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On operators from separable reflexive spaces

with asymptotic structure

by

Bentuo Zheng (Austin, TX)

Abstract. Let 1 < q < p < ∞ and q ≤ r ≤ p. Let X be a reflexive Banach space
satisfying a lower-ℓq-tree estimate and let T be a bounded linear operator from X which
satisfies an upper-ℓp-tree estimate. Then T factors through a subspace of (

∑
Fn)ℓr

, where
(Fn) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace
of a reflexive space with an (ℓp, ℓq) FDD. Similarly, let 1 < q < r < p < ∞ and let X

be a separable reflexive Banach space satisfying an asymptotic lower-ℓq-tree estimate.
Let T be a bounded linear operator from X which satisfies an asymptotic upper-ℓp-tree
estimate. Then T factors through a subspace of (

∑
Gn)ℓr

, where (Gn) is a sequence of
finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space
with an asymptotic (ℓp, ℓq) FDD.

1. Introduction. In [10], E. Odell and Th. Schlumprecht prove that a
separable reflexive Banach space X which satisfies an (ℓp, ℓq)-tree estimate
for 1 ≤ q ≤ p ≤ ∞ embeds into a reflexive Banach space with an (ℓp, ℓq)
FDD. In particular, this proves that if every normalized weakly null tree in
a separable reflexive Banach space X has a branch equivalent to the unit
vector basis of ℓp (1 < p < ∞), then X is isomorphic to a subspace of an ℓp

sum of finite-dimensional spaces. Then, in [11], E. Odell, Th. Schlumprecht
and A. Zsák prove that a separable reflexive Banach space X which satisfies
an asymptotic (ℓp, ℓq)-tree estimate embeds into a reflexive Banach space
with an asymptotic (ℓp, ℓq) FDD. So a special case is that every separable
reflexive asymptotic ℓp space is a subspace of a reflexive Banach space with
an asymptotic ℓp FDD.

Recall [8] that a Banach space X with an FDD (En) is asymptotic ℓp

with respect to (En) if there exists a 1 ≤ C < ∞ so that for all n, every
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normalized block sequence (xi)
n
i=1 of (Ei)

∞
i=n is C-equivalent to the unit

vector basis of ℓp. A coordinate-free version of this notion is in [7]. Let X
be an arbitrary Banach space. Then X is said to be asymptotic ℓp if there
exists 1 ≤ C < ∞ so that ∀n ∈ N, ∃Y1 ∈ cof(X) ∀y1 ∈ SY1

, . . . ,∃Yn ∈ cof(X)
∀yn ∈ SYn , (yi)

n
i=1 is C-equivalent to the unit vector basis of ℓn

p . An FDD
(En)∞i=1 is asymptotic (ℓp, ℓq) if there exists 0 < C < ∞ such that for all
n ∈ N and all block sequences (xi)

n
i=1 of (En)∞i=n,

C−1
( n∑

i=1

‖xi‖
p
)1/p

≤
∥∥∥

n∑

i=1

xi

∥∥∥ ≤ C
( n∑

i=1

‖xi‖
q
)1/q

.

If p = q, then we say that (En) is asymptotic ℓp.

The results above can be restated in the way that under some conditions,
the identity operator on a separable reflexive Banach space factors through
a subspace of an ℓp sum of finite-dimensional spaces, and under some other
conditions, it factors through a subspace of a space with an asymptotic ℓp

FDD. From this point of view, it is natural to consider general operators
from a separable reflexive Banach space. The goal is to find the right con-
ditions under which the operators factor through a subspace of an ℓp sum
of finite-dimensional spaces or factor through a subspace of a space with an
asymptotic ℓp FDD. In [12], the author proves that if X is a Banach space
with an FDD satisfying a block lower-p estimate and T is an operator from
X which satisfies an upper-ℓp-tree estimate, then T factors through (Fn)ℓp

,
where (Fn) is a sequence of finite-dimensional spaces. An important conse-
quence is that any bounded linear operator from Lp (2 < p < ∞) which
satisfies an upper-ℓp-tree estimate factors through ℓp (actually this is also a
necessary condition).

In this paper, the author proves the following theorems. Theorem A
generalizes the results in [12] we mentioned above and Theorem B gives
conditions for operators from spaces with certain asymptotic structure to
factor through a subspace of an ℓr sum of finite-dimensional spaces.

Theorem A. Let 1 < q ≤ r ≤ p < ∞ and let X be a separable reflexive

Banach space which satisfies a lower-ℓq-tree estimate. Let T be a bounded

linear operator from X into Y which satisfies an upper-ℓp-tree estimate.

Then T factors through a subspace of (
∑

Fn)ℓr
, where (Fn) is a sequence of

finite-dimensional spaces.

Theorem B. Let 1 < q < r < p < ∞ and let X be a separable reflexive

Banach space which satisfies an asymptotic lower-ℓq-tree estimate. Let T be

a bounded linear operator from X which satisfies an asymptotic upper-ℓp-

tree estimate. Then T factors through a subspace of (Fn)ℓr
, where (Fn) is a

sequence of finite-dimensional spaces.
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2. Definitions and notations. Let X be a Banach space and let SX

be the unit sphere of X. Let [N]<ω denote all finite subsets of the positive
integers. By a normalized weakly null tree we mean a family (xA)A∈[N]<ω ⊂
SX with the property that every sequence (xA∪{n})n∈N is weakly null. Let
A = {n1, . . . , nm} with n1 < · · · < nm and B = {j1, . . . , jr} with j1 < · · · <
jr. Then we say A is an initial segment of B if m ≤ r and ni = ji when
1 ≤ i ≤ m. The tree order on (xA)A∈[N]<ω is given by xA ≤ xB if A is an
initial segment of B. A branch of a tree is a maximal linearly ordered subset
of the tree under the tree order.

Definition 2.1. Let V be a Banach space with a 1-unconditional and
normalized basis (vi). We say that a Banach space X satisfies a lower-V -tree

estimate if there exists a C ≥ 1 such that every normalized weakly null tree
in X has a branch (xi) so that for all (ai) ⊂ R,

∥∥∥
∑

aixi

∥∥∥ ≥ C−1
∥∥∥

∑
aivi

∥∥∥.

In this paper, we need an analogous definition for operators.

Definition 2.2. Let U be a Banach space with a 1-unconditional and
normalized basis (ui). Let T be a bounded linear operator from X. We say
that T satisfies an upper-U -tree estimate if there exists a C > 0 such that
every normalized weakly null tree in X has a branch (xi) so that for all
(ai) ⊂ R, ∥∥∥T

( ∑
aixi

)∥∥∥ ≤ C
∥∥∥

∑
aiui

∥∥∥.

Definition 2.3. Let 1 ≤ p ≤ ∞. A reflexive Banach space X satisfies
an asymptotic lower-ℓp-tree estimate if there exists a 1 ≤ C < ∞ so that
for every k ∈ N, every normalized weakly null tree of length k in X has a
branch (xi)

k
i=1 such that for all (ai) ⊂ R,

∥∥∥
k∑

i=1

aixi

∥∥∥ ≥ C−1
( k∑

i=1

‖ai‖
p
)1/p

.

Definition 2.4. Let 1 ≤ q ≤ ∞ and let T be a bounded linear operator
from a Banach space X. Then T satisfies an asymptotic upper-ℓq-tree esti-

mate if there exists a 1 ≤ C < ∞ so that for every k ∈ N, every normalized
weakly null tree of length k in X has a branch (xi)

k
i=1 such that

∥∥∥
k∑

i=1

xi

∥∥∥ ≤ C
( k∑

i=1

‖xi‖
q
)1/q

.

3. Main results. Let (ui) be a sequence in a Banach space U and let
(vi) be a sequence in a Banach space V . We say that (ui) C-dominates (vi)
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or (vi) is C−1-dominated by (ui) if for all (ai) ⊂ R,
∥∥∥

∑
aiui

∥∥∥
U
≥ C

∥∥∥
∑

aivi

∥∥∥
V
.

Let (wi) be a 1-unconditional normalized basis for W . Let F = (Fn) be
an FDD for a Banach space Z. Then we define the space ZW (F ) to be the
completion of c00(

⊕
Fn) under the norm

‖(xi)‖ =
∥∥∥

∑

j

‖xi‖wj

∥∥∥.

Let (wi) be a basis for some Banach space W . We say that (wi) is C-

subsymmetric if it is 1-unconditional and every subsequence is C-equivalent
to (wi).

Theorem 3.1. Let U and V be two Banach spaces with 1-unconditional

normalized bases (ui) and (vi). Let (wi) be a normalized C ′-subsymmetric ba-

sis for W . Suppose that (ui) A1-dominates (wi) and (wi) A2-dominates (vi).
Let X be a separable reflexive Banach space with an FDD (En) which sat-

isfies a lower-U -tree estimate. Let T be a bounded linear operator from X
into Y which satisfies an upper-V -tree estimate. Then T factors through

XW (F ), where F = (Fn) is a blocking of (En).

In the proof of Theorem 3.1, the following lemmas are used.

Lemma 3.2 (Propositions 2.4 and 2.5 in [10]). Let X be a separable

reflexive Banach space which embeds into a reflexive Banach space with an

FDD (En). Then for A ⊂ Sω
X , the following are equivalent :

(a) For all ε > 0, every weakly null tree in SX has a branch in Ãε.

(b) For all ε > 0, there exists a blocking (Fn) of (En) and δ = (δi) with

δi ↓ 0 so that if (xn) ⊂ SX is a δ-skipped block sequence with respect

to (Fi) then (xn) ∈ Ãε.

Here Aε = {(xn) ⊂ SX : there exists (yn) ∈ A with ‖xn −yn‖ < ε/2n for

all n} and Ãε denotes the closure of Aε with respect to the product topology
of the discrete topology on SX .

Given an FDD (En), (xn) is said to be a skipped block sequence with

respect to (En) if there exists a sequence of integers 1 = m1 < m2 < · · ·

such that mn + 1 < mn+1 and xn ∈
⊕mn+1−1

j=mn+1 Ej , ∀n ∈ N. Let δ = (δi) be a
sequence of positive numbers decreasing to 0. We say (yn) is a δ-skipped block

sequence with respect to (En) if there is a skipped block sequence (xn) so that
‖yn − xn‖ < δn‖yn‖ for all n ∈ N. We say (Fn) is a blocking of (En) if there

is a sequence of integers 0 = k0 < k1 < · · · so that Fn =
⊕kn

j=kn−1+1 Ej .

Proof of Theorem 3.1. For a blocking F = (Fi) of E = (En), let JF be
the natural embedding of X into XW (F ) so that if x =

∑
xi with xi ∈ Fi,
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then JF (x) =
∑

xi ∈ XW (F ). We define T̃ to be the operator from JF (X)

into Y so that T̃ ◦ JF = T . Initially, JF and T̃ are only defined on the
linear span of the FDD’s. Once they are bounded, they have bounded linear
extensions to the closures. So our goal is to find an appropriate blocking F
of E so that JF and T̃ are bounded. Let C ≥ 1 be a constant associated
with the upper-V -tree estimate for the operator T and set

A =
{
(xi) ∈ Sω

X : ∀j ∈ N,
∥∥∥T

( j∑

i=1

aixi

)∥∥∥ ≤ C
∥∥∥

j∑

i=1

aivi

∥∥∥, ∀(ai) ⊂ R

}
.

Since T satisfies an upper-V -tree estimate, applying Lemma 3.2 to the set
A, we get a blocking (Gi) of (Ei) such that given ε > 0, there exists δ = (δi)
so that if (xn) ⊂ SX is a δ-skipped block sequence with respect to (Gn),
then whenever

∑
aixi converges, we have ‖T (

∑
aixi)‖ ≤ (1+ ε)C‖

∑
aivi‖.

Let C̃ be a constant associated with the lower-U -tree estimate for X
and set

B =
{
(xi) ∈ Sω

X : ∀j ∈ N,
∥∥∥

j∑

i=1

aixi

∥∥∥ ≥ C̃−1
∥∥∥

j∑

i=1

aiui

∥∥∥, ∀(ai) ⊂ R

}
.

Since X satisfies a lower-U -tree estimate, applying Lemma 3.2 again to the
set B and properly shrinking δ, we get a blocking (Hi) of (Gi) such that
if (xn) ⊂ SX is a δ-skipped block sequence with respect to (Hn), then

whenever
∑

aixi converges, we have ‖
∑

aixi‖ ≥ (C̃−1/(1 + ε))‖
∑

aiui‖.
From the above arguments, we get a blocking (Hi) of (Ei) so that (ui) is

C̃−1/(1+ε)-dominated by any δ-skipped block sequence with respect to (Hi)
in X while the image of any δ-skipped block sequence with respect to (Hi)
in X under T is (1+ ε)C-dominated by (vi). Let K = supm<n ‖Pn−Pm‖ be
the projection constant for (Ei), where Pn is the canonical projection from
X onto

⊕n
i=1 Ei. Using the “killing the overlap technique” [3], we can find

a further blocking F = (Fn) of (Hn) with Fn =
⊕l(n+1)

j=l(n)+1 Hj , so that for

any x =
∑

xj ∈ SX , xj ∈ Hj , there are tn’s with l(n) < tn < l(n + 1) such
that ‖xtj‖ < δi, where 0 = l(1) < l(2) < · · · .

First, we prove T̃ is bounded. Let ε > 0 and let
∑

δi < ε. Without loss
of generality, we assume ‖T‖ = 1. Let x =

∑
xi =

∑
x̃j ∈ SX with xi ∈ Fi

and x̃j ∈ Hj . Then

‖T̃ (x)‖ =
∥∥∥T

( ∑
xi

)∥∥∥ ≤
∥∥∥T

( ∑
x2i

)∥∥∥ +
∥∥∥T

( ∑
x2i−1

)∥∥∥

≤ (1 + ε)C
(∥∥∥

∑
‖x2i‖vi

∥∥∥ +
∥∥∥

∑

i>1

‖x2i−1‖vi

∥∥∥ + ‖x1‖
)

≤ (1 + ε)CA−1
2

(∥∥∥
∑

‖x2i‖wi

∥∥∥ +
∥∥∥

∑

i>1

‖x2i−1‖wi

∥∥∥ + ‖x1‖
)
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≤ (1 + ε)CC ′A−1
2

(∥∥∥
∑

‖x2i‖w2i

∥∥∥ +
∥∥∥

∑

i>1

‖x2i−1‖w2i−1

∥∥∥ + ‖x1‖
)

≤ (1 + ε)CC ′A−1
2

(∥∥∥
∑

‖xi‖wi

∥∥∥ +
∥∥∥

∑
‖xi‖wi

∥∥∥ +
∥∥∥

∑
‖xi‖wi

∥∥∥
)

= 3(1 + ε)CC ′A−1
2 ‖x‖XW (F ).

Hence T̃ is bounded. It remains to prove that JF is bounded. Let t0 = 1
and let yi =

∑ti−1
j=ti−1

x̃j . Define ỹ1 = y1 and ỹi = yi − x̃ti−1
for i ≥ 2. Then

‖x‖XW (F ) =
∥∥∥

∑
‖xi‖wi

∥∥∥ ≤ A−1
1

∥∥∥
∑

‖xi‖ui

∥∥∥

≤ A−1
1

∥∥∥
∑

K(‖yi‖ + ‖yi+1‖)ui

∥∥∥

≤ KA−1
1

(∥∥∥
∑

i>1

‖yi‖ui

∥∥∥ +
∥∥∥

∑
‖yi+1‖ui

∥∥∥ + ‖y1‖
)

≤ KA−1
1

(∥∥∥
∑

i>1

‖ỹi‖ui

∥∥∥ +
∥∥∥

∑
‖ỹi+1‖ui

∥∥∥ + ‖y1‖ + 2ε
)

≤ (1+ε)KA−1
1 C̃

(∥∥∥
∑

i>1

ỹi

∥∥∥ +
∥∥∥

∑
ỹi+1

∥∥∥ + C̃−1‖y1‖ + 2C̃−1ε
)

≤ (1+ε)KA−1
1 C̃(K(‖x‖+ε) + K(‖x‖+ε)+ C̃−1K‖x‖+2C̃−1ε)

≤ (1+ε)K(2K + 2Kε + C̃−1K + 2C̃−1ε)A−1
1 C̃‖x‖.

For the last step, we use the condition that x ∈ SX . So JF is bounded.

Theorem 3.1 concerns operators from spaces with an FDD. For operators
from spaces without an FDD, we have the following corollaries.

Corollary 3.3. Let (ui) be a normalized 1-subsymmetric basis for a

reflexive space U . Let (vi) be a normalized 1-subsymmetric basis for a reflex-

ive space V and let (wi) be a normalized subsymmetric basis for a reflexive

space W . Suppose that (ui) dominates (wi) and (wi) dominates (vi). Also

assume that (ui) is dominated by every normalized block basis of (ui) and

(v∗i ) is dominated by every normalized block basis of (v∗i ). Let X be a sepa-

rable reflexive Banach space which satisfies a lower-U -tree estimate and let

Y be a separable reflexive Banach space which satisfies an upper-V -tree es-

timate. Then any bounded linear operator T from X into Y factors through

a subspace of ZW (F ), where F = (Fn) is a sequence of finite-dimensional

spaces.

Proof. By Theorem 4.4 in [11], Y embeds into a reflexive space Ỹ with

an FDD (Gn) which satisfies an upper-V -tree estimate. We use Ũ , Ṽ and W̃
to denote the closed linear spans of (u∗

i ), (v∗i ) and (w∗
i ) respectively, where

(u∗
i ), (v

∗
i ) and (w∗

i ) are the biorthogonal functionals of (ui), (vi) and (wi)
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respectively. Let T ∗ be the adjoint operator of T . Since the image of T ∗ is
inside X∗ which satisfies an upper-Ũ -tree estimate (Corollary 4.3 in [11]),

T ∗ satisfies an upper-Ũ -tree estimate. As Ỹ satisfies an upper-V -tree es-
timate, Ỹ ∗ satisfies a lower-Ṽ -tree estimate. By Theorem 3.1, T ∗ factors
through Z

W̃
(F̃n). By considering T ∗∗, which is T , we conclude that T fac-

tors through a subspace of Z
W̃

(F̃n)∗, which is ZW (F ).

Proof of Theorem A. By Theorem 2.1 in [10], X is a quotient of a re-
flexive space Z with an FDD which satisfies a lower-ℓq-tree estimate. Let Q
be a quotient map from Z onto X. Then it is easy to see that T ◦ Q satis-
fies an upper-ℓp-tree estimate. By Theorem 3.1, T̃ = T ◦ Q factors through

(En)ℓr
, where (En) is a sequence of finite-dimensional spaces. Let T̃ ∗ be the

adjoint operator of T̃ . Then T̃ ∗ = J ◦ T ∗ factors through (E∗
n)ℓr′

, where J
is an embedding of X∗ into Z∗ and 1/r′ + 1/r = 1. This implies that T ∗

factors through a subspace H of (E∗
n)ℓr′

. By [5], H is also a quotient of some
(Fn)ℓr′

. By considering T ∗∗, which is T , we deduce that T factors through
a subspace of (F ∗

n)ℓr
.

Let 1 < p < ∞ and let ℓp,1 be the completion of c00 under

‖(ai)‖ℓp,1
=

∑
i1/p−1a∗i ,

where (a∗i ) is the decreasing rearrangement of (|ai|).

Remark 3.4. Let 1 ≤ r < p ≤ ∞. Then the canonical basis of ℓr

dominates the canonical basis of ℓp,1.

The Tsirelson space corresponding to p and 0 < γ < 1 is denoted by
T (ℓp, γ) (see X.E in [1]). The standard Tsirelson space is T = T (ℓ1, 1/2)
and the original p-convexification of T is T (ℓp, 2

−1/p).

To prove Theorem B, we need the following lemmas. The first one is
proved by E. Odell, Th. Schlumprecht and A. Zsák.

Lemma 3.5 (Proposition 5.5 in [11]). Let 1 < p < ∞. For a separable

reflexive Banach space X, the following are equivalent :

(a) X satisfies an asymptotic lower-ℓp-tree estimate.

(b) There exists γ ∈ (0, 1) such that X satisfies a lower-T (ℓp, γ)-tree
estimate.

Let (vi) be a sequence in a Banach space. We say that (vi) satisfies an
asymptotic upper-ℓp estimate if there is a C > 0 so that for every finite
sequence of natural numbers n1 < · · · < nm with m < n1 and (ai)

m
i=1 ⊂ R,

∥∥∥
m∑

i=1

aivni

∥∥∥ ≤ C
( m∑

i=1

|ai|
p
)1/p

.
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Lemma 3.6. Let 1 < p < ∞. Let (ui) be the canonical basis for ℓp,1 and

let (vi) be a sequence in a Banach space which has an asymptotic upper-ℓp

estimate. Then (vi) is dominated by (ui).

Proof. By definition, we need to prove that there is a C0 > 0 so that for
any (ai)

∞
i=1 ⊂ R,

∥∥∥
∞∑

i=1

aivi

∥∥∥ ≤ C0

∥∥∥
∞∑

i=1

aiui

∥∥∥.

By scaling and taking small perturbations, we may assume 0 < |ai| ≤ 1,
∀i ∈ N. Let (Ak) be the partition of N defined as

Ak = {i ∈ N : 1/2k < |ai| ≤ 1/2k−1}.

Let I = {k ∈ N : |Ak| > 2−1
∑

j<k |Aj |}. There are two cases for I, finite or

infinite. Since the proof when I is finite is essentially the same as when I is
infinite, here we just give the proof for the case when I is infinite.

Let I = {m1, m2, . . .}, where m1 < m2 < · · · . Set m0 = 1 and let

Bn =
⋃mn+1−1

k=mn
Ak for n ≥ 0. Let C be a constant associated with the weak

asymptotic upper-ℓp estimate for (vi). Suppose 2tn ≤ |Amn | < 2tn+1. Then

∥∥∥
∑

i∈Amn

aivi

∥∥∥ ≤
C

2mn−1
(2tn/p + 2(tn−1)/p + · · · + 1) ≤

C

2mn−1

2tn/p

1 − 2−1/p

≤
C

1 − 2−1/p

1

2mn−1
|Amn |

1/p.

Noticing that for all mn < k < mn+1,

|Ak| ≤ (3/2)k−mn |Amn |,

we get

mn+1−1∑

k=mn+1

1

2k−1
|Ak|

1/p ≤

mn+1−1∑

k=mn+1

1

2k−1
(3/2)(k−mn)/p |Amn |

1/p

=

mn+1−1∑

k=mn+1

1

2mn−1

(3/2)(k−mn)/p

2k−mn
|Amn |

1/p.

Now let

C̃p =
C

1 − 2−1/p

(
1+

∞∑

k=mn+1

(3/2)(k−mn)/p

2k−mn

)
=

C

1 − 2−1/p

(
1+

∞∑

k=1

(3/2)k/p

2k

)
.

We have

∥∥∥
∑

i∈Bn

aivi

∥∥∥ ≤

mn+1−1∑

k=mn

∥∥∥
∑

i∈Ak

aivi

∥∥∥ ≤
1

2mn−1
C̃p|Amn |

1/p.
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Next, we are going to estimate
∑∑mn

j=1
|Aj |

k=
∑mn−1

j=1
|Aj |+1

k1/p−1. From the defi-

nition of Amn , |Amn | is always greater than or equal to 1. If |Amn | = 1, then∑mn−1
j=1 |Aj | can only be 0 or 1. In either case,

∑mn
j=1

|Aj |∑

k=
∑mn−1

j=1
|Aj |+1

k1/p−1 ≥ 21/p−1 ≥ (31/p − (5/2)1/p)|Amn |
1/p.

If |Amn | ≥ 2, then
∑mn

j=1
|Aj |∑

k=
∑mn−1

j=1
|Aj |+1

k1/p−1 ≥ p
(( mn∑

j=1

|Aj |
)1/p

−
( mn−1∑

j=1

|Aj | + 1
)1/p)

≥ p((3|Amn |)
1/p − (2|Amn | + 1)1/p)

≥ p(31/p − (2 + |Amn |
−1)1/p)|Amn |

1/p

≥ p(31/p − (5/2)1/p)|Amn |
1/p

≥ (31/p − (5/2)1/p)|Amn |
1/p.

We get the first step by using the definite integral of the function x1/p−1.
The second step follows from the fact that (x + a)1/p − x1/p is a decreasing
function for p > 1, where a is a positive constant. So for any n ∈ N, we have

∑mn
j=1

|Aj |∑

k=
∑mn−1

j=1
|Aj |+1

k1/p−1 ≥ (31/p − (5/2)1/p)|Amn |
1/p.

Hence,

∥∥∥
∞∑

i=1

aiui

∥∥∥ ≥
∞∑

n=1

1

2mn

(
∑mn

j=1
|Aj |∑

k=
∑mn−1

j=1
|Aj |+1

k1/p−1
)

≥
∞∑

n=1

1

2mn
(31/p − (5/2)1/p)|Amn |

1/p

≥
31/p − (5/2)1/p

2C̃p

∞∑

n=1

∥∥∥
∑

i∈Bn

aivi

∥∥∥ ≥
31/p − (5/2)1/p

2C̃p

∥∥∥
∞∑

i=1

aivi

∥∥∥.

The first step above holds because we only compute the contribution of
those aiui’s with ai ∈ Amn . This finishes the proof.

Lemma 3.7. Let 1 < p < ∞ and let X be a separable reflexive Banach

space. Let T be a bounded linear operator from X into a Banach space Y .

Then (a)⇒(b), where

(a) T satisfies an asymptotic upper-ℓp-tree estimate,
(b) T satisfies an upper-ℓp,1-tree estimate.
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Proof. Since X is a separable reflexive Banach space, by Zippin’s the-
orem [13], we can assume that X is a subspace of a reflexive space with
an FDD (En). Let C > 0 be the constant associated with the asymptotic
upper-ℓp-tree estimate. For k ∈ N, let

Ak =
{
(xi) ∈ Sω

X :
∥∥∥T

( k∑

i=1

aixi

)∥∥∥ ≤ C
( k∑

i=1

|ai|
p
)1/p

, ∀(ai)
k
i=1 ⊂ R

}
.

Let ε > 0 be so small that for all k ∈ N,

Ak
ε ⊂

{
(xi) ∈ Sω

X :
∥∥∥T

( k∑

i=1

aixi

)∥∥∥ ≤ 2C
( k∑

i=1

|ai|
p
)1/p

, ∀(ai)
k
i=1 ⊂ R

}
.

Let (E0
i ) = (Ei). Applying Lemma 3.2, we get a decreasing null sequence

δ1 = (δ1
i ) and a blocking (E1

i ) of (E0
i ) so that if (xi) ⊂ SX is a δ1-skipped

block sequence of (E1
i ), then (xi) lies in A1

ε. By repeating this procedure,

we obtain decreasing null sequences δk = (δk
i ) and blockings (Ek

i ) of (Ek−1
i )

so that if (xi) ⊂ SX is a (δk
i )-skipped block sequence of (Ek

i ), then (xi)

lies in Ak
ε . Let Ek

k =
⊕mk

i=nk
Ei, and let (Fi) be a blocking of (Ei) so that

Fk =
⊕nk+1−1

i=nk
Ei. We can then choose a decreasing null sequence δ = (δi)

so that if (xi) ⊂ SX is a δ-skipped block sequence of (Fi), then (xi) is a basic
sequence and any normalized block sequence (zi)

k
i=1 of (xi)

∞
i=k is a δk-skipped

block sequence of (Ek
i ). Hence, by Lemma 3.6, (Txi) is dominated by the

canonical basis of ℓp,1. This shows T satisfies an upper-ℓp,1-tree estimate.

Proof of Theorem B. By Lemma 3.5, X satisfies a lower-T (ℓq, γ)-tree
estimate for some 0 < γ < 1. By Lemma 3.7, T satisfies an upper-ℓp1-tree
estimate. Since the canonical basis of T (ℓq, γ) dominates the canonical basis
of ℓr and the canonical basis of ℓr dominates the canonical basis of ℓp1 when
1 < q < r < p < ∞, by Theorem 3.1, we deduce that T factors through
a subspace of (Fn)ℓr

, where F = (Fn) is a sequence of finite-dimensional
spaces.

By Theorem B, we have

Corollary 3.8. Let 1 < q < p < ∞ and let X be a reflexive asymptotic

ℓq space. Let T be a bounded linear operator from X which satisfies an

asymptotic upper-ℓp-tree estimate. Then T factors through a subspace of a

space with an (ℓp, ℓq) FDD.

Remark 3.9. Theorem B and Corollary 3.8 start with asymptotic con-
ditions while end up with factorizations through subspaces of spaces with
properties much stronger than asymptotic properties. This gives us some in-
formation on the relations between asymptotic ℓp spaces and (Fn)ℓr

spaces.
However, they do not tell us what happens when p = q.
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The following theorem provides a result for the special case when p = q.

Theorem 3.10. Let 2 < p < ∞. Let X be a separable reflexive asymp-

totic ℓp space. Let T be a bounded linear operator from X into Lp which

satisfies an asymptotic upper-ℓp-tree estimate. Then T factors through ℓp.

Proof. W. B. Johnson proved in [2] that for p > 2, a bounded linear
operator T into Lp factors through ℓp if and only if T is compact when
considered as an operator into L2. So it is enough to show that T is compact
as an operator into L2. By Corollary 4.8 in [11], X embeds into a reflexive
Banach space with an asymptotic ℓp FDD (En). Let (hn) be the canonical
Haar basis of L2. If T is not compact as an operator into L2, then there are
a δ > 0 and a perturbation of a normalized block sequence (xi) with respect
to (En) so that (ip,2◦Txi) is essentially a block sequence with respect to (hn)
and ‖ip,2 ◦ Txi‖ > δ, ∀i ∈ N, where ip,2 is the formal identity map from Lp

into L2. This gives a contradiction since, on the normalized weakly null tree
(xA)A∈[N]<ω , xA = xmax{A}, T does not satisfy an asymptotic upper-ℓp-tree
estimate.

Remark 3.11. Theorem 3.10 holds even if we only assume that for every
normalized weakly null sequence in X there is a subsequence whose image
under T satisfies an asymptotic upper-ℓr estimate for some 2 < r < ∞.

Acknowledgments. The author thanks E. Odell for useful conversa-
tions and the referee for careful reading.
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