3/2+iθ(ξ2|t|α)e−iξ1te−iξ2|t|α dξ1 dξ2

|t|i̺+ε

t
dt

= lim
ε→0

lim
N→∞

\\
Gi̺+ε,α

−3/2+iθ,N (ξ1, ξ2)f(ξ1, ξ2) dξ1 dξ2,

where we have used the fact that D̂z(v) = e−ivLz(v). Observe now that, as
a consequence of Lemma 3.3,

(3.10) |Gi̺+ε,α
−3/2+iθ,N (ξ1, ξ2)f(ξ1, ξ2)|

≤ Cθ,α,̺|ξ2|−1/α(1 + |ξ1| |ξ2|−1/α)|f(ξ1, ξ2)|
for almost all (ξ1, ξ2) ∈ R2, uniformly with respect to ε > 0 and N > 0. It is
easy to check that the function on the right-hand side of (3.10) is integrable
on R2, so that by the dominated convergence theorem we obtain

〈 ̂
Ki̺,α

−3/2+iθ, f〉 =
\\

lim
ε→0

lim
N→∞

Gi̺+ε,α
−3/2+iθ,N (ξ1, ξ2)f(ξ1, ξ2) dξ1 dξ2.

For the case α = 2 we refer the reader to [Gr2, p. 655].

We shall now prove that

(3.11) | ̂
Ki̺,α

−3/2+iθ(ξ1, ξ2)| ≤ Cα,θ,̺ for almost all (ξ1, ξ2) ∈ R
2

for some constant Cα,θ,̺ of admissible growth.

As a consequence of Lemma 3.1 we have

|(3.5)| ≤ Cα,θ,̺

for a.a. (ξ1, ξ2) ∈ R2, so that we only have to show that the limit of the main
term in (3.6) is bounded. This is not hard, after a standard integration by
parts.

The case γ = i̺, ̺ = 0, is similar and easier and we do not treat it
here.

The following proposition yields boundedness of Sγ,α
z on the closed seg-

ment AE \ {A} and, by duality, on the segment EC \ {C} as well, where
E := (2/3, 1/3,−1). The proof is similar to the proof of Proposition in [Gr2,
pp. 656–658], and therefore we omit it.



172 V. Casarino and S. Secco

Proposition 3.5. The operator Sγ,α
z maps Lp to L2p for all 3/2≤p<∞

if Re γ = (α+ 1)/2p and Re z = −1.

Consider now the distribution Hµ,ν defined by (2.1). In Theorem 2.6 we
proved that Hµ,ν is a product-type kernel on R2. Define now a distribution
H̃ by the formula\̃

H(x1, x2)f(x1, x2) dx1 dx2 =
\
H(x1, x2)f(x1, x2 + |x1|α) dx1 dx2

for every function f ∈ S(R2) and α ≥ 2. We say, in analogy to [Se, Def. 1.2],

that H̃ is a product-type kernel adapted to the curve x1 7→ |x1|α on R2.

Since f(x1, x2 + |x1|α) belongs to C2(R2), the kernel H̃ is a well defined
distribution, singular along the coordinate axis x1 = 0 and the curve x2 =
|x1|α.

S. Secco recently proved ([Se, Th. 1.3]) that the convolution operator

T : f 7→ f ∗ H̃ defined on the Schwartz class can be extended to a bounded
operator on Lp(R2) for all 1 < p <∞. Her result yields the boundedness of
the operator Sγ,α

z on the open segment AC, as the following theorem shows.

Theorem 3.6. The operator Sγ,α
z maps Lp to Lp for all 1 < p < ∞ if

Re γ = 0 and Re z = −1.

Proof. If θ = 0, then

Si̺,α
−1 f(x1, x2) = lim

ε→0

\
f(x1 − t, x2 − |t|α)|t|i̺+ε dt

t
.

It is a well known result ([SW]) that Si̺,α
−1 maps Lp to Lp for all 1 < p <∞.

If θ 6= 0, then the convolution kernel Ki̺,α
−1+iθ may be written as

〈Ki̺,α
−1+iθ, f〉 =

1

Γ (iθ/2)
lim
ε→0

\\
|x2 − |x1|α|−1+iθψ

(
x2

|x1|α
− 1

)

× |x1|−1+ε+i(̺−αθ) sgnx1f(x1, x2) dx1 dx2

and it essentially coincides with the kernelHµ,ν , defined by (2.1), with µ = θ,
ν = ̺ − αθ, adapted to the curve x1 7→ |x1|α. Thus Theorem 2.6 and [Se,

Theorem 1.3] imply that Si̺,α
−1+iθ maps Lp to Lp for all 1 < p <∞.

Finally, we completely characterize the set Σα defined above.

Theorem 3.7. For Re γ > 0 the analytic family of fractional inte-

grals Sγ,α
z maps Lp to Lq if and only if (1/p, 1/q,Re z) belongs either to

the interior of the closed tetrahedron ABCD with vertices A = (0, 0,−1),
B = (1/2, 1/2,−3/2), C = (1, 1,−1), D = (1, 0, 0), or to the open faces

ABD, BCD, ACD, or to the closed edge BD \ {B}.
For Re γ = 0 the integrals Sγ,α

z map Lp to Lp if and only if (1/p, 1/p,
Re z) belongs to the open segment AC or to the open face ACB ∪ {B}.



Analytic families of fractional integrals 173

Proof. Propositions 3.2 and 3.4 yield, respectively, boundedness at D
and B. By interpolation, Sγ,α

z maps Lp to Lp′ on the closed edge BD.

As mentioned before, Proposition 3.5 implies boundedness along AE \
{A}, so that, by interpolating this segment with B and D, we prove bound-
edness on the open face ABD, and therefore, by duality, on BCD as well.

In the light of Theorem 3.6, Sγ,α
z maps Lp to Lp along the open seg-

ment AC. Thus, by interpolating with B and D, we obtain boundedness on
the faces, respectively, ACB and ACD (the latter, in particular, was not
covered by the results in [Gr2]). Moreover, interpolation between AC and
E yields boundedness on the open face ACE, so that interpolating between
ACE and B and D we finally fill the interior of the closed tetrahedron.

For the proof of the necessity, we refer the reader to [Gr2, p. 659] and to
the Introduction above.
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