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A stronger Dunford—Pettis property
by

H. CARRION (Sao Paulo), P. GALINDO (Valencia) and
M. L. LOURENGO (Sao Paulo)

Abstract. We discuss a strong version of the Dunford—Pettis property, earlier named
(DP™) property, which is shared by both ¢; and {«. It is equivalent to the Dunford—Pettis
property plus the fact that every quotient map onto ¢y is completely continuous. Other
weak sequential continuity results on polynomials and analytic mappings related to the
(DP*) property are shown.

There are several classes of subsets of a Banach space which play a
significant role in describing its topological properties, and hence in the
study of operators and polynomials. One can think of the classes of com-
pact, weakly compact, limited sets, etc. Often in the literature when dealing
with the complete continuity of either operators or polynomials one faces
Banach spaces which are either Schur spaces or Grothendieck spaces with
the Dunford—Pettis property; see the work of F. Bombal and G. Emmanuele
[1], M. Gonzalez and J. Gutiérrez [12]| and J. Jaramillo, A. Prieto and
I. Zalduendo [14]. What do these classes of spaces have in common? We found
that, among other things, they share the property that weakly compact sets
are limited and also that such property had been introduced by J. Borwein,
M. Fabian and J. Vanderwerff in [3] under the name of (DP*) property.

In this note we obtain characterizations of this property in terms of ¢o-
valued linear operators. For instance, it is equivalent to the Dunford—Pettis
property plus the fact that every quotient map onto cg is completely contin-
uous. It is shown that any non-limited operator between Banach spaces with
the (DP*) property fixes a copy of 1. We also relate it to weak sequential
continuity properties of polynomials and analytic mappings defined on Ba-
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nach spaces enjoying this property; in particular, polynomials are completely
continuous when the range space is Gelfand—Phillips.

1. Generalities. A subset L of a Banach space X is said to be lzmited
if weak™ null sequences in the dual space X* converge uniformly on L. If all
limited sets in a Banach space X are relatively compact, then X is said to
be a Gelfand—Phillips space. All separable spaces and all weakly compactly
generated spaces are Gelfand—Phillips spaces. Recall that L C X is said to
be conditionally weakly compact if any sequence in L has a weakly Cauchy
subsequence. A Banach space X has the Grothendieck property if weak*
convergent sequences in X* are weakly convergent.

Given Banach spaces X, Y and a positive integer n we denote by P("X,Y)
the space of all continuous n-homogeneous polynomials from X into Y. To
each P € P("X,Y) we can associate a unique symmetric n-linear mapping
P from X" to Y such that P(z) = P(z,...,x) for all z € X. The space of all
holomorphic functions from X into Y will be denoted by H(X,Y). For any
feH(X,Y)and A C X, we define || f||4 = sup,c4 || f(2)||. As is customary,
we say that f is completely continuous if it maps weakly convergent sequences
into convergent sequences.

For unexplained notation on Banach spaces we refer to [11] and on poly-
nomials and holomorphic mappings to [10].

DEFINITION 1.1. A Banach space X is said to have the (DP*) property
whenever all weakly compact sets in X are limited.

In other words, this is equivalent to the fact that for any weakly null se-
quence (z,) in X and any weak™ convergent sequence (¢y,) in X* lim,, ¢, (zy)
=0.

Recall that X has the Dunford—Pettis property if for any weakly null
sequence (x,) in X and any weakly convergent sequence (y,) in X*,
lim,, ,,(z,,) = 0. That is, weakly null sequences in X are uniformly conver-
gent on weakly compact sets in X*, or equivalently, on conditionally weakly
compact sets. But observe that Definition 1.1 does not mean that weakly
null sequences in X are uniformly convergent on weak™ compact sets in X*,
as this is just the Schur property of X; and not even on weak® conditionally
compact sets, since the unit ball of the dual of a separable space is weak*
conditionally compact.

PROPOSITION 1.2. The Banach space X has the (DP*) property if , and
only if, every conditionally weakly compact set L in X s a limited set. In
particular, if X has the (DP*) property, then it is finite-dimensional or
contains a copy of {1, and P("X) contains a copy of loo for n > 2.

Proof. Assume X has the (DP*) property. If L is not limited, there is
a sequence (pp) weak® null in X* such that (||¢n||z) is not null. Thus, we
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can pick § > 0 and x, € L so that |¢,(z,)| > J. There is no loss of gen-
erality in assuming that (x,) itself is a weakly Cauchy sequence. Since the
sequence (@ (2m,))y is null, there is n,, such that |¢,, ()| < §/2. Thus
| onm (Tn, — Tm)| = l@nn, (Tn,,)| = |@n,, (Tm)| > §/2. However, the sequence
(n,, — Tm)m is weakly null in X, so limy, o, (zn,, — Tm) = 0, contrary to
the former inequality.

The converse statement is obvious since every weakly compact set is
conditionally weakly compact.

To see that X contains a copy of /1, observe that otherwise by Rosenthal’s
{1 theorem, the unit ball of X would be conditionally weakly compact, hence
limited. According to the Josefson—Nissenzweig theorem this is only possible
if X is finite-dimensional. In case X contains a copy of ¢1, it has /> as a
quotient, g : X — f5. Then ¢' : P("f3) — P("X) is an embedding and it is
known that P("™¢3) contains a copy of . m

REMARK 1.3 (cf. [1], [3], [14]). If X is a Schur space, then X has the
(DP*) property. Also every Grothendieck Banach space with the Dunford—
Pettis property enjoys the (DP*) property. Also every Banach space with
the Pelczynski (P) property, the Dunford—Pettis property and without com-
plemented copies of ¢y enjoys the (DP*) property.

As a consequence, H* has the (DP*) property since Bourgain showed
that it has the Dunford—Pettis property [4] and it is a Grothendieck space [5].

REMARK 1.4. If X is a Gelfand—Phillips space, then either X is a Schur
space or X lacks the (DP*) property. In particular, a separable space with
the (DP*) property must be a Schur space. Indeed, if X is not a Schur space,
then there is a weakly null sequence which is not norm convergent, hence it
cannot be limited.

The above result slightly improves Proposition 5 of [14] (see also [3]) as
it points out that if X has the (DP*) property and is a Gelfand-Phillips
space (instead of X* having weak* sequentially compact unit ball), then it is
a Schur space. Let us recall the existence of a Gelfand—Phillips space whose
dual unit ball is not weak™ sequentially compact [18].

PROPOSITION 1.5. If X and Y are Banach spaces with the (DP*) prop-
erty, then so is X XY as well.

Proof. 1t suffices to check that the product of two limited sets A C X and
B C Y is limited. Indeed, let (¢,,) C (X xXY)* = X*@Y™* be weak® null. Then
On = O+ for ¢, € X* and ¢, € Y* with (¢,,) and () weak™ null. Since
[¥nllB — 0 and [[¢n]la — 0, we have [|onllaxs < [[¢nlla + [[¢nllz — 0. =

EXAMPLES. (a) In general, a quotient space of a space with the (DP*)
property does not share this property: think of /o as a quotient of ¢;. If X
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has the (DP*) property and Y C X does not contain ¢1, then X/Y has the
(DP*) property: Assume that for some weakly null sequence (x,) C X/Y,
and for some weak® convergent sequence (®,,) C (X/Y)*, we have |@,,(xn)| >
0 > 0. Then we may find a weak® convergent sequence (¢,) C X* and, by
Lohman’s lifting result (see [8, p. 212]), a weakly Cauchy sequence (z3) C X
such that zp € xp, and |¢n, (25)] = |Pn,(Xn,)| > 6 > 0, which contra-
dicts the (DP*) property of X since (xj) is a conditionally weakly compact
set.

However, complemented subspaces do inherit this property, although gen-
eral closed subspaces do not: just recall cg C £. Actually, according to Re-
mark 1.4, every closed subspace of a Banach space X has the (D P*) property
if, and only if, X is a Schur space.

(b) Also the (DP*) property is neither inherited from the dual, as in the
case of ¢g, nor inherited by the dual, as in the case of ¢;(¢3) which is a Schur
space whose dual (o (¢4) lacks the Dunford-Pettis property [22].

(c) The above proposition enlarges the class of spaces enjoying the (D P*)
property and provides examples, like /1 x (o, of spaces with the (DP¥)
property which are neither Schur nor Grothendieck. Observe also that the
proposition implies that the bidual of the disc algebra A has the (DP¥)
property. Indeed, it is known (|21, p. 11]|) that A™ = H*® & Viing Where Viing
denotes the space of measures on the unit sphere of C singular with respect
to the Lebesgue measure. As pointed out there, V;ng is a C(K)-space for an
extremely disconnected compact Hausdorff space K, hence a Grothendieck
space.

(d) Furthermore, the tensor product fo, @, £ has been shown in [2] to
lack the Dunford—Pettis property, hence also the (DP¥).

(e) The space L; does not have the (DP*) property, since otherwise, as
a separable space, it must be, according to 1.4, a Schur space, and this is
precluded by the fact that it contains a copy of £5. Furthermore, since L is a
weakly sequentially complete Banach lattice, it is a complemented subspace
of its bidual (see, for instance, Theorem 1.c.4 in [19, II]), which therefore
cannot have the (D P*) property. As a consequence, £ does not have (D P*)
either because, thanks to an old result of Pelczynski, {oc ~ Lo (=~ L7), so
0%, is isomorphic to L]*.

(f) Clearly in a weakly sequentially complete Banach space the notions
of conditionally weakly compact and relatively weakly compact set coincide.
Therefore if X has the (D P*) property, then limited sets in X are relatively
weakly compact if, and only if, X is weakly sequentially complete.

PROPOSITION 1.6. If X* has the (DP*) property and no sequence in X*
equivalent to the unit basis of {1 converges in the weak”™ topology, then X has
the (DP*) property.
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Proof. Let (p,) C X* and (z,) C X be sequences weak™ convergent and
weakly null respectively, such that for some € > 0, |¢,(z,)| > . According
to the assumption, (¢,) does not have subsequences equivalent to the unit
basis of /1. By passing to subsequences, we may suppose that (p,) is a
weakly Cauchy sequence. Further, (z,) is a weak™ null sequence in X*, so
lim,, |¢on(zn)| = 0 because E* has the (DP*) property. =

2. Operators. In this section we obtain several characterizations of the
DP*) property in terms of linear operators into c.
y

PROPOSITION 2.1. X has the (DP*) property if , and only if , every op-
erator T : X — cg is completely continuous. In particular, if X has the
(DP*) property, then it does not contain complemented copies of cg.

Proof. Let (z,,) C X be a weakly null sequence and let (¢,,) be a weak*
null sequence in X*. Define T': X — ¢o by T(x) = (¢n(x)). Then || T(z)| =
sup,, |on(zm)| tends to 0 as m — oo, so (¢y) converges uniformly to 0
on {z,}.

Conversely, let T : X — ¢g be an operator, and let (x,) C X be a
weakly null sequence. If ||T'(zy,)| does not converge to 0, there is no loss
of generality in assuming that ||T'(x,,)| > ¢ for all m and some 6 > 0.
For each m, there is a canonical projection from cg, say 7, , such that
IT(xm)|| = |7k, (T'(xm))]. The sequence (ky,) cannot be bounded, since
otherwise we may take N > k,, for all m, and then considering only the
first N coordinates we would obtain a mapping z € X — (Tj(z))Y, € CV
for which (T}(x,))Y.; would be a non-null sequence. Therefore (m,, o T) is
a weak® null sequence in X*, and by assumption (7, o 7T) must converge
uniformly to 0 on (z,,). A contradiction. m

For a C'(K)-space, being a Grothendieck space is equivalent to the (DP*)
property. This is so because whenever a C(K)-space does not contain a
complemented copy of cp, it must be a Grothendieck space [20, p. 230].
Recall that {w/co =~ C(SN \ N) is a Grothendieck space, hence it has the
(DP*) property.

THEOREM 2.2. X has the (DP*) property if, and only if, X has the
Dunford—Pettis property and every quotient mapping q : X — cg s com-
pletely continuous.

Proof. We begin with the sufficiency. Let (,) be a weak™ null sequence
in X* and (x,) a weakly null sequence in X. Assume that @, (xy,)| > d >0
for all n € N. By Rosenthal’s /1 theorem, we may suppose that either (¢)
is a weakly Cauchy sequence or it is equivalent to the ¢; basis. In the first
case, given Z,, there is n,, such that @, (zm)| < §/2 for n > n,y,. Further,

[(Onm = Pm)(@m)| = [om(Tm)] = lon,, (Tm)] > /2.
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Now the sequence (¢, — @m)m 18 weakly null in X* so by the Dunford-
Pettis property, lim,,(¢n,, — ¢m)(Tm) = 0. This contradiction leaves us
with the case where (¢,,) is equivalent to the ¢; basis. Then the mapping
r € X — q(x) = (en(x)) € co is surjective because its transpose ¢* is an
isomorphic embedding. Hence, by assumption, ¢ must be a completely con-
tinuous operator, so (g(x,)) is a null sequence in ¢g. This is a contradiction
since [[g(zn)| > lon(an)] > 5.
The necessity is obvious from Proposition 2.1. =

Note that the above proof also shows that for spaces X such that X*
does not contain a copy of ¢1, the (DP*) property and the Dunford—Pettis
property are equivalent.

Recall that an operator T': X — Y is called limited (respectively, condi-
tionally weakly compact) if T' takes the unit ball of X into a limited (respec-
tively, conditionally weakly compact) subset of Y.

THEOREM 2.3. Assume X andY have the (DP*) property. If T : X =Y
18 a non-limited operator, then T fizes a copy of 1.

Proof. If T is not limited, then there is a sequence (¢,) weak* null in
Y™ such that |7*(¢y)|| is not null. Thus, we can pick 6 > 0 and z, € X
with ||zy| <1 so that (@, oT)(zy)| > 0. We claim that (z,,) has no weakly
Cauchy subsequence. If the claim is false, then there is no loss of generality in
assuming that (x,,) is itself weakly Cauchy. Since the sequence (¢, (T(2m)))n
is null, there is n,, such that |(¢y,,, © T)(zm)| < §/2. Further,

[P (T () = T(@m))| = [Py (T (Xn,))| = [P (T (€m))] = 6/2.

However, the sequence (z,,, — Zm)m is weakly null in X, so by the (DP¥)
property of X, lim,, (¢n,, oT)(xn,, —m) = 0, which contradicts the previous
statement. Thus the claim holds. Therefore by Rosenthal’s /1 theorem there
is a subsequence of (x,) which is equivalent to the ¢; basis. For simplicity,
we assume again that such a subsequence is the whole sequence.

Now we deal with (T'(zy,)). Bearing in mind the (DP*) property of Y and
the weak™® convergence of (¢, ), the above calculations also show that (T'(z,,))
has no weakly Cauchy subsequence. Finally, Rosenthal’s ¢ theorem gives us
a subsequence (T'(xy,)) of (T'(zy)) equivalent to the ¢; basis. Therefore we
have found a copy of ¢; fixed by T =

We may deduce from the above theorem that the quotient mapping £, —
U /co fixes a copy of ¢ since, as an open mapping, it is not limited.

The following is an extension of Corollary in [6] that follows straight from
Proposition 1.2.

REMARK 2.4. If Yenjoys the (DP*) property and the operator 7': X —Y
is a conditionally weakly compact, then 7' is limited.
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3. Polynomials and analytic mappings. The object of this section
is to relate the (DP*) property to weak sequential continuity properties of
polynomials and analytic mappings defined on Banach spaces enjoying it. In

particular, polynomials are completely continuous when the range space is
Gelfand—Phillips.

PROPOSITION 3.1. Let X and Y be Banach spaces with co C Y. If ev-
ery operator T : X — Y is completely continuous, then X has the (DP*)
property and every polynomial P € P ("X,Y") is completely continuous.

Proof. The assumption implies that every T : X — ¢y is completely
continuous since ¢g C Y. Thus X has the (D P*) property by Proposition 2.1.

The second statement is proved by induction on the degree of P. It is
obvious for n = 1. So, assume it is true for n. For P € P(""1X,Y’) we show
first that P maps weakly null sequences into null sequences. Let (x,,) C X
be a weakly null sequence. The inductive hypothesis shows that for each
x € X, the n-homogeneous polynomial z € X +— P(xz,2") € Y is completely

continuous, hence lim,, P(z,z},) = 0. Choose ¢, € Y* such that ||¢.,| =1
and @, (P(2m)) = ||P(zm)]]. Then T : X — ¢ C Y given by

T(z) = (om(P(z,27)))m
is a well defined operator which is completely continuous since X has the
(DP*) property. Therefore,

0 = lim |[T(2m)[| = lim || (em (P (@m; 23,)))m| = Lo [P (@),

as we wanted. Now for a sequence (x,,) C E weakly convergent to a it suffices
to observe the identity

Tm) — Pla) = P(x,;, —a ~ (T g T — a)" T ad).
P(an) - Pla) = P(en >+jzl(j)P<<m 1, o)

By the above, lim P(x,, —a) = 0 and moreover every mapping z € X —
P(z"*17J a/)€Y,j=1,...,n,is apolynomial of degree not greater than n,
so by induction lim,, P((z;, —a)" ™17, a/) = 0. Thus lim,, P(x,,) = P(a). =

The above theorem does not necessarily hold if the assumption cg C Y is
removed. Just consider X = /5 and Y = /1, for which all operators L : o —
¢ are compact (Pitt’s theorem). Obviously ¢ lacks the (DP*) property and
the 2-homogeneous polynomial (x,) € fy — (22) € £ is not completely
continuous.

We observe that the (D P*) property yields a polynomial version of itself.

REMARK 3.2. If X has the (DP*) property, then pointwise convergent
sequences in P(*X) converge uniformly to 0 on weakly null sequences in X.
Indeed, as a consequence of [13, Theorem 5|, for any sequence (P,,) pointwise
convergent in P(¥X), to say P, we know that P, — P converges to 0 uniformly
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on limited sets in F, and, in particular, on any weakly null sequence ()
in X. Further, since E also has the Dunford—Pettis property, P is completely
continuous. Therefore, lim,, P, (z,) = lim, (P, — P)(z,) = 0.

As a consequence of Proposition 3.1 we recover Theorem 17 in [12], that
is, if X has the (DP*) property, then every polynomial P : X — ¢ is com-
pletely continuous. Our next result extends this in the same way Theorem 6
in [1] did. We obtain a slight extension valid for some holomorphic mappings;
we include in the proof the polynomial case just for the reader’s convenience.

PROPOSITION 3.3. If X has the (DP*) property and Y is a Gelfand—
Phillips space, then every polynomial P : X — Y s completely continuous.
Further, any f € H(X,Y) which is bounded on weakly compact (resp. lim-
ited) sets is weakly continuous on them.

Proof. Since polynomials map limited sets into limited sets [13], P maps
weakly compact subsets of X into limited sets in Y, hence into relatively
compact sets, and further the weak and norm topologies coincide on those
images. Now if (z,) C X converges weakly to a, then for each ¢ € Y™,
(poP)(xyn) — (¢oP)(a) because of [13, Theorem 3|, that is, P(zy,) converges
weakly to P(a). Further, by [13, Proposition 7|, P is weakly continuous on
limited sets in X.

Since f may be uniformly approximated on weakly compact (resp. lim-
ited) sets by its Taylor series at 0, the weak continuity of f on weakly com-
pact (resp. limited) sets follows from that of the polynomials in the Taylor
series. m

In |7, Fact 1], relating to a question of Pelczyniski, it is shown that a
separable Banach space X is Schur if, and only if, every symmetric bilinear
separately compact map X x X — ¢y is completely continuous. It is also
remarked that this may fail for nonseparable spaces. Our next remark points
out that the (D P*) property is the due property of X for the stated condition
to hold.

COROLLARY 3.4. A Banach space X has the (DP*) property if, and
only if, every symmetric bilinear separately compact map X X X — cq is
completely continuous.

Proof. The necessity follows from Proposition 3.3 and the polarization
formula. Conversely, let T' € L(X, cg). We claim that the symmetric bilinear
map TR T : X x X — ¢o given by T'® T(x,y) = T(x)T(y) (pointwise
product) is separately compact. Without loss of generality, assume ||T'|| = 1.
Now, fix z € X. For given ¢ > 0 there is n such that |T(z),,| < ¢ for all
m > n; so

T(2)T(Bx) C (IT(x)[[D)" + €Be,-
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Hence T'(x)T is a compact mapping, as claimed. Therefore, by assumption,
T ®T is completely continuous. Thus if (z,) is a weakly null sequence in X,
then ||T @ T(xp, )| = [[(T(2,))?|| = |(T(zn))||> — 0, showing that T is
completely continuous. m

It is clear that no Gelfand—Phillips space can contain a (complemented)
copy of £~,. However in the above proposition we cannot replace the condition
on the space Y by the non-containment of copies of £, without some extra
assumption on X. This is pointed out by Haydon’s example of a compact
space K such that C(K) is a Grothendieck space without copies of /o, ([15]),
for which the identity mapping is not completely continuous.

Let us recall that a subset L of X is bounding if every f € H(X) is
bounded on L.

COROLLARY 3.5. All holomorphic functions on X are completely contin-
wous if , and only if , all holomorphic functions on X are bounded on weakly
compact sets. Under this condition, X has the (DP*) property, and if Y is
a Gelfand—Phillips space, then any f € H(X,Y) is completely continuous.

Proof. =. If f € H(X) and there is a weakly compact set L C X such
that f is unbounded on L, then we can find a weakly convergent sequence
(zn) C L such that |f(x,)| > n, contradicting the assumption.

<. Now the weakly compact sets are bounding, hence limited (see for
instance [17]). Therefore X has the (DP*) property and so we may apply
the above proposition.

The final statement follows from noticing that, under the assumption, any
holomorphic mapping on X is bounded on each weakly compact set L, so
we may approximate it by some polynomial which is completely continuous
on L. m

This corollary actually requires dealing with all holomorphic functions:
Recall that for the reflexive Tsirelson space, T, a holomorphic function on
T* is completely continuous if, and only if, it is bounded on weakly compact
sets. Nevertheless this class does not exhaust the space of all holomorphic
functions on 7%, and clearly 7™ does not have the (DP*) property.

Let B denote the class of Banach spaces which satisfy the equivalent
conditions in Corollary 3.5, that is, Banach spaces whose weakly compact
sets are bounding. The above corollary shows that any X € B satisfies the
(DP*) property, a fact that also follows from the proof of Theorem 3 in
[14]. The spaces in the class B may be characterized in an analogous way
to Proposition 2.1: X € B if, and only if, all f € H(X,cy) are completely
continuous.

The space ¢ belongs to B. This follows from Theorem 1 in [16].
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We claim that also the space o /co = C(SN\N) is in B. First, we prove
that for any weakly null sequence (f,) C C(SN \ N) there is a weakly null
sequence of extensions (fn) C C(PN). In order to do that, define in a pre-
liminary step fn(m) = 1/m for m < n; the functions f; are continuous in
the compact subset {1,...,n} UBN\N which have continuous extensions to
BN which we also denote by fn and which satisfy || f»|| < max{||f,||,1}. The
resulting sequence ( fn) clearly converges pointwise to 0 in SN and is uni-
formly bounded. Thus the Lebesgue dominated convergence theorem guar-
antees that it is weakly null. To prove the claim, assume to the contrary
that there is a ¢ € H(C(SN \ N)) unbounded on some weakly compact
set L € C(ON\ N). Thus there is a sequence (z,) C L weakly conver-
gent to zg such that (g(zy)) is an unbounded sequence. Put f,, = x,, — 0.
If G(z) = g(x + x0), then G € H(C(AN \ N)), and the sequence (G(fy))
is unbounded. If ¢ : C(AN) — C(SN \ N) is the restriction map, then
Goq € H(C(BN)) and (G o ¢(f,)) is unbounded. This is a contradiction,
since (fn) is a weakly null sequence.

Next we show that B is stable under cartesian product and that the class
of Banach spaces with the (DP*) property is wider than B.

PROPOSITION 3.6. If X,Y € B, then X XY also belongs to B.

Proof. Let f € H(X xY) and consider a weakly compact set in X x Y
which we may suppose to be Ax B with A C X and B C Y both weakly com-
pact. We check that the collection {f(z, )}zca C H(Y) is m9-bounded. In-
deed, for any compact subset K of Y, the collection { f(-,y) }yex C (H(X), 10)
is bounded, hence 75-bounded (|9, 2.44, 2.46|). In addition, since A is bound-
ing in X, the sup norm on A, || - |4, is a 75-continuous seminorm in H(X)
by [9, 4.18], so

sup sup | f(z,y)| = sup sup [ f(z,y)| = sup 17 (5 y)lla < oo,

reAyeK yeK z€A
as we wanted. Now, since B is bounding in Y, {f(x,-)}+ca is bounded for
the || - || seminorm, hence {|f(x,y)|}zcayep is bounded, and so A x B is
bounding in X X Y. m

EXAMPLE 3.7. There is a Banach space with the (DP*) property which
does not belong to B. Let E be the Banach space constructed by Josefson in
[17]. Tt contains a copy of cp, its unit basis (eg) is a limited set in E (ibid.,
Lemma 1) and E/cg is a Schur space. Actually, E has the (DP*) property.
Indeed, let (x,) be a weakly null sequence in E. If ¢ : E — E/c¢g is the
quotient mapping, then (q(z,)) is a null sequence, so we can choose a,, € ¢
such that ||z, +an|| < [|¢(xn)]| +1/n. Then (z, +a,) is a null sequence, and
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therefore (ay) is a weakly null sequence in ¢y. Since
{zp:neN}C{x,+a,:neN}—{a,:neN},

to show that {z, : n € N} is limited it is sufficient to prove the limitedness
in E of {ay, : n € N}. Suppose the latter set is not limited in E. Then (ay,)
cannot be norm null and we may apply the Bessaga—Pelczynski selection
principle (see [11, 6.21]) to obtain an also non-limited subsequence (ay, ) of
(ar) that is equivalent to a block basic sequence of the unit basis (e) which
in turn is equivalent (up to normalization) to (e) (|11, 6.22]). Since (ey) is
a limited set in F, so also is (ay, ), contrary to assumption.

On the other hand, all bounding sets in E are relatively compact. If
all the weakly compact sets were bounding, they would also be relatively
compact or, in other words, F would be a Schur space. This is not possible
since E contains a copy of cg.
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