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Regularity of the symbolic calculus in Besov algebras

by

Gérard Bourdaud (Paris) and
Massimo Lanza de Cristoforis (Padova)

Abstract. We consider Besov and Lizorkin–Triebel algebras, that is, the real-valued
function spaces Bs

p,q(R
n)∩L∞(Rn) and F s

p,q(R
n)∩L∞(Rn) for all s > 0. To each function

f : R → R one can associate the composition operator Tf which takes a real-valued
function g to the composite function f ◦ g. We give necessary conditions and sufficient
conditions on f for the continuity, local Lipschitz continuity, and differentiability of any
order of Tf as a map acting in Besov and Lizorkin–Triebel algebras. In some cases, such
as for n = 1, such conditions turn out to be necessary and sufficient.

1. INTRODUCTION

The Superposition Operator Problem (S.O.P.) for a given real-valued
function space E consists in the full characterization of those functions f :
R → R such that the superposition operator Tf : g 7→ f ◦ g takes E to itself.
Such a function f is also said to act on E by superposition. In case E is
a normed space, we say that f acts boundedly on E if the mapping Tf is
bounded on every bounded subset of E. The superposition operator can as
well take a given function space E to another space F . Then we say that
f acts from E to F . We could also consider spaces of V -valued functions,
for a given finite-dimensional vector space V , and superposition operators
defined by mappings f : V → V . Part of our results have extensions to this
more general framework.

We consider the S.O.P. for the Besov spaces Bs
p,q(R

n) and the Lizorkin–
Triebel spaces F sp,q(R

n) (see Section 2 for the definition). Unless otherwise
specified,

in all statements of this paper we assume p, q to be a priori fixed

numbers, with p, q ∈ [1,∞] in the case of Besov spaces, and with

q ∈ [1,∞] and p ∈ [1,∞[ in the case of Lizorkin–Triebel spaces.

2000 Mathematics Subject Classification: 46E35, 47H30.
Key words and phrases: Lizorkin–Triebel spaces, Besov spaces, continuity and differ-

entiability of superposition operators.

[271] c© Instytut Matematyczny PAN, 2008



272 G. Bourdaud and M. Lanza de Cristoforis

We set Esp,q(R
n) := Bs

p,q(R
n) or F sp,q(R

n), when there is no need to
distinguish the B spaces and the F ones. In this context, only a small part
of the S.O.P. has been solved so far.

The first remarkable property is the possible existence of an interval of
s for which no nontrivial superposition operator exists. More precisely, we
have the following (see [2, 3, 13, 22, 23]).

Theorem 1. Let 1 + 1/p < s < n/p. Then f acts on Esp,q(R
n) if and

only if f is a linear function. The same triviality result holds in the critical

case 1 + 1/p = s < n/p, provided that q > 1 in the case of Besov spaces, and

p > 1 in the case of Lizorkin–Triebel spaces.

Remark 1. The existence of nontrivial functions acting on B
1+1/p
p,1 (Rn)

in case n > p+ 1, and on F 2
1,q(R

n) in case n > 2, are open questions.

Since the triviality phenomenon is connected with the existence of un-
bounded functions in the relevant function spaces, it is natural to consider
the spaces

Bsp,q(R
n) := Bs

p,q(R
n) ∩ L∞(Rn), Fs

p,q(R
n) := F sp,q(R

n) ∩ L∞(Rn).

We denote the above spaces by Esp,q(R
n) if there is no need to distinguish

between B and F spaces. As usual, Esp,q(R
n) is endowed with the natural

norm

‖f‖Es
p,q(Rn) := ‖f‖Es

p,q(Rn) + ‖f‖∞.

By contrast with the spaces Esp,q(R
n), there are always nontrivial superpo-

sition operators on Esp,q(R
n) for s > 0.

Proposition 1. Assume that s > 0.

(i) Esp,q(R
n) is a Banach algebra for the pointwise product.

(ii) Any f ∈ C∞(R) such that f(0) = 0 acts boundedly on Esp,q(R
n).

Proof. See [23, 4.6.4, 5.3.4].

Remark 2. Proposition 1 has a counterpart for complex-valued Besov
and Lizorkin–Triebel spaces (see [23, 5.5.1]).

Another necessary condition is that f must be locally Lipschitz contin-
uous.

Theorem 2. Let s > 0.

(i) If a Borel measurable function f : R → R acts from Esp,q(R
n) to

Bs
p,∞(Rn), then

(A) f is locally Lipschitz continuous.

(ii) Let B be a ball in Rn. Let K be a compact subset of R. Then there

exist r1, r2 ∈ ]0,∞[ such that the Lipschitz constant of the restriction
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of f to K is less than or equal to

r1 sup{‖f ◦ g‖Bs
p,∞(Rn) : g ∈ D(B), ‖g‖Es

p,q(Rn) ≤ r2}

for all Borel measurable functions f : R → R such that Tf acts

boundedly from (D(B), ‖ − ‖Es
p,q(Rn)) to Bs

p,∞(Rn).

Remark 3. Assume that 0 < s < 1. It is well known that any locally
Lipschitz continuous function acts boundedly in Esp,q(R

n). We can conclude
from Theorem 2 that the S.O.P. is solved for Esp,q(R

n) in that case.

A third necessary condition is almost immediate: if f acts on Esp,q(R
n)

then
(B) f belongs locally to Esp,q(R).

We believe that condition (B) is also sufficient in case s > 1 + 1/p (see also
Remark 5 below).

Conjecture. Assume that s > 1 + 1/p. Let f : R → R be any Borel

measurable function such that f(0) = 0. Then the following properties are

equivalent:

1. f acts on Esp,q(R
n),

2. f acts boundedly on Esp,q(R
n),

3. f belongs locally to Esp,q(R).

We denote by In,B and In,F the set of triples (s, p, q) with s > 1 + 1/p,
p, q ∈ [1,∞] (p < ∞ in the F -case) for which the above conjecture holds
true in Bsp,q(R

n) and Fs
p,q(R

n), respectively.
The sets I1,B and I1,F are known to be large, in some sense. Thus for

instance,

• I1,B contains all (s, p, q) such that s > 1 + 1/p and 4/3 < p ≤ q,
• I1,F contains all (s, p, q) such that s > 1 + 1/p, 4/3 < p < ∞ and
q ∈ [1,∞].

See [6, 11, 12] for more details. On the contrary, very little is known for
n > 1. The only triples known to be in In,B for n > 1 are

s integer ≥ 2, p = q = 2,

and the triples known to be in In,F for n > 1 are

s integer ≥ 2, 1 < p <∞, q = 2.

In the above two cases, Esp,q(R
n) coincides with the classical Sobolev algebra

W s
p (Rn) ∩ L∞(Rn).

Remark 4. A weaker version of the Conjecture has been established for
Besov algebras in case n > 1, and for a “substantial” set of triples (s, p, q).
Namely, every f ∈ Bs+ε

p,∞(R)loc (ε > 0) such that f(0) = 0 acts boundedly in
Bsp,q(R

n) (see [7] for more details).
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Remark 5. In case 1 ≤ s ≤ 1 + 1/p the S.O.P. turns out to be more
mysterious. Indeed, we suspect that conditions (A) and (B), together with
f(0) = 0, are not sufficient for f to act on Esp,q(R

n). A typical example is

the Zygmund class B1
∞,∞(Rn), for which a full description of the S.O.P. has

been given in [8]. In that case, the necessary and sufficient condition for f
to act in B1

∞,∞(Rn) is stronger than (A) and (B) combined.

This paper is mostly devoted to the regularity—i.e., continuity and dif-
ferentiability of all orders, and Lipschitz continuity on bounded sets—for
the operator Tf in Besov and Lizorkin–Triebel algebras.

Plan of the paper. This paper is organized as follows. In Section 2
we recall some relevant properties of Besov and Lizorkin–Triebel spaces.
The proof of Theorem 2 is given in Section 3. Section 4 is devoted to the
Lipschitz continuity of Tf on bounded sets. Concerning the global Lipschitz
continuity of Tf we prove a degeneracy result: this property can occur only
if f is an affine function. In Section 5 we give general sufficient conditions
and necessary conditions for the continuity and differentiability of Tf . Then
we exploit the above results, in order to characterize regularity of Tf for
parameters (s, p, q) in In,B or in In,F . Section 6 is an appendix devoted
to more or less classical results on distribution spaces, which have been
exploited in the paper.

Notation. We denote by N the set of all natural numbers, including 0.
We denote by (e1, . . . , en) the canonical basis of Rn, by Q the unit cube
[−1/2, 1/2]n, and by ϕ an even C∞ function on Rn such that 0 ≤ ϕ ≤ 1,
ϕ(x) = 1 on Q, and ϕ(x) = 0 outside 2Q.

We introduce the translation operator τh and the difference operator
∆h, defined on functions (or distributions) by (τhf)(x) := f(x − h) and
∆hf := τ−hf − f . If g belongs to the Schwartz class S(Rn), we denote by
g(D) the pseudodifferential operator with symbol g, defined by

ĝ(D)f := gf̂ ∀f ∈ S ′(Rn),

where f̂ denotes the Fourier transform of f .

In a given metric space, we denote by B(a, r) the open ball with centre a
and radius r. In a topological space E, clE(A) is the closure of a subset A.
The symbol B will also be used for a general ball in Rn. If necessary, we
write Bn instead of B.

If E is any normed real-valued function space, we set

Φ(E) := {f ∈ R
R : f is Borel measurable

and acts boundedly on E, f(0) = 0}.
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We endow Φ(E) with the seminorms

νr(f) := sup{‖f ◦ g‖E : ‖g‖E ≤ r} ∀r ∈ ]0,∞[.

The restriction f(0) = 0 is just a technical convenience, and does not imply
a loss of generality. The reduction to that case follows by adding a suitable
constant to f .

If E is any distribution space, and if r ∈ N, we denote by W r(E) the
Sobolev space built on E, i.e., the set of distributions whose derivatives up
to order r belong to E. As usual, we set

W r
p (Rn) := W r(Lp(R

n)).

We denote by p′ the conjugate exponent of p, i.e., p′ := p/(p− 1). As usual,
c, c1, . . . are strictly positive constants and depend only on the fixed param-
eters n, s, p, q, and on auxiliary functions, unless otherwise specified. Their
values can change from a line to another.

Unless otherwise specified, all functions are assumed to be real-valued
(see Remark 12).

2. DEFINITIONS AND PROPERTIES OF BESOV SPACES

2.1. The classical Littlewood–Paley framework. We need to recall
the definition of Besov and Lizorkin–Triebel spaces in the Littlewood–Paley
setting. Let

γ(x) := ϕ(x) − ϕ(2x) ∀x ∈ R
n.

Then γ ∈ D(Rn \ {0}) and the following identity holds:

(1) ϕ(x) +
∑

j≥1

γ(2−jx) = 1 ∀x ∈ R
n.

The functions ϕ and γ clearly depend on n. In case we deal with several
values of n, we shall denote them as ϕn and γn, respectively. We define the
operators Qj on S ′(Rn) by setting

Qj := γ(2−jD) (j ≥ 1), Q0 := ϕ(D).

Remark 6. Let j ≥ 1. We note that ϕ(2−jD) =
∑j

k=0Qk and that
the operator ϕ(2−jD) coincides with the convolution operator with the
function vj(x) := 2nj(F−1ϕ)(2jx); accordingly ϕ(2−jD) acts boundedly in
Lp(R

n) and the norm of ϕ(2−jD) has an upper bound independent of j.
Also, {vj}j∈N is well known to be an approximate identity of convolution.

We also introduce even functions ϕ̃ ∈ D(Rn) and γ̃ ∈ D(Rn \ {0}) such
that

(2) ϕ̃ϕ = ϕ and γ̃γ = γ.

The operators Q̃j are defined accordingly.
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Definition 1. For any s ∈ R, Bs
p,q(R

n) and F sp,q(R
n) are the sets of

f ∈ S ′(Rn) such that

‖f‖Bs
p,q(Rn) :=

(∑

j≥0

(2sj‖Qjf‖p)
q
)1/q

<∞,

‖f‖F s
p,q(Rn) :=

∥∥∥
(∑

j≥0

(2sj |Qjf |)
q
)1/q∥∥∥

p
<∞,

respectively.

Proposition 2. For any s ∈ R, we can define a continuous bilinear

form on Esp,q(R
n) × E−s

p′,q′(R
n) by setting

(3) ⊳f, g⊲ :=
∑

j≥0

\
Rn

Qjf(x)Q̃jg(x) dx.

The restriction of ⊳−,−⊲ to Esp,q(R
n)×S(Rn) coincides with the canonical

bilinear form on S ′(Rn) × S(Rn).

Proof. By the Nikol’skĭı representation method (see Runst and Sickel
[23, Prop. 2.3.2(1), p. 59] or Yamazaki [26]), there exists c > 0 such that

(∑

j≥0

(2sj‖Q̃jf‖p)
q
)1/q

≤ c‖f‖Bs
p,q(Rn),

∥∥∥
(∑

j≥0

(2sj |Q̃jf |)
q
)1/q∥∥∥

p
≤ c‖f‖F s

p,q(Rn),

for all f ∈ Esp,q(R
n), respectively. By applying twice the Hölder inequality,

we can infer that there exists c > 0 such that

(4) |⊳f, g⊲| ≤ c‖f‖Es
p,q(Rn)‖g‖E−s

p′,q′
(Rn) ∀f ∈ Esp,q(R

n), ∀g ∈ E−s
p′,q′(R

n).

By (2) and by the Plancherel identity, we deduce that

(5) 〈Qjf, Q̃jg〉 = 〈f,Qjg〉 ∀f ∈ Esp,q(R
n), ∀g ∈ S(Rn), ∀j ∈ N.

Hence,

(6) ⊳f, g⊲ = 〈f, g〉 ∀f ∈ Esp,q(R
n), ∀g ∈ S(Rn).

2.2. A variant of the Littlewood–Paley decomposition. In some
cases, it is useful to replace the standard functions γ and ϕ by tensor prod-
uct functions. We work out explicitly the construction with respect to the
decomposition Rn = R × Rn−1. Similar constructions hold for all decompo-
sitions Rn1+···+nm = Rn1 × · · · × Rnm .

For all functions f, g defined on R and Rn−1, respectively, we set

(f ⊗ g)(t, x) := f(t)g(x) ∀(t, x) ∈ R × R
n−1.
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Now we set

u0 := ϕ1 ⊗ ϕn−1, u1 := ϕ1(2 ·) ⊗ γn−1, u2 := γ1 ⊗ ϕn−1.

Then we have

u0(t, x) − u0(2t, 2x) = u1(t, x) + u2(t, x) ∀(t, x) ∈ R × R
n−1.

We define the operators U0 and Um,j (j ≥ 1,m = 1, 2) on S ′(Rn) by setting

Um,j := um(2−jD), U0 := u0(D).

Proposition 3. Let n > 1 and s ∈ R. Then a tempered distribution f
belongs to Bs

p,q(R
n) or F sp,q(R

n) if and only if

‖U0f‖p +
∑

m=1,2

(∑

j≥1

(
2sj‖Um,jf‖p

)q)1/q
<∞,

or

‖U0f‖p +
∑

m=1,2

∥∥∥
(∑

j≥1

(
2sj |Um,jf |

)q)1/q∥∥∥
p
<∞,

respectively. Moreover , the above expressions are equivalent norms on

Bs
p,q(R

n) and F sp,q(R
n), respectively.

Proof. The above statements can be proved by minor modifications of
classical results (cf. e.g. Triebel [24, Prop. 2.3.2/1, p. 46], [25, Ch. 2] or
Peetre [21, Ch. 8]).

Proposition 4. Let n > 1 and s > 0. Then the following statements

hold.

(i) There exists c > 0 such that f ⊗ g ∈ Esp,q(R
n) and

(7) ‖f ⊗ g‖Es
p,q(Rn) ≤ c‖f‖Es

p,q(R) ‖g‖Es
p,q(Rn−1)

for all f ∈ Esp,q(R) and g ∈ Esp,q(R
n−1).

(ii) Let g : Rn−1 → R be a measurable function such that

• 0 < ‖g‖Lp(Rn−1) <∞ in the Besov case,
• 0 < ‖g‖L∞(Rn−1) <∞ and g is uniformly continuous in the Lizor-

kin–Triebel case.

Then there exists a constant c(g) > 0 such that for all measurable

functions f : R → R with f ⊗g ∈ Esp,q(R
n) we have f ∈ Esp,q(R) and

(8) ‖f‖Es
p,q(R) ≤ c(g)‖f ⊗ g‖Es

p,q(Rn).

Proof. We endow the space Esp,q(R
n) with the equivalent norms of Propo-

sition 3, and we divide our proof into two steps.
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Step 1: the Besov case. We have

‖f ⊗ g‖Bs
p,q(Rn) = ‖Q0f‖p‖Q0g‖p +

(∑

j≥1

(2sj‖ϕ1(2
1−jD)f‖p‖Qjg‖p)

q
)1/q

+
(∑

j≥1

(2sj‖ϕn−1(2
−jD)g‖p‖Qjf‖p)

q
)1/q

.

Since the imbedding

(9) Esp,q(R
n) →֒ Lp(R

n) ∀s > 0

is continuous and the operators ϕ(2−jD) are bounded on Lp uniformly with
respect to j (cf. Remark 6), we can obtain inequality (7) for Besov spaces.
Now let 0 < ‖g‖Lp(Rn−1) <∞. By Remark 6, we have

lim
j→∞

ϕn−1(2
−jD)g = g in Lp(R

n−1).

Hence, there exists j0 such that

‖ϕn−1(2
−jD)g‖p ≥

1

2
‖g‖p ∀j > j0.

Hence,
1

2
‖g‖p

(∑

j>j0

(2sj‖Qjf‖p)
q
)1/q

≤ ‖f ⊗ g‖Bs
p,q(Rn).

Since the operators Qj are bounded on Lp(R
n−1) uniformly with respect

to j, the imbedding (9) implies that there exist c1, c2 > 0 such that

‖Qjf‖p ≤ c1‖f‖p ≤
c2

‖g‖p
‖f ⊗ g‖Bs

p,q(Rn).

Since (
∑j0

j=0 2sjq)1/q ≤ 2s

(2sq−1)1/q 2sj0 , we have

( j0∑

j=0

(2sj‖Qjf‖p)
q
)1/q

≤
c2sj0

‖g‖p
‖f ⊗ g‖Bs

p,q(Rn),

and inequality (8) follows in the Besov case.

Step 2: the Lizorkin–Triebel case. We have

‖f ⊗ g‖F s
p,q(Rn) = ‖Q0f‖p‖Q0g‖p(10)

+
∥∥∥
(∑

j≥1

|2sjϕ1(2
1−jD)f ⊗Qjg|

q
)1/q∥∥∥

p

+
∥∥∥
(∑

j≥1

|2sjQjf ⊗ ϕn−1(2
−jD)g|q

)1/q∥∥∥
p
.
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By the equality ϕ1(2
1−jD) =

∑j−1
m=0Qm, the Hölder inequality, and the

condition s > 0, there exists c > 0 such that

|(ϕ1(2
1−jD)f)(t)| ≤ c

(∑

m≥0

|2smQmf(t)|q
)1/q

∀t ∈ R, ∀j ≥ 1.

Hence,
∥∥∥
(∑

j≥1

|2sjϕ1(2
1−jD)f ⊗Qjg|

q
)1/q∥∥∥

p
≤ c‖f‖F s

p,q(R)‖g‖F s
p,q(Rn−1).

Arguing similarly for the other terms in (10), we obtain inequality (7) in the
Lizorkin–Triebel case.

Now let g be uniformly continuous and satisfy 0 < ‖g‖L∞(Rn−1) < ∞.
Since

lim
j→∞

ϕn−1(2
−jD)g = g uniformly on R

n−1,

there exist a ball Bn−1 in Rn−1, a number r > 0, and an integer j0 such that

|ϕn−1(2
−jD)g(x)| ≥ r ∀x ∈ Bn−1, ∀j > j0.

Hence,
∥∥∥
(∑

j>j0

|2sjQjf ⊗ ϕn−1(2
−jD)g|q

)1/q∥∥∥
p
≥ r|Bn−1|

1/p
∥∥∥
(∑

j>j0

|2sjQjf |
q
)1/q∥∥∥

p
.

Then by (9) and by arguing as for Besov spaces, we obtain (8).

Remark 7. Inequality (7) is classical (cf. e.g. Franke [14]).

2.3. Besov spaces as dual spaces. One of the useful properties of
Esp,q(R

n) and Esp,q(R
n) is to be dual BDS’s (see the Appendix for the defini-

tion). More precisely, we have the following (cf. e.g. Triebel [24, 2.11]).

Proposition 5. Let s ∈ R. Then Esp,q(R
n) is the set of f ∈ D′(Rn) such

that there exists A > 0 satisfying

(11) |〈f, g〉| ≤ A‖g‖E−s
p′,q′

(Rn) ∀g ∈ D(Rn).

Moreover , the least constant A such that (11) holds is an equivalent norm

in Esp,q(R
n).

Then we have the following.

Proposition 6. Let s ∈ R. Endow L1(R
n) +E−s

p′,q′(R
n) with its natural

norm, i.e., the infimum of the numbers

‖f1‖1 + ‖f2‖E−s
p′,q′

(Rn)
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for all decompositions f = f1 + f2 with f1 ∈ L1(R
n) and f2 ∈ E−s

p′,q′(R
n).

Then Esp,q(R
n) is the set of f ∈ D′(Rn) such that there exists A > 0 satisfying

(12) |〈f, g〉| ≤ A‖g‖L1(Rn)+E−s
p′,q′

(Rn) ∀g ∈ D(Rn).

Moreover , the least constant A such that (12) holds is an equivalent norm

in Esp,q(R
n).

Proof. Step 1. Assume that (12) holds. Then taking the trivial decom-
positions g = 0 + g = g + 0, we obtain the inequalities

|〈f, g〉| ≤ A‖g‖1 ∀g ∈ D(Rn),(13)

|〈f, g〉| ≤ A‖g‖E−s
p′,q′

(Rn) ∀g ∈ D(Rn).(14)

Inequality (13) implies classically that f ∈ L∞(Rn) and ‖f‖∞ ≤ A. By
Proposition 5, inequality (14) implies that f ∈ Esp,q(R

n) with a norm less
than or equal to cA.

Step 2. Assume that f ∈ Esp,q(R
n). Let g ∈ D(Rn) and g = g1 + g2,

where g1 ∈ L1(R
n) and g2 ∈ E−s

p′,q′(R
n). Since f ∈ L∞(Rn), the bracket

〈f, g1〉 has the usual meaning. Now we prove that

(15) 〈f, g〉 = 〈f, g1〉 + ⊳f, g2 ⊲.

Since g2 = g − g1 ∈ L1(R
n), Remark 6 implies that

lim
N→∞

N∑

j=0

Qjg2 = g2 in L1(R
n).

By the density of S(Rn) in L1, identity (5) also holds for f ∈ L∞ ⊂ B0
∞,∞

and g ∈ L1. Hence,

⊳f, g2⊲ = lim
N→∞

N∑

j=0

〈Qjf, Q̃jg2〉 = lim
N→∞

〈
f,

N∑

j=0

Qjg2

〉
= 〈f, g2〉,

which proves the formula (15). Hence, (4) implies that

|〈f, g〉| ≤ ‖f‖∞‖g1‖1 + c‖f‖Es
p,q(Rn)‖g2‖E−s

p′,q′
(Rn).

Proposition 6 has an important consequence, the Fatou property.

Corollary 1. Let (fk)k≥0 be a bounded sequence in Esp,q(R
n), which

converges to f in S ′(Rn). Then f ∈ Esp,q(R
n) and

(16) ‖f‖Es
p,q(Rn) ≤ lim inf

k→∞
‖fk‖Es

p,q(Rn).

Remark 8. In Corollary 1, we assume that Esp,q(R
n) is normed as in

Proposition 6. In case we use another (more usual) equivalent norm in
Esp,q(R

n), a constant c > 1 independent of f may appear on the right hand
side of (16).
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Remark 9. All spaces Esp,q(R
n) and Esp,q(R

n) are D(Rn)-modules (see
the Appendix). Then by Proposition 10 of the Appendix, the operator which
takes a function in Esp,q(R

n) or in Esp,q(R
n) to its product with a fixed test

function is continuous in Esp,q(R
n) or in Esp,q(R

n), respectively.

2.4. Regular functions in Besov spaces. We denote by B
◦
s
p,q(R

n) and

F
◦
s
p,q(R

n) the closures of D(Rn) in Bs
p,q(R

n) and F sp,q(R
n), respectively. For

simplicity, we denote by E
◦
s
p,q(R

n) either B
◦
s
p,q(R

n) or F
◦
s
p,q(R

n). The following
property is classical [24, 2.3.3].

(17) E
◦s
p,q(R

n) = Esp,q(R
n) if both p <∞ and q <∞.

On the other hand, for the density of C∞(Rn)∩Esp,q(R
n) in Esp,q(R

n), we
have a slightly different result, which also holds for p = ∞ if E is a Besov
space.

Proposition 7. Let 1 ≤ q < ∞ and s > 0. Let p ∈ [1,∞] for Besov

spaces and p ∈ [1,∞[ for Lizorkin–Triebel spaces. Then the following state-

ments hold.

(i) C∞(Rn) ∩Esp,q(R
n) is dense in Esp,q(R

n).
(ii) C∞(Rn) is dense in Esp,q(R

n)loc.

Proof. We first prove (i). Let f ∈ Esp,q(R
n). We will prove that the

sequence of functions

fj :=

j∑

k=0

Qkf ∀j ∈ N

approximates f in Esp,q(R
n). By the Paley–Wiener theorem, the functions

fj are of class C∞. Since

( j∑

k=0

(2ks‖Qkf‖p)
q
)1/q

≤ ‖f‖Bs
p,q(Rn) ∀j ∈ N,

Nikol’skĭı’s method implies that fj ∈ Bs
p,q(R

n) whenever f ∈ Bs
p,q(R

n)
(cf. Runst and Sickel [23, §2.3.2, Prop. 1(i), p. 59] or Yamazaki [26]). Sim-
ilarly, fj ∈ F sp,q(R

n) if f ∈ F sp,q(R
n). Again by Nikol’skĭı’s method, there

exists c > 0 such that

‖f − fj‖Bs
p,q(Rn) =

∥∥∥
∑

k>j

Qkf
∥∥∥
Bs

p,q(Rn)
≤ c

(∑

k>j

(2ks‖Qkf‖p)
q
)1/q

∀j ∈ N

for all f ∈ Bs
p,q(R

n). Since q <∞, we have

lim
j→∞

∑

k>j

(2ks‖Qkf‖p)
q = 0.
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Hence, limj→∞ fj = f in Bs
p,q(R

n). Similarly, if f ∈ F sp,q(R
n), we have

(18) ‖f − fj‖F s
p,q(Rn) ≤ c

∥∥∥
(∑

k>j

(2ks|Qkf |)
q
)1/q∥∥∥

p
.

We now prove that the right hand side above tends to 0 as j → ∞. Since
f ∈ F sp,q(R

n), we have
∑

k≥0

(2ks|Qkf(x)|)q <∞

for almost every x ∈ Rn. Since q <∞, we have

lim
j→∞

∑

k>j

(2ks|Qkf(x)|)q = 0,

for almost every x ∈ Rn. By the dominated convergence theorem, the right
hand side of (18) tends to 0 as j → ∞. Statement (ii) follows by Proposition
12 of the Appendix.

Remark 10. By arguing as in the previous proof, one could prove that
if f ∈ Esp,∞(Rn) satisfies the condition

• limj→∞ 2sj‖Qjf‖p = 0 in the Besov case,
• limj→∞ ‖supk>j 2ks|Qkf |‖p = 0 in the Lizorkin–Triebel case,

then f belongs to the closure of C∞(Rn) ∩ Esp,∞(Rn) in Esp,∞(Rn).

2.5. A concrete characterization. As we shall see, most of our results
rely on the properties of the Esp,q spaces proved in Subsections 2.1–2.4. In
some specific cases, we need a concrete description of Bs

p,∞(Rn) by means
of integral moduli of continuity. Hence, for each m ∈ N \ {0} and p ∈ [1,∞],
we set

ωp,m(f ; t) := sup
|h|≤t

( \
Rn

|∆m
h f(x)|p dx

)1/p

for all measurable functions f : Rn → R and all t ∈ ]0,∞[. Then the
following statement is well known (cf. e.g. Triebel [25, Thm. 2.6.1, p. 140]).

Proposition 8. Let 0 < s < m and f be a distribution on Rn. Then f
belongs to Bs

p,∞(Rn) if and only if f ∈ Lp(R
n) and

Np,m(f) := sup
0<t≤1

t−sωp,m(f ; t) <∞.

Moreover , ‖f‖p +Np,m(f) is an equivalent norm in Bs
p,∞(Rn).

3. LOCAL LIPSCHITZ CONTINUITY AS A NECESSARY CONDITION

As shown in [4], if f acts on Esp,q(R
n), then f must be locally Lipschitz

continuous. We shall see that the proof of [4] can be easily modified so as to
prove Theorem 2. The following preliminary result will be our main tool.
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Lemma 1. Let s > 0 and f : R → R be a Borel measurable function.

Assume that f acts from Esp,q(R
n) to Bs

p,∞(Rn). If a ∈ R, then there exists

a nonlinear operator Ua : Esp,q(R
n) → Bs

p,∞(Rn) and δ1, δ2 > 0 such that

(19) Uag(x) = f(a+ g(x)) − f(a) ∀x ∈ Q

and

‖Uag‖Bs
p,∞(Rn) ≤ δ2

for any g ∈ D(Rn) with support in Q and satisfying

‖g‖Es
p,q(Rn) ≤ δ1.

Proof of Lemma 1. We first define the nonlinear operator Va : D(Rn) →
RR

n
by setting

Vag(x) := ϕ(x)(f(a+ g(x)) − f(a)) ∀x ∈ R
n, ∀g ∈ D(Rn).

Then

(20) Vag(x) = ϕ(x)(f((a+ g(x))ϕ(x/2)) − f(aϕ(x/2))) ∀x ∈ R
n.

Hence, Va maps Esp,q(R
n) to Bs

p,∞(Rn) and a standard argument (see [4,
proof of Lemme 1], [9, proof of Lemma 3]) shows that there exist a cube
Q′ ⊂ Q and δ′1, δ

′
2 > 0 such that

‖g‖Es
p,q(Rn) ≤ δ′1 ⇒ ‖Vag‖Bs

p,∞(Rn) ≤ δ′2

for any g ∈ D(Rn) with support in Q′. Now let r > 0 and b ∈ Rn be such
that Q′ = rQ+ b, and

Uag(x) := Va(g(r
−1(· − b))(rx+ b) ∀x ∈ R

n.

Then

Uag(x) = ϕ(rx+ b)(f(a+ g(x)) − f(a)) ∀x ∈ R
n.

By the inclusion Q′ ⊂ Q, we have ϕ(rx+ b) = 1 on Q. Hence, Ua has all the
required properties.

Proof of Theorem 2. We first prove statement (i). Since Bs
p,1(R

n) is con-
tinuously imbedded into Esp,q(R

n), it suffices to assume that f acts from
Bsp,1(R

n) to Bs
p,∞(Rn). We now fix an arbitrary real number a which remains

fixed throughout the proof of (i), and prove that f is Lipschitz continuous
in a neighbourhood of a by estimating |f(a + b) − f(a + b′)| in terms of
|b− b′|, with b, b′ in a neighbourhood of 0 to be determined below. In order
to estimate |f(a+b)−f(a+b′)| we fix, by now arbitrarily, two real numbers
b, b′. Then we consider an integer N ≥ 1, to be specified below depending
on b, b′, and we introduce the set

AN := {(k1, . . . , kn) ∈ Z
n : |kj| ≤ N, ∀j = 1, . . . , n},
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and we define the real numbers

κ :=
1

2m+ 1
, r :=

1

6N
,

where m := [s] + 1. We now test Ua on the function g defined by

g(x) := (b′ − b)
∑

k∈AN

ϕ

(
1

κ

(
x

r
− k

))
+ bϕ(2x) ∀x ∈ R

n.

Since κ < 1/2, the cubes r(2κQ + k), k ∈ Zn, are pairwise disjoint. By
definition of r, we have r(2κQ + k) ⊂ r(Q + k) ⊂ Q/2 for all k ∈ AN .
Hence,

Uag(x) = f(a+ b′) − f(a) if x ∈ r(κQ+ k) for some k ∈ AN ,(21)

Uag(x) = f(a+ b) − f(a) if x ∈ (Q/2) \
⋃

k∈AN

r(2κ int(Q) + k),(22)

where int(Q) denotes the interior of Q. By the classical atomic character-
ization of Besov spaces [15, Thm. 3.1, p. 785], there exists c1 > 0 such
that

(23)

∥∥∥∥
∑

k∈AN

ϕ

(
1

κ

(
.

r
− k

))∥∥∥∥
Bs

p,1(Rn)

≤ c1r
n/p−sNn/p.

Since r = (6N)−1, we obtain

(24) ‖g‖Bs
p,1(R

n) ≤ c2(N
s|b′ − b| + |b|).

Now we assume that

(25) max(|b|, |b− b′|) ≤
δ1
2c2

, b 6= b′,

and we define N as follows:

N s ≤
δ1

2c2|b− b′|
< (N + 1)s.

We note that the definition of N implies that

(26) N s ≥
δ1

2s+1c2|b− b′|
.

If (25) holds, then the definition of N implies that ‖g‖Bs
p,1(R

n) ≤ δ1. Since

the support of g is included in Q, Lemma 1 ensures that

(27) ‖Uag‖Bs
p,∞(Rn) ≤ δ2.

Let Q+ := [0, 1/2]n. For any x ∈ r(κQ+ + k), we have

x+ jrκe1 ∈ r(Q+ k), ∀j = 0, . . . ,m,

x+ jrκe1 /∈ r(2κ int(Q) + k), ∀j = 1, . . . ,m.
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If x ∈ r(κQ+ + k), equalities (21) and (22) and formula (4.1) of Bennett
and Sharpley [1, p. 332] for an mth order difference imply that

|∆m
rκe1(Uag)(x)| = |f(a+ b′) − f(a+ b)|.

By Proposition 8, there exist c3, c4, c5 > 0 such that

‖Uag‖Bs
p,∞(Rn) ≥ c3(rκ)−s

( ∑

k∈AN

\
r(κQ++k)

|∆m
rκe1(Uag)(x)|

p dx
)1/p

≥ c4|f(a+ b′) − f(a+ b)| r−sNn/prn/p = c5N
s|f(a+ b′) − f(a+ b)|.

By inequalities (26) and (27), we see that condition (25) implies that

|f(a+ b) − f(a+ b′)| ≤
2s+1δ2c2
c5δ1

|b− b′|,

which means that f is Lipschitz continuous in a neighbourhood of a.
We now prove (ii). If f acts boundedly from (D(B), ‖ − ‖Es

p,q(Rn)) to

Bs
p,∞(Rn), we can define

ν(R) := sup{‖f ◦ g‖Bs
p,∞(Rn) : g ∈ D(B), ‖g‖Bs

p,1(R
n) ≤ R} ∀R > 0.

By an affine transformation, we can assume that Q ⊂ B. We retain the
same notation as in the proof of (i), except that we do not use Lemma 1.
Let δ1 := 2c2. By equality (20), the definition of ν, and Remark 9, there
exist c6, c7 > 0 such that

‖Vau‖Bs
p,∞(Rn) ≤ c6ν(c7(|a| + ‖u‖Bs

p,1(R
n))) ∀u ∈ D(B).

Applying the above inequality to u := g and arguing as for (i), we see that

|f(a+ b) − f(a+ b′)| ≤
2sc6
c5

ν(c7(R+ 2c2))|b− b′|

for any |a| ≤ R and any b, b′ satisfying (25).

Remark 11. Up to a slight modification, the above also provides a new
and simpler proof of the second assertion of the main theorem of [4].

Remark 12. Theorem 2 remains valid, with the same proof, for complex-
valued Besov and Lizorkin–Triebel spaces, and functions f : C → C.

4. LOCAL LIPSCHITZ CONTINUITY PROPERTIES OF Tf

In this section, we analyze the conditions on f so that Tf is Lipschitz
continuous on bounded subsets of Esp,q(R

n). By Theorem 2, any function in
Φ(Esp,q(R

n)) is continuous. Hence, we can identify Φ(Esp,q(R
n)) with a space

of distributions, more precisely with a subspace of W 1
∞(R)loc. Moreover, we

have the following.

Proposition 9. Let s > 0. The set Φ(Esp,q(R
n)) is a Fréchet space,

continuously imbedded into W 1
∞(R)loc.
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Proof. The continuity of the imbedding into W 1
∞(R)loc follows by The-

orem 2. Thus it suffices to establish the completeness. Assume that (fk)k≥0

is a Cauchy sequence in Φ(Esp,q(R
n)). By the above imbedding, the sequence

(fk)k≥0 has a limit f in W 1
∞(R)loc, which we identify with its continuous

representative. A fortiori (fk)k≥0 converges to f uniformly on every com-
pact subset of R. Assume that g ∈ Esp,q(R

n). Then the sequence (fk ◦ g)k≥0

converges to f ◦ g in L∞(Rn). Moreover,

sup
k≥0

‖fk ◦ g‖Es
p,q(Rn) ≤ sup

k≥0
ν‖g‖Es

p,q(Rn)
(fk) <∞.

By the Fatou property of Esp,q(R
n), we obtain f ◦ g ∈ Esp,q(R

n) and the
boundedness of Tf on bounded sets of Esp,q(R

n). Applying again the Fatou
property, it is easily seen that

lim
k→∞

νr(fk − f) = 0 for all r > 0.

By the above proposition, Φ(Esp,q(R
n)) can be identified with a Fréchet

distribution space in R. Then, for any r ∈ N, the space W r(Φ(Esp,q(R
n))) can

also be identified with a FDS (see the Appendix).

4.1. A sufficient condition for local Lipschitz continuity of Tf

Theorem 3. Let s > 0. If f : R → R is a continuous function of class

W 1(Φ(Esp,q(R
n))), then Tf is Lipschitz continuous on any bounded set , as a

mapping of Esp,q(R
n) to itself.

Proof. For simplicity, we set E := Esp,q(R
n), Φ := Φ(Esp,q(R

n)), and we
denote by ‖ − ‖ the norm in Esp,q(R

n).

Let g, h ∈ E. By Theorem 2, f is continuously differentiable. Thus

(28) (f ◦ (g + h) − f ◦ g)(x) =

1\
0

(f ′ ◦ (g + th))(x)h(x) dt ∀x ∈ R
n.

We wish to interpret the above formula as a vector-valued integral in E. The
difficulty here is to justify vector-valued measurability with respect to t. To
overcome it, we shall exploit Proposition 6. We consider u ∈ D(Rn) with
norm equal to 1 in L1(R

n) + E−s
p′,q′(R

n). Then the Fubini theorem gives us
the formula

〈f ◦ (g + h) − f ◦ g, u〉 =

1\
0

〈(f ′ ◦ (g + th))h, u〉 dt.

Since E is a Banach algebra, we have

(29) ‖f ◦ (g + h) − f ◦ g‖ ≤ cν‖g‖+‖h‖(f
′)‖h‖,

which means that Tf is Lipschitz continuous on any ball of E.
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4.2. A necessary condition for local Lipschitz continuity of Tf

Theorem 4. Let s > 0. Let f : R → R be a Borel measurable function.

If Tf is Lipschitz continuous from compact subsets of

(D(B), ‖ − ‖Es
p,q(Rn))

to Esp,q(R
n) for all balls B of Rn, then f ∈ Es+1

p,q (R)loc.

Proof. We divide our proof into two steps.

Step 1. Assume that f has support in a compact interval [a, b]. Let
u ∈ D(R) be such that u(x) = 1 on [a − 1, b + 1] and u(x) = 0 outside
[a− 2, b+ 2]. Then

(30) (τtf − f)u = τtf − f ∀t ∈ [−1, 1].

Let v be a nonzero function in D(Rn−1), with support in a ball Bn−1. Let
g ∈ D(Rn) be such that g(x) = x1 for x ∈ [a− 3, b+ 3]× Bn−1. By (30), we
have

(31) (τtf − f) ⊗ v = (f ◦ τte1g − f ◦ g) (u⊗ v) ∀t ∈ [−1, 1].

Now by assumption on f , Tf is Lipschitz continuous on the set

{τte1g : t ∈ [−1, 1]}.

By Proposition 6 and by formula (44) of the Appendix, we deduce that
‖τte1g − g‖Es

p,q(Rn) = O(|t|) as |t| → 0. Then by (31), Proposition 4, and
Remark 9,

‖τtf − f‖Es
p,q(R) = O(|t|), |t| → 0.

Since Esp,q(R) is the dual of a BDS, Proposition 14 of the Appendix implies
that f ′ ∈ Esp,q(R). A fortiori, f ′ ∈ Lp(R). Hence, f equals almost everywhere
a continuous function. Since f has compact support, we have f ∈ Lp(R).
By standard properties of Besov and Lizorkin–Triebel spaces, we know that
Erp,q(R) = {v ∈ Lp(R) : v′ ∈ Er−1

p,q (R)} for all r > 0. Hence, f ∈ Es+1
p,q (R).

Step 2. We now turn to the general case. We want to prove that
uf ∈ Es+1

p,q (R) for all u ∈ D(R). We can clearly assume that f(0) = 0.
By Proposition 1(ii) and by Theorem 3 we know that Tu−u(0)−u′(0)idR

=
Tu−u(0)−Tu′(0)idR

is Lipschitz continuous on the bounded subsets of Esp,q(R
n).

Since the same holds for Tu′(0)idR
, the operator Tu−u(0) is Lipschitz continu-

ous on bounded subsets of Esp,q(R
n). Since Esp,q(R

n) is a Banach algebra, the
identity

(32) T(u−u(0))f (g) = Tu−u(0)(g)Tf (g) ∀g ∈ D(Rn)

and our assumptions on Tf imply that T(u−u(0))f is Lipschitz continuous
from compact subsets of (D(B), ‖−‖Es

p,q(Rn)) to Esp,q(R
n) for all balls B. Then

again our assumption on Tf implies that the same holds for Tuf = u(0)Tf +
T(u−u(0))f , and thus the conclusion follows by Step 1.
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4.3. A characterization of locally Lipschitz continuous superpo-

sition operators. We have the following necessary and sufficient condition
on f for the Lipschitz continuity of Tf on bounded subsets of Esp,q(R

n).

Theorem 5. Assume that (s, p, q) ∈ In,E. Let f : R → R be a con-

tinuous function such that f(0) = 0. Then Tf is Lipschitz continuous on

bounded subsets of Esp,q(R
n) if and only if f ∈ Es+1

p,q (R)loc.

Proof. The necessity of the condition f ∈ Es+1
p,q (R)loc follows from The-

orem 4.

We now turn to sufficiency. We assume that f ∈ Es+1
p,q (R)loc and that

f(0) = 0. By the Sobolev imbedding theorem, f is of class C1. Let u :=
f − f ′(0)idR. By the well known equality

(33) Es+rp,q (Rn) = W r(Esp,q(R
n)) ∀r ∈ N,

and by Proposition 13 of the Appendix, u and u′ belong to Esp,q(R)loc.
From u(0) = u′(0) = 0 and the assumption (s, p, q) ∈ In,E , we obtain
u ∈W 1(Φ(Esp,q(R

n))). By Theorem 3, Tu is Lipschitz continuous on bounded
subsets of Esp,q(R

n). Since Tf = Tu+f ′(0)idEs
p,q(Rn), the same is true for Tf .

Remark 13. We note that partial results on the characterization of
those f ’s for which Tf is locally Lipschitz continuous have been proved
by Goebel and Sachweh [16] in the case of Schauder spaces on bounded
intervals, and that such results would correspond here (on the whole space)
to the case n = 1, s > 1, s noninteger, p = q = ∞. We also note that a
necessary and sufficient condition for Lipschitz continuity has been proved by
Goebel and Sachweh [16] in the case of the action of Tf on the Schauder space
of continuously differentiable functions with Lipschitz continuous highest
order derivatives on a bounded interval, which is not a Besov space.

4.4. A degeneracy result for uniform continuity. We conjecture

that, except for the trivial case in which f is an affine function, the oper-
ator Tf cannot be uniformly continuous in Esp,q(R

n), for any s > 0. Such a
degeneracy result holds at least for s > 1/p.

Theorem 6. Assume that s > 1/p. Let ‖ − ‖ be a norm on D(Rn). Let

f : R → R be a continuous function. If Tf is uniformly continuous from

(D(Rn), ‖ − ‖) to Bs
p,∞(Rn)loc, then f is an affine function.

Proof. We employ the argument of [10, Thm. 8, p. 505]. We first assume
that 1 < p < ∞. Without loss of generality, we can assume that f(0) = 0
and 1/p < s < 1. By assumption, the nonlinear operator

S(g) := (f ◦ g)ϕ

is uniformly continuous from (D(Rn), ‖−‖) to Bs
p,∞(Rn). Define ga,b : R → R
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by

ga,b(x) := (ax1 + b)ϕ(x)

for all real numbers a, b. Then there exists η > 0 such that

(34) ‖S(ga,b) − S(ga,0)‖Bs
p,∞(Rn) ≤ 1 ∀b ∈ [−η, η], ∀a ∈ R.

By exploiting the norm on Bs
p,∞(Rn) of Proposition 8, it follows that there

exists c1 > 0 such that\
Q/2

|f(a(x1 + t) + b) − f(a(x1 + t)) − f(ax1 + b) + f(ax1)|
p dx ≤ c1|t|

sp

for all b ∈ [−η, η], t ∈ [−1/4, 1/4] and a ∈ R. By an obvious change of
variables, we obtain

a/4\
−a/4

|f(x+ t+ b) − f(x+ t) − f(x+ b) + f(x)|p dx ≤ c2|t|
spa1−sp

for all b ∈ [−η, η], a > 0 and t ∈ [−a/4, a/4].

Now fixing t ∈ R, letting a→ ∞, and exploiting the continuity of f , we
deduce that

f(x+ t+ b) − f(x+ t) − f(x+ b) + f(x) = 0

for all b ∈ [−η, η] and x, t ∈ R. By taking x = 0, we obtain

f(t+ b) = f(t) + f(b) ∀b ∈ [−η, η], ∀t ∈ R.

Then a standard argument shows that f(t) = f(1)t for all t ∈ R.

In case p = ∞, we can assume 0 < s < 1. By inequality (34), we have

|f(a(x1 + t) + b) − f(a(x1 + t)) − f(ax1 + b) + f(ax1)| ≤ c1|t|
s

for all b ∈ [−η, η], t ∈ [−1/4, 1/4], x ∈ Q/2 and a ∈ R. Hence,

|f(x+ t+ b) − f(x+ t) − f(x+ b) + f(x)| ≤ c2|t|
sa−s

for all b ∈ [−η, η], a > 0 and x, t ∈ [−a/4, a/4]. By letting a → ∞, we can
conclude as in case p <∞.

In case p = 1, we take 1 < s < 2 and we replace first order difference
operators by second order ones in the above proof, to conclude that there
exists η > 0 such that ∆3

t f = 0 for all t ∈ [−η, η]. By formula (4.13) of
Bennett and Sharpley [1, p. 335], we can easily deduce that

u′′′ = lim
t→0+

t−3∆3
tu in D(R) ∀u ∈ D(R),

and we conclude that f ′′′ = 0 in the sense of distributions. Hence, f is a
polynomial of degree at most 2. If f is of degree 2, we deduce that the
above operator S, with f replaced by x 7→ x2, is uniformly continuous from
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(D(Rn), ‖−‖) to Bs
p,∞(Rn). Arguing as above, we can show that there exists

η > 0 such that

‖g2
a,ηϕ− g2

a,0ϕ‖Bs
p,∞(Rn) ≤ 1 ∀a ∈ R.

By setting ψ(x) := x1ϕ
3(x), we obtain

|a| ≤
1 + η2‖ϕ3‖Bs

p,∞(Rn)

2η‖ψ‖Bs
p,∞(Rn)

∀a ∈ R,

a contradiction.

5. SUPERPOSITION OPERATORS OF CLASS Cr

5.1. A sufficient condition for regularity of the superposition

operator. Let r ∈ N. By Proposition 1, any function f ∈ C∞(R) such
that f (j)(0) = 0 for j = 0, . . . , r belongs to W r(Φ(Esp,q(R

n))). Thus the main
assumption of the following theorem makes sense.

Theorem 7. Assume that r ∈ N and s > 0. If a continuous func-

tion f : R → R belongs to the closure of C∞(R) ∩ W r(Φ(Esp,q(R
n))) in

W r(Φ(Esp,q(R
n))), then Tf is of class Cr as a mapping of Esp,q(R

n) to itself.

Proof. We use the same notation as in the proof of Theorem 3. Since E
is a Banach algebra, we can introduce the continuous linear mapping

M : E → L(E,E), u 7→ {v 7→ uv}.

We fix some g ∈ E and assume that h is any function in E with ‖h‖ ≤ 1.
Then we divide our proof into three steps.

Step 1: continuity of Tf , the case f ∈ C∞(R) ∩ Φ. We write

Tf = Tf−f ′(0)idR
+ f ′(0)idE .

By Proposition 1(ii), we have f − f ′(0)idR ∈W 1(Φ). Then the continuity of
Tf follows by Theorem 3 applied to f − f ′(0)idR.

Step 2: continuity of Tf , the general case. If f belongs to the closure
of C∞(R) ∩ Φ in Φ, and ε > 0, then there exists f1 ∈ C∞(R) ∩ Φ such that

ν‖g‖+1(f − f1) ≤ ε.

Then by the triangle inequality, we have

‖f ◦ (g + h) − f ◦ g‖ ≤ 2ε+ ‖f1 ◦ (g + h) − f1 ◦ g‖

and the continuity of Tf at g follows by Step 1 applied to f1.

Step 3. We now prove by induction on r that Tf is of class Cr if f
belongs to the closure of C∞(R)∩W r(Φ) in W r(Φ). The case r = 0 has been
considered in Step 2. We now assume that the statement holds for r, and we
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prove it for r+1. Assume that f belongs to the closure of C∞(R)∩W r+1(Φ)
in W r+1(Φ). Since f is of class Cr+1(R), we have

(35) f ◦ (g + h) − f ◦ g − (f ′ ◦ g)h = h

1\
0

(f ′ ◦ (g + th) − f ′ ◦ g) dt.

Here the integral can be interpreted by duality, as in the proof of Theorem 3.
By Step 2 we know that Tf ′ is continuous on E. Since E is a Banach algebra,
the same argument of the end of the proof of Theorem 3 and formula (35)
yield the differentiability of Tf and the equality dTf = M ◦ Tf ′ . By the
assumption on f , f ′ belongs to the closure of C∞(R) ∩W r(Φ) in W r(Φ).
Applying the inductive assumption, we conclude that Tf ′ is of class Cr.
Then dTf is of class Cr as a mapping from E to L(E,E), which means that
Tf is of class Cr+1.

Remark 14. Theorem 7 has been proved for Bs
∞,∞(Rn) in [8, 5]. The

above proof is a simple transposition of [5, Subsection 7.1, pp. 69-70], which
in turn is based on results of [17, pp. 467, 469–472], [19, pp. 927–932], and
which introduces the notion of Φ(E). Theorem 7 could be deduced as well
from an abstract result of [19, 18] by exploiting an argument of [8, Section 4].

Remark 15. In some cases, the sufficient condition of Theorem 7 turns
out not to be necessary. Assume for instance that 0 < s < 1 and p < ∞,
q < ∞. Then by Proposition 9, any function which belongs to the closure
of C∞(R) ∩ Φ(Bsp,q(R

n)) in Φ(Bsp,q(R
n)) is continuously differentiable. But

the function f(t) := |t| generates a continuous superposition operator on
Bsp,q(R

n) (see [10, Subsection 2.1]).

5.2. A necessary condition for the regularity of the superposi-

tion operator

Theorem 8. Let r ∈ N and s > 0. If f : R → R is a Borel measurable

function such that Tf is of class Cr as a mapping from Esp,q(R
n) to itself ,

then f ∈ (E
◦
s+r
p,q (R))loc (see Subsection 2.4).

Proof. We argue as in [17, p. 474]. By Theorem 2, f is continuous. For
convenience, we say that a nonlinear operator T has property (Pr) if T is
a Cr mapping from (D(B), ‖ − ‖Es

p,q(Rn)) to Esp,q(R
n) for all balls B in Rn.

Then we have the following two lemmas.

Lemma 2. Let f : R → R be a continuous function such that Tf satisfies

(P1). Then f is continuously differentiable and

(36) dTf (g).h = (f ′ ◦ g)h ∀g, h ∈ D(B(0, R)), ∀R > 0.
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Proof of Lemma 2. By property (P1), we have

(37) dTf (g).h = lim
t→0

f ◦ (g + th) − f ◦ g

t

in L∞ norm. Then, by continuity of f , we deduce that dTf (g).h is a con-
tinuous function, and that the above convergence holds pointwise. Taking
functions g, h such that g(x) = x1 and h(x) = 1 on B(0, R/2), we obtain
the existence and continuity of f ′ on ]−R/2, R/2[, and thus on all of R.
Returning now to general functions g, h, we see that identity (37) implies
equality (36).

Lemma 3. Let s > 0. A distribution f ∈ D′(R) belongs to (E
◦
s+1
p,q (R))loc

if and only if both f and f ′ belong to (E
◦
s
p,q(R))loc.

Proof of Lemma 3. By Proposition 12 of the Appendix, we have

(38) (E
◦s
p,q(R))loc = {f ∈ D′(R) : lim

x→0
τxf = f in Esp,q(R)loc}.

By Proposition 13 of the Appendix, and by equality (33), we know that

Es+1
p,q (R)loc = W 1(Esp,q(R)loc) as Fréchet spaces. Then f ∈ (E

◦
s+1
p,q (R))loc if

and only if limx→0 τxf = f in Es+1
p,q (R)loc, a condition which holds if and only

if both limx→0 τxf = f in Esp,q(R)loc and limx→0(τxf)′ = f ′ in Esp,q(R)loc.
Since (τxf)′ = τx(f

′), equality (38) implies the validity of the statement.

We now go back to the proof of Theorem 8 and we claim the following.
If f : R → R is a continuous function such that Tf has property (Pr), then

f belongs locally to E
◦
s+r
p,q (R).

We prove our claim by induction on r.

Step 1: Case r = 0. Assume that Tf has property (P0).

Substep 1.1. Assume first that f has compact support. Then employing
the same notation as in the proof of Theorem 4, and in particular formula
(31), we obtain

(39) lim
t→0

‖τtf − f‖Es
p,q(R) = 0.

By (39), by the compactness of supp f , and by Proposition 11 of the Ap-

pendix, we deduce that f ∈ E
◦
s
p,q(R).

Substep 1.2. If supp f is not necessarily compact, we argue as in Step 2
of the proof of Theorem 4. By Proposition 1(ii) and Theorem 7, Tu−u(0) is
continuous from Esp,q(R

n) to itself. By identity (32) and the continuity of the
product in Esp,q(R

n), T(u−u(0))f has property (P0). Since Tuf = T(u−u(0))f +
u(0)Tf , the same is true for Tuf . By Substep 1.1, we conclude that uf ∈

E
◦
s
p,q(R).
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Step 2. Now we assume that our claim holds for an integer r ∈ N, and
that Tf is a Cr+1 mapping from (D(B), ‖−‖Es

p,q(Rn)) to Esp,q(R
n) for all balls

B in Rn.

We fix a ball B, and we take h ∈ D(Rn) such that h(x) = 1 on B. By
Lemma 2 applied to a ball larger than B and containing supph, we have

Tf ′−f ′(0)(g) = dTf (g).h− f ′(0)h ∀g ∈ D(B).

By our assumption on f , the map g 7→ dTf (g).h is of class Cr from D(B)
equipped with the norm ‖ − ‖Es

p,q(Rn) to Esp,q(R
n). By the inductive assump-

tion, we have f ′ − f ′(0) ∈ (E
◦
s+r
p,q (R))loc. Since constant functions belong to

(E
◦
s+r
p,q (R))loc, we see that both f and f ′ belong to (E

◦
s+r
p,q (R))loc. By Lemma 3

we conclude that f ∈ (E
◦
s+r+1
p,q (R))loc.

Remark 16. In some cases, the necessary condition of Theorem 8 is not
sufficient, as we now show by an example. Let n = 1, 0 < s < 1 + 1/p, and

p, q < ∞. Then Esp,q(R) = E
◦
s
p,q(R). However, it is known that Esp,q(R)

contains functions which are not locally Lipschitz continuous, and by The-
orem 2, such functions do not act on Esp,q(R) by superposition.

5.3. A characterization of Cr superposition operators

Theorem 9. Assume that (s, p, q) ∈ In,E and r ∈ N. Let f : R → R

be a Borel measurable function such that f(0) = 0. Then the superposition

operator Tf is a Cr map from Esp,q(R
n) to itself if and only if f is continuous

and belongs the closure of C∞(R) in Es+rp,q (R)loc.

Theorem 9 and Proposition 7 have the following consequence, which
generalizes the corresponding result for Sobolev spaces W 1

p , obtained by
Marcus and Mizel [20].

Corollary 2. Assume that (s, p, q) ∈ In,E and q < ∞. Then, for any

Borel measurable function f , the following three properties are equivalent :

(i) f acts on Esp,q(R
n),

(ii) f acts boundedly on Esp,q(R
n),

(iii) Tf is a continuous operator from Esp,q(R
n) to itself.

Proof of Theorem 9. We divide our proof into three steps.

Step 1. If Tf is a Cr mapping from Esp,q(R
n) to itself, then Theorem 8

implies that f ∈ (clEs+r
p,q (R)(D(R)))loc. By Proposition 12 of the Appendix,

the latter space coincides with the closure of C∞(R) in Es+rp,q (R)loc.

Step 2. By assumption s > 1/p, we have the continuous imbedding

(40) Es+rp,q (R)loc →֒ Cr(R).
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In particular, the set

Ẽs+rp,q (R) := {f ∈ Es+rp,q (R)loc : f(0) = · · · = f (r)(0) = 0}

is a closed subspace of Es+rp,q (R)loc. By the assumption that (s, p, q) ∈ In,E

and by Proposition 13 of the Appendix, Ẽs+rp,q (R) ⊂ W r(Φ(Esp,q(R
n))). By

Proposition 9,W r(Φ(Esp,q(R
n))) is continuously imbedded inW r

∞(R)loc. Con-

sequently, the closed graph theorem implies that Ẽs+rp,q (R) is continuously
imbedded in W r(Φ(Esp,q(R

n))).

Step 3. Let f be a continuous function of class Es+rp,q (R)loc such that
there exists a sequence (fk)k∈N in C∞(R) with f = limk→∞ fk in Es+rp,q (R)loc.
Since Taylor polynomials act on Banach algebras by superposition as op-
erators of class C∞, and since the imbedding (40) implies that f (j)(0) =

limk→∞ f
(j)
k (0) for j = 0, . . . , r, there is no loss of generality in assum-

ing that f, fk ∈ Ẽs+rp,q (R). Then by Step 2, we have f = limk→∞ fk in
W r(Φ(Esp,q(R

n))). Since fk ∈ C∞(R) for all k ∈ N, Theorem 7 implies that
Tf is of class Cr from Esp,q(R

n) to itself.

6. APPENDIX

6.1. Properties of distribution spaces. A distribution space in Rn

is a vector subspace of D′(Rn). Let E be such a space. We say that E is a
D(Rn)-module provided that ψf ∈ E for any ψ ∈ D(Rn) and any f ∈ E.
We say that E is a topological distribution space (a TDS) if E is endowed
with a topology which renders E a topological vector space continuously
imbedded in D′(Rn). We say that E is a Banach or a Fréchet distribution

space (a BDS or a FDS) if E is a Banach or a Fréchet TDS, respectively.
A BDS (E, ‖ − ‖) is translation invariant if

τxf ∈ E and ‖τxf‖ = ‖f‖

for all f ∈ E and x ∈ Rn. The following property follows from the closed
graph theorem.

Proposition 10. Let E be a FDS in Rn, and a D(Rn)-module. If ψ ∈
D(Rn), then the linear operator f 7→ ψf from E to itself is continuous.

In case E is a BDS, we denote by ‖ψ‖M(E) the norm of the linear operator
in E of Proposition 10.

We now recall the relation between the condition

(41) lim
x→0

‖τxf − f‖E = 0

and the approximability of f by smooth functions. We introduce a standard
sequence (̺j)j≥1 of mollifiers, i.e.,

̺j(x) := jn̺(jx),
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where ̺ is a positive smooth function on Rn, with support in the unit ball,
and such that

T̺
(x) dx = 1. As is well known, the following proposition holds

(cf. e.g. the Appendix of [10].)

Proposition 11. Let E be a translation invariant BDS.

(i) If f ∈ E and f satisfies (41), then f ∗ ψ ∈ C∞(Rn) ∩ E for all

ψ ∈ D(Rn), and

lim
j→∞

f ∗ ̺j = f in E.

(ii) If D(Rn) ⊂ E, then any function f in the closure of D(Rn) in E
satisfies (41).

If E is a distribution space in Rn, we define Eloc as the set of f ∈ D′(Rn)
such that fψ ∈ E for all ψ ∈ D(Rn). If E is a FDS, with a topology defined
by a set of seminorms {Nk : k ∈ N}, we endow Eloc with the seminorms

Nψ,k(f) := Nk(ψf)

for all ψ ∈ D(Rn) and k ∈ N. Assume further that E is a D(Rn)-module. By
using Proposition 10, it is easily seen that the set {Nψ,k : ψ ∈ D(Rn), k ∈ N}
can be replaced by a countable equivalent set of seminorms, for which Eloc

turns out to be a FDS. Proposition 11 has a counterpart for the localized
spaces.

Proposition 12. Let E be a translation invariant BDS in Rn. Assume

further that E is a D(Rn)-module and that D(Rn) ⊂ E. For any distribu-

tion f , the following properties are equivalent :

(i) f ∈ clEloc
(C∞(Rn)),

(ii) f ∈ (clED(Rn))loc,
(iii) f ∈ (clE(C∞(Rn) ∩ E))loc,
(iv) limx→0 τxf = f in Eloc,
(v) limj→∞ f ∗ ̺j = f in Eloc.

Proof. Since D(Rn) ⊂ E, we have C∞(Rn) ⊂ Eloc and thus property (i)
makes sense.

(i)⇒(ii). Let f satisfy (i), and let ψ ∈ D(Rn). By assumption, there
is a sequence (fk) in C∞(Rn) which converges to f in Eloc. Accordingly,
limk→∞ ψfk = ψf in E. Hence, ψf ∈ clED(Rn). So property (ii) holds.

(ii)⇒(iii) follows immediately from D(Rn) ⊂ C∞(Rn) ∩ E.
(iii)⇒(iv). Let f satisfy (iii). We first prove that

(42) lim
x→0

‖(τxf)ψ − τx(fψ)‖E = 0,

(43) lim
x→0

‖τx(fψ) − fψ‖E = 0,

for every ψ ∈ D(Rn), which implies (iv).
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To prove (42), let θ ∈ D(Rn) be such that θ(x) = 1 on suppψ + B(0, 1).
By translation invariance, we have

‖(τxf)ψ − τx(fψ)‖E = ‖fθ(τ−xψ − ψ)‖E ≤ ‖fθ‖E‖τ−xψ − ψ‖M(E)

for |x| ≤ 1. Now by a standard argument (see [10, ineq. (36)]),

lim
x→0

‖τxψ − ψ‖M(E) = 0.

To prove (43), note that by assumption, there exists a sequence (gk)k∈N in
C∞(Rn)∩E such that limk→∞ gk = fψ in E. Then limk→∞ gkθ = fψ in E,
which proves that fψ ∈ clED(Rn). Then (43) follows from Proposition 11(ii).

(iv)⇒(v). Let f satisfy (iv). Let ψ, θ ∈ D(Rn) be as above. By (iv), and
arguing as in the preceding step, we obtain limx→0 τx(θf) = θf in E. By
Propositions 10 and 11, we deduce that

lim
j→∞

ψ(θf ∗ ̺j) = ψf in E.

Then (v) follows from the identity ψ(f ∗ ̺j) = ψ(fθ ∗ ̺j).

(v)⇒(i). Since f ∗ ̺j ∈ C∞(R), the assertion is immediate.

If E is a FDS, with a topology defined by a set of seminorms {Nk :
k ∈ N}, and if r ∈ N, then the Sobolev space W r(E) endowed with the
seminorms

Nr,k(f) :=
∑

|α|≤r

Nk(f
(α)) ∀k ∈ N

is a FDS.

Proposition 13. Let E be a FDS in Rn, and r ∈ N. If E is a D(Rn)-
module, then so is W r(E) and

W r(E)loc = W r(Eloc),

with the same Fréchet topology.

Proof. All properties follow by an inductive argument on r based on the
Leibniz formula and on the closed graph theorem.

Let E be a BDS in Rn such that D(Rn) is a dense subspace of E. Then
the strong dual of E can be identified with a BDS in Rn, namely the set of
f ∈ D′(Rn) such that there exists A > 0 satisfying

|〈f, u〉| ≤ A‖u‖E ∀u ∈ D(Rn).

If E is also translation invariant, then the BDS E′ is also translation invari-
ant. The following criterion gives an easy characterization of the Sobolev
space W 1(E′).
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Proposition 14. Let E be a translation invariant BDS in Rn such that

D(Rn) is a dense subspace of E. If f ∈ D′(Rn), then the following two

properties are equivalent.

(i) ∂jf belongs to E′ for j = 1, . . . , n.
(ii) τxf − f ∈ E′ for all x ∈ Rn, and ‖τxf − f‖E′ = O(|x|) as |x| → 0.

Proof. Proposition 14 is an immediate consequence of the following for-
mulas, which hold for an arbitrary function u in D(Rn):

(44) 〈τxf − f, u〉 = −

n∑

j=1

xj

1\
0

〈∂jf, τ−txu〉 dt ∀x ∈ R
n,

(45) 〈∂jf, u〉 = lim
t→0

1

t
〈f − τtejf, u〉.
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[4] —, Fonctions qui opèrent sur les espaces de Besov et de Triebel, Ann. Inst. H.
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Basel, 2003, 59–74.

[6] —, Une propriété de composition dans l’espace Hs, C. R. Math. Acad. Sci. Paris
340 (2005), 221–224.
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[25] —, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
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