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A stronger Dunford�Pettis propertybyH. Carrión (São Paulo), P. Galindo (Valen
ia) andM. L. Lourenço (São Paulo)
Abstra
t. We dis
uss a strong version of the Dunford�Pettis property, earlier named

(DP ∗) property, whi
h is shared by both ℓ1 and ℓ∞. It is equivalent to the Dunford�Pettisproperty plus the fa
t that every quotient map onto c0 is 
ompletely 
ontinuous. Otherweak sequential 
ontinuity results on polynomials and analyti
 mappings related to the
(DP ∗) property are shown.There are several 
lasses of subsets of a Bana
h spa
e whi
h play asigni�
ant role in des
ribing its topologi
al properties, and hen
e in thestudy of operators and polynomials. One 
an think of the 
lasses of 
om-pa
t, weakly 
ompa
t, limited sets, et
. Often in the literature when dealingwith the 
omplete 
ontinuity of either operators or polynomials one fa
esBana
h spa
es whi
h are either S
hur spa
es or Grothendie
k spa
es withthe Dunford�Pettis property; see the work of F. Bombal and G. Emmanuele[1℄, M. González and J. Gutiérrez [12℄ and J. Jaramillo, A. Prieto andI. Zalduendo [14℄. What do these 
lasses of spa
es have in 
ommon?We foundthat, among other things, they share the property that weakly 
ompa
t setsare limited and also that su
h property had been introdu
ed by J. Borwein,M. Fabian and J. Vanderwer� in [3℄ under the name of (DP ∗) property.In this note we obtain 
hara
terizations of this property in terms of c0-valued linear operators. For instan
e, it is equivalent to the Dunford�Pettisproperty plus the fa
t that every quotient map onto c0 is 
ompletely 
ontin-uous. It is shown that any non-limited operator between Bana
h spa
es withthe (DP ∗) property �xes a 
opy of ℓ1. We also relate it to weak sequential
ontinuity properties of polynomials and analyti
 mappings de�ned on Ba-2000 Mathemati
s Subje
t Classi�
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206 H. Carrión et al.na
h spa
es enjoying this property; in parti
ular, polynomials are 
ompletely
ontinuous when the range spa
e is Gelfand�Phillips.1. Generalities. A subset L of a Bana
h spa
e X is said to be limitedif weak∗ null sequen
es in the dual spa
e X∗ 
onverge uniformly on L. If alllimited sets in a Bana
h spa
e X are relatively 
ompa
t, then X is said tobe a Gelfand�Phillips spa
e. All separable spa
es and all weakly 
ompa
tlygenerated spa
es are Gelfand�Phillips spa
es. Re
all that L ⊂ X is said tobe 
onditionally weakly 
ompa
t if any sequen
e in L has a weakly Cau
hysubsequen
e. A Bana
h spa
e X has the Grothendie
k property if weak∗
onvergent sequen
es in X∗ are weakly 
onvergent.Given Bana
h spa
es X,Y and a positive integer n we denote byP (nX,Y )the spa
e of all 
ontinuous n-homogeneous polynomials from X into Y. Toea
h P ∈ P (nX,Y ) we 
an asso
iate a unique symmetri
 n-linear mapping
P̌ from Xn to Y su
h that P (x) = P̌ (x, . . . , x) for all x ∈ X. The spa
e of allholomorphi
 fun
tions from X into Y will be denoted by H(X,Y ). For any
f ∈ H(X,Y ) and A ⊂ X, we de�ne ‖f‖A = supx∈A ‖f(x)‖. As is 
ustomary,we say that f is 
ompletely 
ontinuous if it maps weakly 
onvergent sequen
esinto 
onvergent sequen
es.For unexplained notation on Bana
h spa
es we refer to [11℄ and on poly-nomials and holomorphi
 mappings to [10℄.Definition 1.1. A Bana
h spa
e X is said to have the (DP ∗) propertywhenever all weakly 
ompa
t sets in X are limited.In other words, this is equivalent to the fa
t that for any weakly null se-quen
e (xn) inX and any weak∗ 
onvergent sequen
e (ϕn) inX∗, limn ϕn(xn)
= 0.Re
all that X has the Dunford�Pettis property if for any weakly nullsequen
e (xn) in X and any weakly 
onvergent sequen
e (ϕn) in X∗,
limn ϕn(xn) = 0. That is, weakly null sequen
es in X are uniformly 
onver-gent on weakly 
ompa
t sets in X∗, or equivalently, on 
onditionally weakly
ompa
t sets. But observe that De�nition 1.1 does not mean that weaklynull sequen
es in X are uniformly 
onvergent on weak∗ 
ompa
t sets in X∗,as this is just the S
hur property of X; and not even on weak∗ 
onditionally
ompa
t sets, sin
e the unit ball of the dual of a separable spa
e is weak∗
onditionally 
ompa
t.Proposition 1.2. The Bana
h spa
e X has the (DP ∗) property if , andonly if , every 
onditionally weakly 
ompa
t set L in X is a limited set. Inparti
ular , if X has the (DP ∗) property , then it is �nite-dimensional or
ontains a 
opy of ℓ1, and P (nX) 
ontains a 
opy of ℓ∞ for n ≥ 2.Proof. Assume X has the (DP ∗) property. If L is not limited, there isa sequen
e (ϕn) weak∗ null in X∗ su
h that (‖ϕn‖L) is not null. Thus, we
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an pi
k δ > 0 and xn ∈ L so that |ϕn(xn)| > δ. There is no loss of gen-erality in assuming that (xn) itself is a weakly Cau
hy sequen
e. Sin
e thesequen
e (ϕn(xm))n is null, there is nm su
h that |ϕnm
(xm)| < δ/2. Thus

|ϕnm
(xnm

− xm)| ≥ |ϕnm
(xnm

)| − |ϕnm
(xm)| ≥ δ/2. However, the sequen
e

(xnm
− xm)m is weakly null in X, so limm ϕnm

(xnm
− xm) = 0, 
ontrary tothe former inequality.The 
onverse statement is obvious sin
e every weakly 
ompa
t set is
onditionally weakly 
ompa
t.To see thatX 
ontains a 
opy of ℓ1, observe that otherwise by Rosenthal's

ℓ1 theorem, the unit ball of X would be 
onditionally weakly 
ompa
t, hen
elimited. A

ording to the Josefson�Nissenzweig theorem this is only possibleif X is �nite-dimensional. In 
ase X 
ontains a 
opy of ℓ1, it has ℓ2 as aquotient, q : X → ℓ2. Then qt : P (nℓ2) → P (nX) is an embedding and it isknown that P (nℓ2) 
ontains a 
opy of ℓ∞.Remark 1.3 (
f. [1℄, [3℄, [14℄). If X is a S
hur spa
e, then X has the
(DP ∗) property. Also every Grothendie
k Bana
h spa
e with the Dunford�Pettis property enjoys the (DP ∗) property. Also every Bana
h spa
e withthe Peª
zy«ski (P ) property, the Dunford�Pettis property and without 
om-plemented 
opies of c0 enjoys the (DP ∗) property.As a 
onsequen
e, H∞ has the (DP ∗) property sin
e Bourgain showedthat it has the Dunford�Pettis property [4℄ and it is a Grothendie
k spa
e [5℄.Remark 1.4. If X is a Gelfand�Phillips spa
e, then either X is a S
hurspa
e or X la
ks the (DP ∗) property. In parti
ular, a separable spa
e withthe (DP ∗) property must be a S
hur spa
e. Indeed, if X is not a S
hur spa
e,then there is a weakly null sequen
e whi
h is not norm 
onvergent, hen
e it
annot be limited.The above result slightly improves Proposition 5 of [14℄ (see also [3℄) asit points out that if X has the (DP ∗) property and is a Gelfand�Phillipsspa
e (instead of X∗ having weak∗ sequentially 
ompa
t unit ball), then it isa S
hur spa
e. Let us re
all the existen
e of a Gelfand�Phillips spa
e whosedual unit ball is not weak∗ sequentially 
ompa
t [18℄.Proposition 1.5. If X and Y are Bana
h spa
es with the (DP ∗) prop-erty , then so is X × Y as well.Proof. It su�
es to 
he
k that the produ
t of two limited sets A ⊂ X and
B ⊂ Y is limited. Indeed, let (ϕn) ⊂ (X×Y )∗ ≈ X∗⊕Y ∗ be weak∗ null. Then
ϕn = φn+ψn for φn ∈ X∗ and ψn ∈ Y ∗ with (φn) and (ψn) weak∗ null. Sin
e
‖ψn‖B → 0 and ‖φn‖A → 0, we have ‖ϕn‖A×B ≤ ‖φn‖A + ‖ψn‖B → 0.Examples. (a) In general, a quotient spa
e of a spa
e with the (DP ∗)property does not share this property: think of ℓ2 as a quotient of ℓ1. If X



208 H. Carrión et al.has the (DP ∗) property and Y ⊂ X does not 
ontain ℓ1, then X/Y has the
(DP ∗) property: Assume that for some weakly null sequen
e (χn) ⊂ X/Y,and for some weak∗ 
onvergent sequen
e (Φn) ⊂ (X/Y )∗, we have |Φn(χn)| >
δ > 0. Then we may �nd a weak∗ 
onvergent sequen
e (ϕn) ⊂ X∗ and, byLohman's lifting result (see [8, p. 212℄), a weakly Cau
hy sequen
e (xk) ⊂ Xsu
h that xk ∈ χnk

and |ϕnk
(xk)| = |Φnk

(χnk
)| > δ > 0, whi
h 
ontra-di
ts the (DP ∗) property of X sin
e (xk) is a 
onditionally weakly 
ompa
tset.However, 
omplemented subspa
es do inherit this property, although gen-eral 
losed subspa
es do not: just re
all c0 ⊂ ℓ∞. A
tually, a

ording to Re-mark 1.4, every 
losed subspa
e of a Bana
h spa
e X has the (DP ∗) propertyif, and only if, X is a S
hur spa
e.(b) Also the (DP ∗) property is neither inherited from the dual, as in the
ase of c0, nor inherited by the dual, as in the 
ase of ℓ1(ℓn2 ) whi
h is a S
hurspa
e whose dual ℓ∞(ℓn2 ) la
ks the Dunford�Pettis property [22℄.(
) The above proposition enlarges the 
lass of spa
es enjoying the (DP ∗)property and provides examples, like ℓ1 × ℓ∞, of spa
es with the (DP ∗)property whi
h are neither S
hur nor Grothendie
k. Observe also that theproposition implies that the bidual of the dis
 algebra A has the (DP ∗)property. Indeed, it is known ([21, p. 11℄) that A∗∗ = H∞⊕V ∗

sing where Vsingdenotes the spa
e of measures on the unit sphere of C singular with respe
tto the Lebesgue measure. As pointed out there, V ∗

sing is a C(K)-spa
e for anextremely dis
onne
ted 
ompa
t Hausdor� spa
e K, hen
e a Grothendie
kspa
e.(d) Furthermore, the tensor produ
t ℓ∞ ⊗̂π ℓ∞ has been shown in [2℄ tola
k the Dunford�Pettis property, hen
e also the (DP ∗).(e) The spa
e L1 does not have the (DP ∗) property, sin
e otherwise, asa separable spa
e, it must be, a

ording to 1.4, a S
hur spa
e, and this ispre
luded by the fa
t that it 
ontains a 
opy of ℓ2. Furthermore, sin
e L1 is aweakly sequentially 
omplete Bana
h latti
e, it is a 
omplemented subspa
eof its bidual (see, for instan
e, Theorem 1.
.4 in [19, II℄), whi
h therefore
annot have the (DP ∗) property. As a 
onsequen
e, ℓ∗
∞

does not have (DP ∗)either be
ause, thanks to an old result of Peª
zy«ski, ℓ∞ ≈ L∞ (≃ L∗

1), so
ℓ∗
∞

is isomorphi
 to L∗∗

1 .(f) Clearly in a weakly sequentially 
omplete Bana
h spa
e the notionsof 
onditionally weakly 
ompa
t and relatively weakly 
ompa
t set 
oin
ide.Therefore if X has the (DP ∗) property, then limited sets in X are relativelyweakly 
ompa
t if, and only if, X is weakly sequentially 
omplete.Proposition 1.6. If X∗ has the (DP ∗) property and no sequen
e in X∗equivalent to the unit basis of ℓ1 
onverges in the weak∗ topology , then X hasthe (DP ∗) property.



A stronger Dunford�Pettis property 209Proof. Let (ϕn) ⊂ X∗ and (xn) ⊂ X be sequen
es weak∗ 
onvergent andweakly null respe
tively, su
h that for some ε > 0, |ϕn(xn)| > ε. A

ordingto the assumption, (ϕn) does not have subsequen
es equivalent to the unitbasis of ℓ1. By passing to subsequen
es, we may suppose that (ϕn) is aweakly Cau
hy sequen
e. Further, (xn) is a weak∗ null sequen
e in X∗, so
limn |ϕn(xn)| = 0 be
ause E∗ has the (DP ∗) property.2. Operators. In this se
tion we obtain several 
hara
terizations of the
(DP ∗) property in terms of linear operators into c0.Proposition 2.1. X has the (DP ∗) property if , and only if , every op-erator T : X → c0 is 
ompletely 
ontinuous. In parti
ular , if X has the
(DP ∗) property , then it does not 
ontain 
omplemented 
opies of c0.Proof. Let (xn) ⊂ X be a weakly null sequen
e and let (ϕn) be a weak∗null sequen
e inX∗. De�ne T : X → c0 by T (x) = (ϕn(x)). Then ‖T (xm)‖ =
supn |ϕn(xm)| tends to 0 as m → ∞, so (ϕn) 
onverges uniformly to 0on {xn}.Conversely, let T : X → c0 be an operator, and let (xn) ⊂ X be aweakly null sequen
e. If ‖T (xm)‖ does not 
onverge to 0, there is no lossof generality in assuming that ‖T (xm)‖ > δ for all m and some δ > 0.For ea
h m, there is a 
anoni
al proje
tion from c0, say πkm

, su
h that
‖T (xm)‖ = |πkm

(T (xm))|. The sequen
e (km) 
annot be bounded, sin
eotherwise we may take N > km for all m, and then 
onsidering only the�rst N 
oordinates we would obtain a mapping x ∈ X 7→ (Ti(x))
N
i=1 ∈ C

Nfor whi
h (Ti(xn))N
i=1 would be a non-null sequen
e. Therefore (πkm

◦ T ) isa weak∗ null sequen
e in X∗, and by assumption (πkm
◦ T ) must 
onvergeuniformly to 0 on (xn). A 
ontradi
tion.For a C(K)-spa
e, being a Grothendie
k spa
e is equivalent to the (DP ∗)property. This is so be
ause whenever a C(K)-spa
e does not 
ontain a
omplemented 
opy of c0, it must be a Grothendie
k spa
e [20, p. 230℄.Re
all that ℓ∞/c0 ≈ C(βN \ N) is a Grothendie
k spa
e, hen
e it has the

(DP ∗) property.Theorem 2.2. X has the (DP ∗) property if , and only if , X has theDunford�Pettis property and every quotient mapping q : X → c0 is 
om-pletely 
ontinuous.Proof. We begin with the su�
ien
y. Let (ϕn) be a weak∗ null sequen
ein X∗ and (xn) a weakly null sequen
e in X. Assume that |ϕn(xn)| > δ > 0for all n ∈ N. By Rosenthal's ℓ1 theorem, we may suppose that either (ϕn)is a weakly Cau
hy sequen
e or it is equivalent to the ℓ1 basis. In the �rst
ase, given xm, there is nm su
h that |ϕn(xm)| < δ/2 for n ≥ nm. Further,
|(ϕnm

− ϕm)(xm)| ≥ |ϕm(xm)| − |ϕnm
(xm)| ≥ δ/2.
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e (ϕnm
− ϕm)m is weakly null in X∗ so by the Dunford�Pettis property, limm(ϕnm

− ϕm)(xm) = 0. This 
ontradi
tion leaves uswith the 
ase where (ϕn) is equivalent to the ℓ1 basis. Then the mapping
x ∈ X 7→ q(x) = (ϕn(x)) ∈ c0 is surje
tive be
ause its transpose q∗ is anisomorphi
 embedding. Hen
e, by assumption, q must be a 
ompletely 
on-tinuous operator, so (q(xn)) is a null sequen
e in c0. This is a 
ontradi
tionsin
e ‖q(xn)‖ ≥ |ϕn(xn)| > δ.The ne
essity is obvious from Proposition 2.1.Note that the above proof also shows that for spa
es X su
h that X∗does not 
ontain a 
opy of ℓ1, the (DP ∗) property and the Dunford�Pettisproperty are equivalent.Re
all that an operator T : X → Y is 
alled limited (respe
tively, 
ondi-tionally weakly 
ompa
t) if T takes the unit ball of X into a limited (respe
-tively, 
onditionally weakly 
ompa
t) subset of Y.Theorem 2.3. Assume X and Y have the (DP ∗) property. If T : X→ Yis a non-limited operator , then T �xes a 
opy of ℓ1.Proof. If T is not limited, then there is a sequen
e (ϕn) weak∗ null in
Y ∗ su
h that ‖T ∗(ϕn)‖ is not null. Thus, we 
an pi
k δ > 0 and xn ∈ Xwith ‖xn‖ ≤ 1 so that |(ϕn ◦ T )(xn)| > δ. We 
laim that (xn) has no weaklyCau
hy subsequen
e. If the 
laim is false, then there is no loss of generality inassuming that (xn) is itself weakly Cau
hy. Sin
e the sequen
e (ϕn(T (xm)))nis null, there is nm su
h that |(ϕnm

◦ T )(xm)| < δ/2. Further,
|ϕnm

(T (xnm
) − T (xm))| ≥ |ϕnm

(T (xnm
))| − |ϕnm

(T (xm))| ≥ δ/2.However, the sequen
e (xnm
− xm)m is weakly null in X, so by the (DP ∗)property of X, limm(ϕnm

◦T )(xnm
−xm) = 0, whi
h 
ontradi
ts the previousstatement. Thus the 
laim holds. Therefore by Rosenthal's ℓ1 theorem thereis a subsequen
e of (xn) whi
h is equivalent to the ℓ1 basis. For simpli
ity,we assume again that su
h a subsequen
e is the whole sequen
e.Now we deal with (T (xn)). Bearing in mind the (DP ∗) property of Y andthe weak∗ 
onvergen
e of (ϕn), the above 
al
ulations also show that (T (xn))has no weakly Cau
hy subsequen
e. Finally, Rosenthal's ℓ1 theorem gives usa subsequen
e (T (xnk

)) of (T (xn)) equivalent to the ℓ1 basis. Therefore wehave found a 
opy of ℓ1 �xed by T.We may dedu
e from the above theorem that the quotient mapping ℓ∞ →
ℓ∞/c0 �xes a 
opy of ℓ1 sin
e, as an open mapping, it is not limited.The following is an extension of Corollary in [6℄ that follows straight fromProposition 1.2.Remark 2.4. If Y enjoys the (DP ∗) property and the operator T :X→Yis a 
onditionally weakly 
ompa
t, then T is limited.
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 mappings. The obje
t of this se
tionis to relate the (DP ∗) property to weak sequential 
ontinuity properties ofpolynomials and analyti
 mappings de�ned on Bana
h spa
es enjoying it. Inparti
ular, polynomials are 
ompletely 
ontinuous when the range spa
e isGelfand�Phillips.Proposition 3.1. Let X and Y be Bana
h spa
es with c0 ⊆ Y . If ev-ery operator T : X → Y is 
ompletely 
ontinuous, then X has the (DP ∗)property and every polynomial P ∈ P (nX,Y ) is 
ompletely 
ontinuous.Proof. The assumption implies that every T : X → c0 is 
ompletely
ontinuous sin
e c0 ⊆ Y . Thus X has the (DP ∗) property by Proposition 2.1.The se
ond statement is proved by indu
tion on the degree of P . It isobvious for n = 1. So, assume it is true for n. For P ∈ P (n+1X,Y ) we show�rst that P maps weakly null sequen
es into null sequen
es. Let (xm) ⊂ Xbe a weakly null sequen
e. The indu
tive hypothesis shows that for ea
h
x ∈ X, the n-homogeneous polynomial z ∈ X 7→ P̌ (x, zn) ∈ Y is 
ompletely
ontinuous, hen
e limm P̌ (x, xn

m) = 0. Choose ϕm ∈ Y ∗ su
h that ‖ϕm‖ = 1and ϕm(P (xm)) = ‖P (xm)‖. Then T : X → c0 ⊆ Y given by
T (x) = (ϕm(P̌ (x, xn

m)))mis a well de�ned operator whi
h is 
ompletely 
ontinuous sin
e X has the
(DP ∗) property. Therefore,

0 = lim
m

‖T (xm)‖ = lim
m

‖(ϕm(P̌ (xm, x
n
m)))m| = lim

m
‖P (xm)‖,as we wanted. Now for a sequen
e (xn) ⊂ E weakly 
onvergent to a it su�
esto observe the identity

P (xm) − P (a) = P (xm − a) +
n∑

j=1

(
n+ 1

j

)
P̌ ((xm − a)n+1−j, aj).By the above, limP (xm − a) = 0 and moreover every mapping z ∈ X 7→

P̌ (zn+1−j, aj) ∈ Y , j = 1, . . . , n, is a polynomial of degree not greater than n,so by indu
tion limm P̌ ((xm −a)n+1−j, aj) = 0. Thus limm P (xm) = P (a).The above theorem does not ne
essarily hold if the assumption c0 ⊆ Y isremoved. Just 
onsider X = ℓ2 and Y = ℓ1, for whi
h all operators L : ℓ2 →
ℓ1 are 
ompa
t (Pitt's theorem). Obviously ℓ2 la
ks the (DP ∗) property andthe 2-homogeneous polynomial (xn) ∈ ℓ2 7→ (x2

n) ∈ ℓ1 is not 
ompletely
ontinuous.We observe that the (DP ∗) property yields a polynomial version of itself.Remark 3.2. If X has the (DP ∗) property , then pointwise 
onvergentsequen
es in P (kX) 
onverge uniformly to 0 on weakly null sequen
es in X.Indeed, as a 
onsequen
e of [13, Theorem 5℄, for any sequen
e (Pn) pointwise
onvergent in P (kX), to say P, we know that Pn−P 
onverges to 0 uniformly



212 H. Carrión et al.on limited sets in E, and, in parti
ular, on any weakly null sequen
e (xn)in X. Further, sin
e E also has the Dunford�Pettis property, P is 
ompletely
ontinuous. Therefore, limn Pn(xn) = limn(Pn − P )(xn) = 0.As a 
onsequen
e of Proposition 3.1 we re
over Theorem 17 in [12℄, thatis, if X has the (DP ∗) property, then every polynomial P : X → c0 is 
om-pletely 
ontinuous. Our next result extends this in the same way Theorem 6in [1℄ did. We obtain a slight extension valid for some holomorphi
 mappings;we in
lude in the proof the polynomial 
ase just for the reader's 
onvenien
e.Proposition 3.3. If X has the (DP ∗) property and Y is a Gelfand�Phillips spa
e, then every polynomial P : X → Y is 
ompletely 
ontinuous.Further , any f ∈ H(X,Y ) whi
h is bounded on weakly 
ompa
t (resp. lim-ited) sets is weakly 
ontinuous on them.Proof. Sin
e polynomials map limited sets into limited sets [13℄, P mapsweakly 
ompa
t subsets of X into limited sets in Y, hen
e into relatively
ompa
t sets, and further the weak and norm topologies 
oin
ide on thoseimages. Now if (xn) ⊂ X 
onverges weakly to a, then for ea
h ϕ ∈ Y ∗,
(ϕ◦P )(xn) → (ϕ◦P )(a) be
ause of [13, Theorem 3℄, that is, P (xn) 
onvergesweakly to P (a). Further, by [13, Proposition 7℄, P is weakly 
ontinuous onlimited sets in X.Sin
e f may be uniformly approximated on weakly 
ompa
t (resp. lim-ited) sets by its Taylor series at 0, the weak 
ontinuity of f on weakly 
om-pa
t (resp. limited) sets follows from that of the polynomials in the Taylorseries.In [7, Fa
t 1℄, relating to a question of Peª
zy«ski, it is shown that aseparable Bana
h spa
e X is S
hur if, and only if, every symmetri
 bilinearseparately 
ompa
t map X × X → c0 is 
ompletely 
ontinuous. It is alsoremarked that this may fail for nonseparable spa
es. Our next remark pointsout that the (DP ∗) property is the due property ofX for the stated 
onditionto hold.Corollary 3.4. A Bana
h spa
e X has the (DP ∗) property if , andonly if , every symmetri
 bilinear separately 
ompa
t map X × X → c0 is
ompletely 
ontinuous.Proof. The ne
essity follows from Proposition 3.3 and the polarizationformula. Conversely, let T ∈ L(X, c0). We 
laim that the symmetri
 bilinearmap T ⊗ T : X × X → c0 given by T ⊗ T (x, y) = T (x)T (y) (pointwiseprodu
t) is separately 
ompa
t. Without loss of generality, assume ‖T‖ = 1.Now, �x x ∈ X. For given ε > 0 there is n su
h that |T (x)m| ≤ ε for all
m ≥ n; so

T (x)T (BX) ⊂ (‖T (x)‖D)n + εBc0 .
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e T (x)T is a 
ompa
t mapping, as 
laimed. Therefore, by assumption,
T ⊗T is 
ompletely 
ontinuous. Thus if (xn) is a weakly null sequen
e in X,then ‖T ⊗ T (xn, xn)‖ = ‖(T (xn))2‖ = ‖(T (xn))‖2 → 0, showing that T is
ompletely 
ontinuous.It is 
lear that no Gelfand�Phillips spa
e 
an 
ontain a (
omplemented)
opy of ℓ∞. However in the above proposition we 
annot repla
e the 
onditionon the spa
e Y by the non-
ontainment of 
opies of ℓ∞ without some extraassumption on X. This is pointed out by Haydon's example of a 
ompa
tspa
e K su
h that C(K) is a Grothendie
k spa
e without 
opies of ℓ∞ ([15℄),for whi
h the identity mapping is not 
ompletely 
ontinuous.Let us re
all that a subset L of X is bounding if every f ∈ H(X) isbounded on L.Corollary 3.5. All holomorphi
 fun
tions on X are 
ompletely 
ontin-uous if , and only if , all holomorphi
 fun
tions on X are bounded on weakly
ompa
t sets. Under this 
ondition, X has the (DP ∗) property , and if Y isa Gelfand�Phillips spa
e, then any f ∈ H(X,Y ) is 
ompletely 
ontinuous.Proof. ⇒. If f ∈ H(X) and there is a weakly 
ompa
t set L ⊂ X su
hthat f is unbounded on L, then we 
an �nd a weakly 
onvergent sequen
e
(xn) ⊂ L su
h that |f(xn)| ≥ n, 
ontradi
ting the assumption.

⇐. Now the weakly 
ompa
t sets are bounding, hen
e limited (see forinstan
e [17℄). Therefore X has the (DP ∗) property and so we may applythe above proposition.The �nal statement follows from noti
ing that, under the assumption, anyholomorphi
 mapping on X is bounded on ea
h weakly 
ompa
t set L, sowe may approximate it by some polynomial whi
h is 
ompletely 
ontinuouson L.This 
orollary a
tually requires dealing with all holomorphi
 fun
tions:Re
all that for the re�exive Tsirelson spa
e, T ∗, a holomorphi
 fun
tion on
T ∗ is 
ompletely 
ontinuous if, and only if, it is bounded on weakly 
ompa
tsets. Nevertheless this 
lass does not exhaust the spa
e of all holomorphi
fun
tions on T ∗, and 
learly T ∗ does not have the (DP ∗) property.Let B denote the 
lass of Bana
h spa
es whi
h satisfy the equivalent
onditions in Corollary 3.5, that is, Bana
h spa
es whose weakly 
ompa
tsets are bounding. The above 
orollary shows that any X ∈ B satis�es the
(DP ∗) property, a fa
t that also follows from the proof of Theorem 3 in[14℄. The spa
es in the 
lass B may be 
hara
terized in an analogous wayto Proposition 2.1: X ∈ B if, and only if, all f ∈ H(X, c0) are 
ompletely
ontinuous.The spa
e ℓ∞ belongs to B. This follows from Theorem 1 in [16℄.
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laim that also the spa
e ℓ∞/c0 ≈ C(βN \N) is in B. First, we provethat for any weakly null sequen
e (fn) ⊂ C(βN \ N) there is a weakly nullsequen
e of extensions (f̃n) ⊂ C(βN). In order to do that, de�ne in a pre-liminary step f̃n(m) = 1/m for m ≤ n; the fun
tions f̃n are 
ontinuous inthe 
ompa
t subset {1, . . . , n}∪βN \N whi
h have 
ontinuous extensions to
βN whi
h we also denote by f̃n and whi
h satisfy ‖f̃n‖ ≤ max{‖fn‖, 1}. Theresulting sequen
e (f̃n) 
learly 
onverges pointwise to 0 in βN and is uni-formly bounded. Thus the Lebesgue dominated 
onvergen
e theorem guar-antees that it is weakly null. To prove the 
laim, assume to the 
ontrarythat there is a g ∈ H(C(βN \ N)) unbounded on some weakly 
ompa
tset L ⊂ C(βN \ N). Thus there is a sequen
e (xn) ⊂ L weakly 
onver-gent to x0 su
h that (g(xn)) is an unbounded sequen
e. Put fn = xn − x0.If G(x) = g(x + x0), then G ∈ H(C(βN \ N)), and the sequen
e (G(fn))is unbounded. If q : C(βN) → C(βN \ N) is the restri
tion map, then
G ◦ q ∈ H(C(βN)) and (G ◦ q(f̃n)) is unbounded. This is a 
ontradi
tion,sin
e (f̃n) is a weakly null sequen
e.Next we show that B is stable under 
artesian produ
t and that the 
lassof Bana
h spa
es with the (DP ∗) property is wider than B.Proposition 3.6. If X,Y ∈ B, then X × Y also belongs to B.Proof. Let f ∈ H(X × Y ) and 
onsider a weakly 
ompa
t set in X × Ywhi
h we may suppose to be A×B with A ⊂ X and B ⊂ Y both weakly 
om-pa
t. We 
he
k that the 
olle
tion {f(x, ·)}x∈A ⊂ H(Y ) is τ0-bounded. In-deed, for any 
ompa
t subsetK of Y, the 
olle
tion {f(·, y)}y∈K ⊂(H(X), τ0)is bounded, hen
e τδ-bounded ([9, 2.44, 2.46℄). In addition, sin
e A is bound-ing in X, the sup norm on A, ‖ · ‖A, is a τδ-
ontinuous seminorm in H(X)by [9, 4.18℄, so

sup
x∈A

sup
y∈K

|f(x, y)| = sup
y∈K

sup
x∈A

|f(x, y)| = sup
y∈K

‖f(·, y)‖A <∞,as we wanted. Now, sin
e B is bounding in Y, {f(x, ·)}x∈A is bounded forthe ‖ · ‖B seminorm, hen
e {|f(x, y)|}x∈A,y∈B is bounded, and so A × B isbounding in X × Y.Example 3.7. There is a Bana
h spa
e with the (DP ∗) property whi
hdoes not belong to B. Let E be the Bana
h spa
e 
onstru
ted by Josefson in[17℄. It 
ontains a 
opy of c0, its unit basis (ek) is a limited set in E (ibid.,Lemma 1) and E/c0 is a S
hur spa
e. A
tually, E has the (DP ∗) property.Indeed, let (xn) be a weakly null sequen
e in E. If q : E → E/c0 is thequotient mapping, then (q(xn)) is a null sequen
e, so we 
an 
hoose an ∈ c0su
h that ‖xn +an‖ ≤ ‖q(xn)‖+1/n. Then (xn +an) is a null sequen
e, and
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e in c0. Sin
e
{xn : n ∈ N} ⊂ {xn + an : n ∈ N} − {an : n ∈ N},to show that {xn : n ∈ N} is limited it is su�
ient to prove the limitednessin E of {an : n ∈ N}. Suppose the latter set is not limited in E. Then (an)
annot be norm null and we may apply the Bessaga�Peª
zy«ski sele
tionprin
iple (see [11, 6.21℄) to obtain an also non-limited subsequen
e (ank

) of
(an) that is equivalent to a blo
k basi
 sequen
e of the unit basis (ek) whi
hin turn is equivalent (up to normalization) to (ek) ([11, 6.22℄). Sin
e (ek) isa limited set in E, so also is (ank

), 
ontrary to assumption.On the other hand, all bounding sets in E are relatively 
ompa
t. Ifall the weakly 
ompa
t sets were bounding, they would also be relatively
ompa
t or, in other words, E would be a S
hur spa
e. This is not possiblesin
e E 
ontains a 
opy of c0.A
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