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Asymptoti estimates for a perturbation of the linearizationof an equation for ompressible visous �uid �owbyGerhard Ströhmer (Iowa City, IA)Abstrat. We prove a priori estimates for a linear system of partial di�erential equa-tions originating from the equations for the �ow of a barotropi ompressible visous �uidunder the in�uene of the gravity it generates. These estimates will be used in a forthom-ing paper to prove the nonlinear stability of the motionless, spherially symmetri equi-librium states of barotropi, self-gravitating visous �uids with respet to perturbationsof zero total angular momentum. These equilibrium states as well as the non-stationarysolutions oupy part of spae, and a onstant pressure is assumed on the free surfae,but no surfae tension.1. Introdution. This paper ontains the ontinuation of the analysisof systems of linear equations related to the linearization of the equationsdesribing the �ow of a barotropi �uid under the in�uene of its own grav-ity with a free surfae without surfae tension, begun in [8℄ and [9℄. Thelinearization is arried out at a spherially symmetri stationary solution ofthe equations. We begin by giving a short, and not entirely rigorous, desrip-tion of the original problem and its relationship with the equations studiedhere for the purpose of motivation.The original equations, formulated in Euler oordinates, onern a �uidoupying a domain Ωt at time t ∈ Iω = [0, ω] ∩ R with some ω ∈ (0,∞].We denote the spae-time region in whih the �ow takes plae by
Ωω =

⋃

t∈Iω

{(y, t) | y ∈ Ωt},the veloity of the �ow by v : Ωω → R
3, v(t) = v(y, t) with v(t) : Ωt → R

3,the density of the �uid by ̺ : Ωω → R, ̺(t) = ̺(y, t), ̺(t) : Ωt → R, andits pressure by p : Ωω → R, p(t) = p(y, t), p(t) : Ωt → R. We also de�ne the2000 Mathematis Subjet Classi�ation: 35Q30, 47D06, 76E20.Key words and phrases: ompressible visous �ows, stability, astrophysial �ows, gasballs.The work of the author was supported in part by a grant from the Polish Committeeof Sienti� Researh, number 2 PO3A 002223.[99℄ © Instytut Matematyzny PAN, 2008



100 G. Ströhmerstress tensor T by
T(v, p) = [Tij(v, p)] = [−pδij + Dij(v)]with

D(v) = [Dij(v)] = µ([∇v] + [∇v]t) + (ν − µ) tr(∇v)E3.(In this paper the symbol ∇ only denotes the vetor of spae derivatives.)We assume the visosity oe�ients µ and ν satisfy ν ≥ µ/3 > 0. Thegravitational potential of the mass distribution is given by(1) G(y, t) = G(̺, Ωt) = k
\

Ωt

̺(ỹ, t)

|ỹ − y|
dỹ,where k is the gravitational onstant. We also assume the equation of state

p = p(̺) = K̺κ with κ > 4/3, K > 0 for the gas in question and that it isexposed to a positive outside pressure p0 > 0 on ∂Ωt. Then for (y, t) ∈ Ωωwe have the equations(2) ̺(v′ + v · ∇v) − div(T(v, p)) = ̺∇G,

̺′ + div(̺v) = 0,while for t ∈ Iω, y ∈ ∂Ωt we have(3) T(v, p(̺)) · n = −p0n.Note that there is no surfae tension. The domain is also moving with the�ow, whih means that if we follow the diretion of the vetor �eld v begin-ning at any point (y, t) ∈ Ωω we only leave this set at t = 0 and t = ω. Itwill be shown in [10℄ that we an desribe the domains Ωt by means of afamily of di�eomorphisms Tt : BR → Ωt whih also satisfy the equations
dTt

dt
(y, t) = v(Tt(y, t), t),whih means that Tt follows the �ow. By speifying T0 we also desribe Ω0.Then Tt ◦T−1

0 is idential with standard Lagrange oordinates for this prob-lem. We an desribe these transformations also in the form of the mapping
T : BR × Iω → R

3 de�ned by(4) T(x, t) = Tt(x) (x ∈ BR, t ∈ Iω).In the main part of this paper T will be assumed to be given, but we willstill use the two alternative ways of denoting the transformation we justintrodued in (4).For an equilibrium state without motion (v = 0) the equations (2) and(3) redue to ∇(p(̺)) = ̺∇G in Ωt, whih is then onstant, and p(̺) = p0 onthe spatial boundary. As was shown, e.g., in [11℄, given a mass M ∈ (0,∞)and a pressure p0 ∈ (0,∞) there exists exatly one number R > 0 and



Compressible visous �uid �ow 101exatly one funtion ̺e ∈ C∞([0, R]) suh that with pe = p(̺e) the funtion
Ge(y) = G(̺e(|y|), BR) is spherially symmetri, and for |y| ≤ R we have

∇(pe(|y|)) =
∂p

∂̺
(̺e(|y|))∇(̺e(|y|)) = ̺e(|y|)∇Ge(y), pe(R) = p0,and the integral of the density ̺e(|y|) over BR equals M . This means that

̺e(|y|) is the density of a spherially symmetri equilibrium solution.(See [11℄.) From now on we will use the symbols ̺e, pe, Ge interhangeablyfor funtions of r and y, so that, e.g., ̺e(|y|) = ̺e(y). The meaning will belear from the ontext.In [8℄ the linearization
(5) ̺eu

′ − div(D(u)) + ̺e∇(γeα) = ̺e∇[I(α, β)],

α′ + div(̺eu) = 0,

β′ = u · nof the equations (2) and (3) at these equilibrium solutions was omputed.The boundary onditions are(6) T̃(u, α) · n =
∂pe

∂r
(R)βn.Here u is the variation of the veloity, α that of the density, both de�ned on

BR × Iω, and β is the variation of the funtion desribing Ωt as a graph inpolar oordinates, it is de�ned on ∂BR × Iω. Also γe =
(∂p

∂̺ ◦ ̺e

)
̺−1

e ,

T̃(u, α) = D(u) − γe(R)̺e(R)αE3and(7) I(α, β) = k

( \
BR

α(y)

|x − y|
dy + ̺e(R)

\
∂BR

β(y)

|x − y|
dσy

)
.The integral operator I represents the linearization of the gravity potential.In [8℄ it was shown that solutions of (5) and (6) belonging to suitable spaesdeay in an algebrai fashion, while the results in [5℄ and [7℄ strongly suggestthat one annot expet exponential deay for the solutions of this problem.Due to the slow deay, the appliation of the results about the linearizationto the non-linear problem requires a very deliate analysis. To this end weinlude the deformation d(x, t) = T(x, t)−x (x ∈ BR, t ∈ Iω), whih satis�esthe equation(8) d′ = u.We also need to onsider suitable perturbations of the resulting system.The paper [9℄ is dediated to the analysis of the homogeneous equation withhomogeneous boundary onditions without any expliit dependene on time.In the present paper we will onsider inhomogeneous and time-dependent



102 G. Ströhmerequations. As this analysis strongly depends on the result of [9℄ and usesmuh the same onepts, we desribe the main result of that paper in a formmore appropriate for use here and introdue the notation used there to theextent that it is relevant here. This will partly be done by ontrasting theproblems onsidered in [8℄ with [9℄ and this paper. One di�erene between[8℄, [9℄ and this paper is that we assume here that all funtion spaes onsistof real-valued funtions only, as the diret work with analyti semigroupsharateristi of the previous papers is now �nished, and we an reap itsbene�ts without getting entangled in the tehnial details. We unite therelevant variables in one vetor funtion
U(t) = [u(t), α(t), β(t), d(t)].One of the onditions one needs to impose on the omponents of U in orderto obtain the asymptoti estimates in [9℄ is that ertain integral quantities,whih originate from the onservation laws of the original equation, vanish.In the notation used in [9℄ we an express this ondition by introduing thesalar produt

([u, α, β, d], [ũ, α̃, β̃, d̃])H

=
\

BR

̺e(x)uũ dx +
\

BR

αα̃ dx + ̺e(R)
\

∂BR

ββ̃ dσ +
\

BR

̺e(x)dd̃ dx

for these funtions on the spae H = L2(BR)×L2(BR)×L2(∂BR)×L2(BR).If N is the linear spae spanned by the elements
[0, 1, 1, 0], [ek, 0, 0, 0], [x × ek, 0, 0, 0], [0, xk, xk, 0] (k = 1, 2, 3),these onditions an be expressed in the form(9) (U(t), u)H = 0 (u ∈ N ).The solutions of the systems of equations onsidered both in [8℄ and [9℄ arede�ned on BR as far as the spae variables are onerned. If one poses thesame problem as in [8℄ on a di�erent set Ω, given as Ω = T (BR) with adi�eomorphism T ∈ W 2

p (BR), and then transforms it to BR one obtainsa problem very lose, but not idential with the one onsidered in [9℄. Weassume that this di�eomorphism T satis�es the onditions(10) ‖T − EBR
‖W 2

P (BR) ≤ 1, det(∇T ) ≥ 1/2, min
x∈∂BR

|T (x)| ≥ R/2.For u ∈ W 2
p (BR) we an then de�ne

DT (u) = D(u ◦ T−1) ◦ T.Introduing ZT ∈ W 1
p (BR) by(11) ZT = [∇T ]−1,



Compressible visous �uid �ow 103one an easily see that(12) DT (u) = µ(∇uZT + (∇uZT )t) + (ν − µ)(tr(∇uZT ))E3.Likewise let̃
TT (u, α) = DT (u) − γe(R)̺e(R)αE3,

(LT )k(u) =
1

̺e ◦ T
((DT (u))kj)xq(ZT )qj (k = 1, 2, 3),(13)

LT (u, α) = LT (u) −∇((γe ◦ T )α)ZT .With mT (x) = T (x)/|T (x)| for x ∈ ∂BR and U = [u, α, β, d] we then de�nethe operator A1T by
(14) A1T U = [LT (u, α) + ∇I(α, β)ZT ,− tr(∇((̺e ◦ T )u)ZT ), u · mT , u].The expression u · mT may not seem to �t into our transformation sheme.To give a hint of why it does, we have to return to the original problem. Asthe �ow takes boundary points to boundary points we have Tt(∂BR) = ∂Ωt,and for ∂Ωt whih are small perturbations of ∂BR the ray in the diretionof Tt(x) only ontains one point, Tt(x), of ∂Ωt. Thus the funtion(15) β(x, t) = |Tt(x)| − Ran be thought of as desribing ∂Ωt as a graph in Lagrange oordinates.Di�erentiating (15) with respet to time we obtain β′ = u · mTt .The domain of the operator A1T will be spei�ed later. With

BT (U) = BT (u, α, β) = T̃T (u, α) −
∂pe

∂r
(R)βE3let(16) BT (U) = BT (u, α, β) = BT (u, α, β) · nT ,where nT (x) is the exterior unit normal to ∂Ω at T (x). The equations (5),(6) and (8) an now be written in the form

Ut = A1EBR
U, BEBR

(U) = 0.Let
B

s = {[u, α, β, d] : u ∈ W s−1
p (BR), α ∈ W s

p (BR),

β ∈ W s+1−1/p
p (∂BR), d ∈ W s+1

p (BR)}with p > 9, 1/p < s ≤ 1 and
Ds = {[u, α, β, d] ∈ Bs : u ∈ W s+1

p (BR)}.With the norm
‖[u, α, β, d]‖Bs

−1
= ‖u‖W s−1

p
+ ‖α‖W s

p
+ ‖β‖

W
s−1/p
p

+ ‖d‖W s+1
p

,

Bs is a normed vetor spae, as is Ds with the norm
‖[u, α, β, d]‖Ds

−1
= ‖u‖W s+1

p
+ ‖[u, α, β, d]‖Bs

−1
.



104 G. StröhmerIn addition, Bs is a Banah spae with
‖[u, α, β, d]‖Bs = ‖[u, α, β, d]‖Bs

−1
+ ‖β‖

W
s+1−1/p
p

,and so is Ds with the norm
‖[u, α, β, d]‖Ds = ‖[u, α, β, d]‖Ds

−1
+ ‖β‖

W
s+1−1/p
p

.Speifying D1 as the domain of A1T we obtain A1T : D1 → B1. The sig-ni�ane of the other norms will beome lear in Theorem 1. Let Pc bethe orthogonal projetion from H to N and P = EH − Pc. We learly have
PcU ∈ D1 and

‖PcU‖D1 ≤ C‖U‖Hfor all U ∈ H. Also let B = P(B1) and
A1T = PA1T .This projetion is a rather brute fore, but e�etive, method for dealing withthe ondition U(t) ⊥ N . Also let

Π[u, α, β, d] = [u, α, β, 0],

D1(AT ) = {U ∈ B ∩ D1 : BT (U) = 0}, AT = A1T |D
1(AT ).With these de�nitions we an now formulate a version of the main result of[9℄ in a form suited to our purposes.Theorem 1. For s ∈ (1/p, 1] there exist numbers C < ∞ and η > 0suh that if ‖T − E‖W 2

p (BR) ≤ η, then for every U0 ∈ B there is exatly onefuntion U :[0,∞) → B, U ∈ C0([0,∞), B) ∩ C1((0,∞), D1(AT )) solving
U

′(t) = ATU(t) for t > 0, U(0) = U0,and it satis�es the inequality
‖U(t)‖B1 + t‖U′(t)‖B1 + t2‖ΠU

′(t)‖D1
−1

+ t2−s‖ΠU(t)‖Ds
−1

≤ C‖U0‖B1 .This theorem is a diret onsequene of Theorem 1.2 in [9℄. As alreadymentioned, the purpose of this paper is to onsider the ase in whih T isno longer stati, but is replaed by a family of transformations denoted by
T : BR×[0, ω] → R

3, and at the same time to onsider the non-homogeneousequation and non-homogeneous boundary onditions. To this end we need tointrodue a few additional spaes and norms for various funtions dependingon time t ∈ [0, ω]; these were not de�ned in [9℄. Unfortunately, the norms weneed to onsider are somewhat ompliated.Definition 2. Let ω ∈ [1,∞). For the transformations T we introduethe spae
Bω = C0([0, ω], W 2

p (BR)) ∩ C2/3([0, ω], C1(BR))



Compressible visous �uid �ow 105and the weighted norm
‖T‖Bω = sup

t∈[0,ω−1]
[‖T‖C0([t,t+1],W 2

p ) + (1 + t)1/3‖T‖C2/3([t,t+1],C1)].Let Bω
1 = Lp((0, ω), B1), Bω

2 = W
1−1/p,1/2−1/2p
p (∂BR × (0, ω)) and

Wω = {U = [u, α, β, d] : U ∈ Lp((0, ω), D1), U
′ ∈ Lp((0, ω), B1)}(for the meaning of U

′ see Setion 2). Then let
‖F‖Bω

1
= sup

t∈[0,ω−1]
(1 + t)4/3

[t+1\
t

‖F (τ)‖p
B1dτ

]1/p
,

‖g‖Bω
2

= sup
t∈[0,ω−1]

(1 + t)4/3‖g‖
W

1−1/p,1/2−1/2p
p (∂BR×[t,t+1])

.De�ning the norm
‖U‖Wω

1
= sup

t∈[0,ω−1]

[t+1\
t

(‖U′(τ)‖p
B1 + ‖U(τ)‖p

D1) dτ
]1/p

and the two seminorms
[U]1 = sup

t∈[0,ω−1]
(1 + t)

[t+1\
t

(‖U′(τ)‖p
B1 + ‖ΠU(τ)‖p

D1
−1

) dτ
]1/p

,

[U]2 = sup
t∈[0,ω−1]

(1 + t)4/3
[t+1\

t

‖ΠU
′(τ)‖p

B1
−1

dτ
]1/p

+ sup
t∈[0,ω]

(1 + t)4/3‖ΠU(t)‖
D

2/3

−1

,we an now onlude with the �nal norm
‖U‖Wω = [U]1 + [U]2 + ‖U‖Wω

1
.It may be helpful to make a few remarks about the spaes Wω. It isnot hard to see that as sets they are idential with the olletion of all

U = [u, α, β, d] suh that u ∈ W 2,1
p (BR × (0, ω)), α ∈ W 1

p ((0, ω), W 1
p (BR)),

β ∈ W 1
p ((0, ω), W

2−1/p
p (∂BR)), d ∈ W 1

p ((0, ω), W 2
p (BR)). It is also obviousthat the weights used in de�ning the norm of Wω require ertain deayproperties for funtions with a bounded norm. Using s = 2/3 one an seefrom Theorem 1 that solutions of the equation onsidered there satisfy suhestimates at least for t ≥ 1. The spei� value s = 2/3 and the exponent 4/3are somewhat arbitrary. We ould hoose any s ∈ [2/3, 1) and then wouldhave to replae 4/3 by 2−s. It is neessary, though, to have 2−s > 1 in orderto ensure the boundedness of ertain integrals involving these funtions as tgoes to in�nity.



106 G. StröhmerReplaing the �xed transformation T by the time dependent T and usingthe notation introdued in (4) and (11), we de�ne
ZT(t, x) = ZTt(x) (t ∈ [0, ω], x ∈ BR)and in omplete analogy

(A1TU)(t) = A1TtU(t)for t ∈ Iω. The meaning of BTU as well as a number of other similar expres-sions should now be lear. Note that
{U = [u, α, β, d] ∈ B1 | u ∈ W 2−2/p

p (BR)} = B1 ∩ D1−2/p.Our main result in this paper isTheorem 3. There exist numbers η > 0 and C < ∞ with the followingproperties. Let ω ∈ [1,∞), T ∈ Bω and T̃(x, t) = T(x, ω) (x ∈ BR, t ∈
[0, ω]). If

‖T − T̃‖Bω + ‖T(t) − EBR
‖W 2

p
≤ η (t ∈ [0, ω]),then for F ∈ Bω

1 , g ∈ Bω
2 , U0 ∈ B ∩ D1−2/p with BT0

(U0) = g(0) there isexatly one funtion U ∈ Wω with U(t) ∈ B for t ∈ Iω suh that(17) BT(U) = g,

U(0) = U0 and(18) U
′ = A1TU + Ffor almost all t ∈ Iω, where the time derivative is meant in the sense ofdistributions (see Setion 2). This funtion also satis�es the inequality

‖U‖Wω ≤ C(‖F‖Bω
1

+ ‖g‖Bω
2

+ ‖U0‖B1 + ‖U0‖D1−2/p).Note in partiular that although the theorem only makes a statementabout ω < ∞, the onstant C is independent of ω.In the appliation of this theorem in [10℄, g and F themselves depend onthe vetor U in suh a way that
‖F (U)‖Bω

1
+ ‖g(U)‖Bω

2
≤ C‖U‖

4/3
Wω .This then allows us to estimate ‖U‖Wω for small solutions. There is, however,the additional ompliation that the U desribing the �ow does not atuallybelong to B, but one an split it up into a omponent in B and one in N .The former an then be estimated by using Theorem 3, and the latter bymeans of the onservation laws.The proof of Theorem 3 proeeds by ombining the loal maximum regu-larity estimates proved in Setion 4 with asymptoti estimates for semigroupstaken from [9℄ by means of an abstrat theorem proved in Setion 5.I am indebted to W. Zaj¡zkowski from the Institute of Mathematis ofthe Polish Aademy of Sienes for many ruial disussions.



Compressible visous �uid �ow 1072. Notation and funtion spaes. We denote generi onstants by C.Let tr(A) denote the trae of the matrix A, At its transpose, while En is the
n × n unit matrix. For arbitrary R > 0 and y ∈ R

3 let BR(y) = {x ∈ R
3 :

|x − y| < R} and BR = BR(0). We also use the summation onvention thatany index ourring at least twie in an expression is to be summed over itsnatural range.Unless otherwise stated all our vetors are olumn vetors. Exeptions arethe funtion vetor U and the gradient of a vetor or salar funtion. Takingthe transformation T as an example, we have T (x) = [T1(x), T2(x), T3(x)]tand
∇T =




∂T1

∂x1

∂T1

∂x2

∂T1

∂x3

∂T2

∂x1

∂T2

∂x2

∂T2

∂x3

∂T3

∂x1

∂T3

∂x2

∂T3

∂x3


 .

Thus, if T and T̂ are two suh transformations, we have ∇(T ◦ T̂ ) = ((∇T )

◦ T̂ )∇T̂ wherever suh a omposition makes sense.The norm of any Banah spae B is denoted by ‖ · ‖B. Let S ⊂ R
m be anopen set or its losure. For any Banah spae B and δ ∈ [0, 1) let Cδ(S,B)be the spae of all ontinuous funtions f : S → B suh that

‖f‖Cδ(S,B) = sup
x,x′∈S, x6=x′

‖f(x) − f(x′)‖B
|x − x′|δ

+ sup
x∈S

‖f(x)‖B < ∞.The set Cδ(S,B) is a Banah spae. Let Cδ
0(S,B) ontain all elements of

Cδ(S,B) with ompat support in S. If Ω is open, Lp(Ω,B) is the losure of
C0

0 (Ω,B) with respet to the norm
( \

Ω

‖u(x)‖p
B dx

)1/p
.Throughout the paper we use primes to denote time derivatives. This isto be understood in the sense of distributions if neessary. If, e.g., U ∈

Lp((0, ω),B) the statement U
′ ∈ Lp((0, ω),B) means that there is a funtion

V ∈ Lp((0, ω),B) suh that for any ϕ ∈ C∞
0 ((0, ω)) we have(19) ω\

0

ϕ′(t)U(t) dt = −
ω\
0

ϕ(t)V(t) dt,and U
′ then denotes this funtion V. Then W 1

p ((0, ω),B) onsists of thefuntions U ∈Lp((0, ω),B) suh that U
′ ∈ Lp((0, ω),B). For this and otherspaes for time-dependent funtions also see Setion 5.9.2 in [3℄.We de�ne Ck(S) for (k = 1, 2, 3, . . . ) as the spaes of all real salar orvetor funtions whih have ontinuous derivatives up to order k in S. Thismeans that these are Banah spaes with the usual norms only in the ase



108 G. Ströhmerthat S is ompat. We denote by Ck
0 (S) the spae of funtions in Ck(S) withompat support in S. This notation is used if the target spae of a mappingis �nite-dimensional, and it will be lear from the ontext what it is.For real s ≥ 0 we de�ne W s

p (Ω) as in [12, 4.2.1, equation (3)℄, and W s
p0(Ω)is the losure in W s

p (Ω) of the set of in�nitely di�erentiable funtions withompat support. We an de�ne a seminorm for u ∈ W s
p (O) (0 < s < 1),where O is now ontained in R

m, by(20) [u]W s
p (O) =

[\
O

\
O

|u(x) − u(y)|p

|x − y|m+sp
dx dy

]1/p
,while [u]W 1

p (O) = ‖∇u‖Lp and [u]W 0
p (O) = 0. Then ‖u‖Lp(O) + [u]W s

p (O) is anorm for W s
p (O) aording to [12, equation (8), Setion 4.4.1℄ for 0 ≤ s ≤ 1.For ν < 0 we de�ne W−ν

p (Ω) as the dual spae of W ν
q0(Ω) with 1/p+1/q = 1.For anisotropi spaes on the produt of two open sets O1 × O2 of di-mensions m1, m2 we de�ne, for 0 < s1 < 1,(21) [u]

W
s1,0
p (O1×O2)

=

[ \
O2

( \
O1

\
O1

|u(x, z) − u(y, z)|p

|x − y|m1+s1p
dx dy

)
dz

]1/p

,while [u]
W 1,0

p (O1×O2)
= ‖∇xu(x, y)‖Lp and [u]

W 0,0
p (O1×O2)

= 0. Also for 0 <

s2 < 1 let(22) [u]
W

0,s2
p (O1×O2)

=

[ \
O1

( \
O2

\
O2

|u(z, x) − u(z, y)|p

|x − y|m2+s2p
dx dy

)
dz

]1/p

,

[u]W 0,1
p (O1×O2)

= ‖∇yu(x, y)‖Lp , and [u]W s1,s2
p (O1×O2)

= [u]
W

s1,0
p (O1×O2)

+

[u]
W

0,s2
p (O1×O2)

. Then ‖u‖Lp(O1×O2)+[u]W s1,s2
p (O1×O2) is a norm for the spae

W s1,s2
p (O1×O2). Suh anisotropi spaes will be used with O2 = I, where I isan open interval in R. It is easy to see that, e.g., W 2,1

p (BR × I) is isomorphito {U ∈ Lp(I, W 2
p (BR)) : U ′ ∈ Lp(I, Lp(BR))} with the norm

[\
I

‖U(t)‖p
W 2

p
dt +

\
I

‖U ′(t)‖p
Lp

dt
]1/p

.This and other similar relationships will be used extensively.Funtion spaes for funtions on any ompat di�erentiable manifold withor without boundary an easily be de�ned using a �nite olletion of hartsovering the manifold.Where no onfusion an arise, we will often omit the domain of de�nitionof the funtions in the notation for these spaes.3. Continuity properties. In this setion we assume T, T̂ : BR ×
[0, ω] → R

3 and T, T̂ ∈ Bω, and that both Tt and T̂t satisfy ondition (10)for all t ∈ [0, ω]. Likewise let T, T̂ : BR → R
3, T, T̂ ∈ W 2

p (BR), satisfy (10).



Compressible visous �uid �ow 109Lemma 4. For every ω < ∞ there exists a onstant C(ω) < ∞ suh thatfor U ∈ Wω,
‖U‖Wω

1
≤ ‖U‖Wω ≤ C(ω)‖U‖Wω

1
.Also Wω is a Banah spae with both norms.Proof. All onstants C in this proof may depend on ω. LetU = [u, α β, d].The estimate for ‖U‖Wω from below is obvious due to the de�nition of

‖U‖Wω . The estimate from above is also immediate exept for the inequality
‖ΠU(t)‖

D
2/3

−1

≤ C‖U‖Wω
1for t ∈ [0, ω]. The only part of this statement requiring any thought is

‖u(t)‖
W

5/3
p

≤ C‖U‖Wω
1for t ∈ [0, ω]. Now this is also easy to see as(23) ‖u(t)‖

W
5/3
p

≤ C‖u(t)‖
W

2−2/p
p

≤ C‖u‖
W 2,1

p (BR×(0,ω))
≤ C‖U‖Wω

1by Theorem 1.8.2 in [12℄, owing to the fat that 5/3 ≤ 2 − 2/p. The lastlaim is straightforward.Lemma 5. Assume Ok (k = 1, 2) are open sets with C1 boundaries whoselosures are ompat , lying either in R
mk or in C2 manifolds of dimension

mk. Then there exists a onstant C suh that for s1, s2 ∈ [0, 1] we have, forany p ∈ (1,∞) and u, v ∈ W s1,s2
p (O1 × O2) ∩ L∞(O1 × O2),

[uv]W s1,s2
p

≤ C[‖u‖L∞
[v]W s1,s2

p
+ [u]W s1,s2

p
‖v‖L∞

],

‖uv‖W
s1,s2
p

≤ C[‖u‖L∞
‖v‖W

s1,s2
p

+ ‖u‖W
s1,s2
p

‖v‖L∞
].If s ∈ [0, 1] and u, v ∈ W s

p (O1) ∩ L∞(O1) then
‖uv‖W s

p
≤ C[‖u‖L∞

‖v‖W s
p

+ ‖u‖W s
p
‖v‖L∞

].If sp > m1 then also
‖uv‖W s+1

p
≤ C[‖u‖W s+1

p
‖v‖W s

p
+ ‖u‖W s

p
‖v‖W s+1

p
]for u, v ∈ W s+1

p (O1).Proof. It is easy to derive the laim for subsets of manifolds one it isproved for subsets of R
mk . The �rst three inequalities are easy to see from(20)�(22). For the last one note that as W s

p is embedded into L∞ we have
‖uv‖W s

p
≤ C‖u‖W s

p
‖v‖W s

p
,and therefore

‖uv‖W s+1
p

≤ C(‖uv‖W s
p
+‖∇(uv)‖W s

p
) = C(‖uv‖W s

p
+‖v∇u‖W s

p
+‖u∇v‖W s

p
)

≤ C(‖u‖W s
p
‖v‖W s

p
+ ‖v‖W s

p
‖∇u‖W s

p
+ ‖u‖W s

p
‖∇v‖W s

p
),proving the laim.



110 G. StröhmerThe following three lemmas ontain re�nements of estimates given in [9℄.Lemma 6. There exists a onstant C < ∞ suh that if u ∈ W 2
p (BR),then

‖DT (u) − D
T̂
(u)‖W 1

p
+ ‖LT (u) − L

T̂
(u)‖Lp

≤ C(‖T − T̂‖W 2
p
‖u‖

W
5/3
p

+ ‖T − T̂‖C1(BR)‖u‖W 2
p
).Proof. For all k, m, n, q ∈ {1, 2, 3} we have, by Lemma 3.1 in [9℄, theSobolev embedding theorem and some elementary alulations,

∥∥∥∥∇
[

∂uk

∂xm
(ZT −Z

T̂
)nq

]∥∥∥∥
Lp

≤

∥∥∥∥
(
∇

∂uk

∂xm

)
(ZT −Z

T̂
)nq

∥∥∥∥
Lp

+

∥∥∥∥
∂uk

∂xm
∇(ZT −Z

T̂
)nq

∥∥∥∥
Lp

≤ C‖u‖W 2
p
‖ZT −Z

T̂
‖C0(BR) + C‖u‖C1(BR)‖ZT −Z

T̂
‖W 1

p

≤ C‖u‖W 2
p
‖T − T̂‖C1(BR) + C‖u‖

W
5/3
p

‖T − T̂‖W 2
p
.From this our laim follows easily.Lemma 7. There exists a onstant C < ∞ suh that if u ∈ W 2
p (BR) and

α ∈ W 1
p (BR), then

‖LT (u, α) − LT̂ (u, α)‖Lp

≤ C(‖T − T̂‖C1(‖u‖W 2
p

+ ‖α‖W 1
p
) + ‖T − T̂‖W 2

p
‖u‖

W
5/3
p

).Proof. This inequality follows easily from Lemmas 5 and 6.Lemma 8. There exists a onstant C < ∞ suh that if U ∈ D1, then
‖A1T U − A

1T̂
U‖B1 ≤ C‖T − T̂‖W 2

p
‖ΠU‖

D
2/3

−1

+ C‖T − T̂‖C1‖ΠU‖D1
−1

.Proof. Let U = [u, α, β, d]. The estimate for the �rst omponent followsfrom Lemma 7 here together with Lemma 3.1 of [9℄ and inequality (27) of [8℄.The last omponent of the di�erene is zero. We also infer, using Lemma 5,that
‖u · (mT − m

T̂
)‖

W
2−1/p
p (∂BR)

≤ C‖u‖
W

1−1/p
p

‖mT − m
T̂
‖

W
2−1/p
p

+ C‖u‖
W

2−1/p
p

‖mT − m
T̂
‖

W
1−1/p
p

≤ C‖u‖W 1
p (BR)‖T − T̂‖W 2

p (BR) + C‖u‖W 2
p (BR)‖T − T̂‖W 1

p (BR),and the proof of the estimate for the remaining omponent is similar to theproof of Lemma 6.



Compressible visous �uid �ow 111Theorem 9. There exists a onstant C < ∞ independent of ω suh thatif U ∈ Wω then
‖A1TU − A

1T̂
U‖Bω

1
≤ C‖T − T̂‖Bω‖U‖Wω .Proof. By Lemma 8, for t ∈ [0, ω − 1],

[t+1\
t

‖A1Tτ U(τ) − A
1T̂τ

U(τ)‖p
B1 dτ

]1/p

≤ C
[t+1\

t

‖Tτ − T̂τ‖
p
W 2

p
‖ΠU(τ)‖p

D
2/3

−1

dτ
]1/p

+ C
[t+1\

t

‖Tτ − T̂τ‖
p
C1‖ΠU(τ)‖p

D1
−1

dτ
]1/p

.Now
[t+1\

t

‖Tτ − T̂τ‖
p
W 2

p
‖ΠU(τ)‖p

D
2/3

−1

dτ
]1/p

≤ max
t≤τ≤t+1

[‖Tτ − T̂τ‖W 2
p
‖ΠU(τ)‖

D
2/3

−1

]

≤ C‖T− T̂‖Bω(1 + t)−4/3[U]2 ≤ C‖T − T̂‖Bω(1 + t)−4/3‖U‖Wωand
[t+1\

t

‖Tτ − T̂τ‖
p

C1(BR)
‖ΠU(τ)‖p

D1
−1

dτ
]1/p

≤ max
t≤τ≤t+1

‖Tτ − T̂τ‖C1

[t+1\
t

‖ΠU(τ)‖p
D1

−1

dτ
]1/p

≤ C‖T − T̂‖Bω(1 + t)−1/3[U]1(1 + t)−1

≤ C‖T − T̂‖Bω(1 + t)−1/3(1 + t)−1‖U‖Wω ,and therefore
(1 + t)4/3

[t+1\
t

‖A1Tτ U(τ) − A
1T̂τ

U(τ)‖p
B1 dτ

]1/p
≤ C‖T − T̂‖Bω‖U‖Wω .This proves our laim.Now we deal with the boundary onditions.Lemma 10. There exists a onstant C < ∞ suh that for t ∈ [0, ω − 1],

‖ZT−Z
T̂
‖

W
1−1/p,1/2−1/2p
p (∂BR×(t,t+1))

+ ‖nT −n
T̂
‖

W
1−1/p,1/2−1/2p
p (∂BR×(t,t+1))

≤ C‖T − T̂‖Bω .



112 G. StröhmerProof. Using the formula(24) nTt(x) =
1

|xtZTt(x)|
xtZTt(x),from Lemma 3.2 in [9℄ and the de�nition of ZT this easily follows as

‖ZT −Z
T̂
‖C2/3([t,t+1],C0(BR)) + ‖nT − n

T̂
‖C2/3([t,t+1],C0(BR))

≤ C‖T − T̂‖C2/3([t,t+1],C1(BR)),whih allows us to estimate the frational time derivatives in these norms,while estimates for the spae derivatives diretly follow from Lemmas 3.1and 3.3 of [9℄.Theorem 11. There is a onstant C independent of ω suh that for
U ∈ Wω,

‖BT(U) − B
T̂

(U)‖Bω
2
≤ C‖T− T̂‖Bω‖U‖Wω .Proof. Let t ∈ [0, ω−1]. All spaes in the following sequenes of inequal-ities onsist of funtions on ∂BR × [t, t + 1], unless otherwise stated, andduring the proof let δ = 1 − 1/p. As usual let U = [u, α, β, d].First observe

BT(U) · nT − B
T̂
(U) · n

T̂
= (DT(u) − D

T̂
(u)) · nT + B

T̂
(U) · (nT − n

T̂
).Also

‖(DT(u) − D
T̂

(u)) · nT‖W
δ,δ/2
p

≤ C‖DT(u) − D
T̂

(u)‖
W

δ,δ/2
p

‖nT‖W
δ,δ/2
p

≤ C‖DT(u) − D
T̂

(u)‖
W

δ,δ/2
p

,as ‖nT‖W
δ,δ/2
p

is bounded by Lemma 10, and this spae is embedded into L∞,allowing us to use Lemma 5. Now, using Lemma 5 again as well as Lemma10 and Theorem 1.8.2 in [12℄, we obtain
‖DT(u) − D

T̂
(u)‖

W
δ,δ/2
p

≤ C(‖∇u‖
W

δ,δ/2
p

‖ZT −Z
T̂
‖C0 + ‖∇u‖C0‖ZT −Z

T̂
‖

W
δ,δ/2
p

)

≤ C(‖u‖
W 2,1

p (BR×(t,t+1))
‖ZT −Z

T̂
‖C0

+ sup
t≤τ≤t+1

‖u(τ)‖
W

5/3
p (BR)

‖ZT −Z
T̂
‖

W
δ,δ/2
p

)

≤ C[U]1(1 + t)−1‖T − T̂‖C0([t,t+1],C1(BR)) + C[U]2(1 + t)−4/3‖T − T̂‖Bω

≤ C((1 + t)−1(1 + t)−1/3‖T − T̂‖Bω + (1 + t)−4/3‖T − T̂‖Bω)‖U‖Wω

≤ C(1 + t)−4/3‖T − T̂‖Bω‖U‖Wω .
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‖B

T̂
(U) · (nT − n

T̂
)‖

W
δ,δ/2
p

≤ C‖B
T̂

(U)‖L∞
‖nT − n

T̂
‖

W
δ,δ/2
p

+ C‖B
T̂
(U)‖

W
δ,δ/2
p

‖nT − n
T̂
‖L∞

≤ C[U]2(1 + t)−4/3‖T − T̂‖Bω + C[U]1(1 + t)−1‖T− T̂‖C0([t,t+1],C1(BR))

≤ C(1 + t)−4/3‖T − T̂‖Bω‖U‖Wω .Then our laim easily follows.4. Maximum regularity estimates. In the following let T ∈ Bω, andalso assume that Tt satis�es ondition (10) as well as
‖T − EBR

‖C2/3([0,ω],C1(BR)) ≤ 1.For the relationship between T and Tt reall (4).Theorem 12. Let ω̃ ∈ (0, ω]. Then there exists a onstant C(ω) inde-pendent of ω̃ suh that if
F1 ∈ Lp(BR × (0, ω̃)), u0 ∈ W 2−2/p

p (BR), g ∈ W 1−1/p,1/2−1/2p
p (∂BR × (0, ω̃))with g(0) = DT0

(u0) · nT0
are given, then there is exatly one solution u ∈

W 2,1
p (BR × (0, ω̃)) of the equation

u′ − LT(u) = F1with the boundary ondition DT(u) · nT = g and the initial value u(0) = u0.This solution satis�es the estimate
‖u‖

W 2,1
p (BR×(0,ω̃))

≤ C(ω)(‖g‖
W

1−1/p,1/2−1/2p
p (∂BR×(0,ω̃))

+ ‖F1‖Lp(BR×(0,ω̃)) + ‖u0‖W
2−2/p
p (BR)

).Proof. This laim follows diretly from Theorem 5.4 of [6℄, by using someremarks in that treatise about less regular oe�ients.Now we want to proeed to the entire operator.Theorem 13. There exists a onstant C(ω) suh that if F ∈ Bω
1 , U0 ∈

B1∩D1−2/p and g ∈ W
1−1/p,1/2−1/2p
p (∂BR×(0, ω)) with g(0, x) = BT0

(U0)(x)are given, then there is exatly one solution U ∈ Wω of the equation
U

′ = A1TU + Fwith the boundary ondition
BT(U) = gand the initial value U(0) = U0. Also U(t) ∈ D1 for almost all t ∈ [0, ω],and

‖U‖Wω ≤ C(ω)(‖g‖Bω
2

+ ‖F‖Bω
1

+ ‖U0‖B1 + ‖u0‖W
2−2/p
p (BR)

).



114 G. StröhmerProof. Let U = [u, α, β, d] and U0 = [u0, α0, β0, d0]. Note that in view ofLemma 4 we an replae ‖U‖Wω in the estimate by ‖U‖Wω
1
, as our onstantis allowed to depend on ω.The last three omponents of the equation U

′ = A1TU + F are
α′ = (tr(∇((̺e ◦ T)u)ZT)) + F2,

β′ = u · mT + F3, d′ = u + F4.Together with the initial values α(0) = α0, β(0) = β0, d(0) = d0 the funtion
u therefore determines α, β, d. The �rst omponent of the equation an bewritten as

u′ − LT(u) = (∇((γe ◦ T)α) −∇I(α, β))ZT + F1.Together with the boundary onditions
DT(u) · nT = g + γe(R)̺e(R)αnT +

∂pe

∂r
(R)βnTand the initial ondition u(0) = u0 Theorem 12 allows us to onlude thatgiven α and β with α(0) = α0, β(0) = β0 there is exatly one funtion

u ∈ W 2,1(BR × (0, ω)) satisfying these equations. For su�iently small
ω the mapping taking u to the next u in this yle is a ontration in
W 2,1

p (BR × (0, ω)). It is possible and sometimes neessary to hoose ω < 1for this part of the argument. Verifying this takes some work, but is om-pletely straightforward. Thus we an prove existene and uniqueness of suhsolutions by the Banah �xed point theorem. Then we an ontinue the on-strution to any longer interval by a �nite number of steps, also obtainingthe estimate we laimed.Theorem 14. There exists a number η > 0 and a onstant C(ω) suhthat if ‖Tt−EBR
‖W 2

p
≤ η, then the following is true. For F ∈ Bω

1 with F (t) ∈

B for almost all t, U0 ∈ B ∩D1−2/p, and g ∈ W
1−1/p,1/2−1/2p
p (∂BR × (0, ω))with g(0) = BT0

(U0) there is exatly one solution U ∈ Wω of the equation(25) U
′ = A1TU + Fwith the boundary ondition(26) BT(U) = gand the initial value U(0) = U0. Also U(t) ∈ B for t ∈ [0, ω], and

‖U‖Wω ≤ C(ω)(‖g‖Bω
2

+ ‖F‖Bω
1

+ ‖U0‖B1 + ‖U0‖D1−2/p).Proof. Let U(t) = [u(t), α(t) β(t), d(t)] and let N1 be the spae spannedby [0, xk, xk, 0] (k = 1, 2, 3) and [0, 1, 1, 0], and with v1
k = ek and v2

k = x× ek

(k = 1, 2, 3) let N2 be the spae spanned by [vm
k , 0, 0, 0] for m = 1, 2, k =

1, 2, 3. These spaes are perpendiular to eah other. Then let Pc
m : H → Nkbe the orthogonal projetors, resulting in Pc = Pc

1 + Pc
2. In order to solve



Compressible visous �uid �ow 115equations (25) and (26) we initially solve the equations
U

′ = A1TU− Pc(A1T − A1EBR
)U− Pc

2A1EBR
U + F,(27)

BT(U) = g(28)instead. Now Lemma 3.10 in [9℄ states that for U ∈ D1 we have(29) (A1EBR
U, [0, 1, 1, 0])H = 0,

(A1EBR
U, [0, xk, xk, 0])H = (U, [ek, 0, 0, 0])Hand

(A1EBR
U, [vm

k , 0, 0, 0])H =
\

∂BR

BEBR
(U) · vm

k dσ

for m = 1, 2, k = 1, 2, 3. Therefore
Pc

2A1EBR
U = M(BEBR

(U)),where M is a bounded linear mapping from L1(∂BR) to D1 and
‖M(h)‖D1 ≤ C‖h‖L1(∂BR)for h ∈ L1(∂BR). Thus equation (27) an be written as

U
′(t) = A1TU(t) + F (t) + M(g)(t)(30)

−Pc(A1T − A1EBR
)U(t) + M((BEBR

− BT)(U(t))).Now the expression F (t) + M(g)(t) is given, and, at least if we �x ω = 1,the expressions in the seond line of (30) are small perturbations if η issu�iently small. This gives us the existene and uniqueness of solutions ofequation (30) with boundary ondition (28) using the Banah �xed pointtheorem, and we obtain an estimate for this solution as well. Now (27) isequivalent to
U

′ = A1TU + Pc
1A1EBR

U + F,thus for v ∈ N we have, as F (t) ∈ B for almost all t,
0 = (F+A1TU, v)H = (U′−Pc

1A1EBR
U, v)H =

d

dt
(U, v)H−(Pc

1A1EBR
U, v)H.Thus

d

dt
(U, v)H = (A1EBR

U,Pc
1v)H.For v ∈ N2 this implies 0 = (U0, v)H = (U(t), v)H, so U(t) ⊥ N2, andby (29) then (A1EBR

U,Pc
1v)H = 0 as well. Thus we have U(t) ⊥ N , and

Pc
1A1EBR

U = 0, whih means we have atually solved our original problemfor ω = 1. For larger values of ω we have to use a suitable partition of theinterval [0, ω].



116 G. Ströhmer5. Asymptoti estimates for an abstrat Green operator. Theabstrat theory developed here will be applied in the next setion.Let ω ∈ (0,∞] and let I be an arbitrary set. For any f : [0, ω] ∩ R → Iwe de�ne f t : [0, ω − t] ∩ R → I for t ∈ [0, ω] ∩ R by f t(τ) = f(t + τ) for
τ ∈ [0, ω − t]∩R. This notation will only be used for objets in this setion,and of ourse also where the results of this setion are applied. As there areno matries in this setion, it is hoped that no onfusion with the transposewill arise. This de�nition immediately arries over to lasses of funtionsonsisting of all funtions agreeing almost everywhere in [0, ω] ∩ R.Let I1, I2 be two Banah spaes, let ω ∈ [1,∞] and

Ŝω
1 = {u : [0, ω] ∩ R → I1}/∽, Ŝω

2 = {u : [0, ω] ∩ R → I2}/∽,where two funtions are onsidered equivalent in the sense of ∽ if they agreealmost everywhere. We also assume Sk ⊂ Ŝ1
k (k = 1, 2) are Banah spaeswith norms ‖ · ‖Sk

. For f ∈ Ŝ ω̂
k with ω̂ ∈ [1, ω] the statement f ∈ Sk is usedinstead of f |[0, 1] ∈ Sk and likewise ‖f‖Sk

means ‖f |[0, 1]‖Sk
, a pratie wefollow throughout this setion. Then we de�ne(31) Sω

k = {f ∈ Ŝω
k : f t ∈ Sk for t ∈ [0, ω − 1] and sup

0≤t≤ω−1
‖f t‖Sk

< ∞}and(32) ‖f‖Sω
k

= sup
1≤t≤ω−1

‖f t‖Sk
.Now Sω

1 ,Sω
2 are Banah spaes and S1

k = Sk. We also assume that thereexists a onstant C1 suh that if f ∈ S1 and t ∈ [0, 1] then(33) ‖f(t)‖I1
≤ C1‖f‖S1for all t ∈ [0, 1], and that if f ∈ Sk and ϕ ∈ C1([0, 1]) and (ϕf)(t) = ϕ(t)f(t)then ϕf ∈ Sk and(34) ‖ϕf‖Sk

≤ C1‖ϕ‖C1‖f‖Sk
(k = 1, 2).We assume there is a bounded linear operator C : I1 × I2 → I2 suh thatif u0 ∈ I1 and f ∈ S2, then the funtion lass t 7→ C(u0, f(t)) ontains arepresentative whih is a ontinuous funtion from [0, 1] to I2, and we denotethis representative by C(u0, f). Let us de�ne

D = {(u0, f) ∈ I1 × S2 : C(u0, f)(0) = 0}.We assume there exists a linear operator Γ : D → S1, referred to as a Greenoperator here, and a onstant C1 with(35) ‖Γ (u0, f)‖S1
≤ C1(‖u0‖I1

+ ‖f‖S2
)for all (u0, f) ∈ D, whih also has the property that for (u0, f) ∈ D,(36) Γ (u0, f)(0) = u0



Compressible visous �uid �ow 117and(37) C(Γ (u0, f)(t), f)(t) = 0for t ∈ [0, 1]. Finally, we make the following onsisteny assumption.If τ ∈ (0, 1) and f : [0, 1 + τ ] → I2, u0 ∈ I1 are suh that f, f τ ∈ S2 and
(u0, f) ∈ D, then for t ∈ [0, 1 − τ ] we have(38) Γ (Γ (u0, f)(τ), f τ )(t) = Γ (u0, f)(t + τ).Note that (37) implies the left-hand side of the equation is well-de�ned.Now we will de�ne a Green operator for the interval [0,∞), whih wewill also denote by Γ . For the de�nition of S∞

k see (31).Definition 15. Let
D∞ = {(u0, f) ∈ I × S∞

2 : C(u0, f)(0) = 0}.We de�ne Γ : D∞ → S∞
1 as follows. For any t ∈ [0, ω] and (u0, f) ∈ D∞let 0 = t0 < · · · < tn−1 < tn = t with tk − tk−1 < 1. Then for k = 1, . . . , nlet uk = Γ (uk−1, f

tk−1)(tk − tk−1), de�ned indutively, and �nally
Γ (u0, f) = un.It is not lear whether Γ is well-de�ned. This, together with some of theproperties of this operator, is the ontent of the next lemma.Lemma 16. The operator Γ : D∞ → S∞

1 is well-de�ned and linear , andfor s, t ≥ 0 we have Γ (Γ (u0, f)(s), f s)(t) = Γ (u0, f)(s + t). Given C1 (see(35)) and ω ∈ [1,∞) there is a onstant C(ω, C1) suh that if (u0, f) ∈ D∞,then(39) ‖Γ (u0, f)‖Sω
1
≤ C(ω, C1)(‖u0‖I1

+ ‖f‖Sω
2
).This onstant is an inreasing funtion of C1 and ω. Also for t ≥ 1 the value

Γ (u0, f)(t) is independent of f(s) for s > t.Proof. First we prove that the de�nition for Γ we just gave is independentof the partition 0 = t0 < t1 < · · · < tn = t. As an initial step we onsideronly partitions for whih n is the same. Then, for given u0, t and f , thisproedure at least de�nes a mapping from
Tn = {(t1, . . . , tn−1) ∈ R

n−1 | 0 < tk+1 − tk < 1 for k = 0, . . . , n − 1with t0 = 0, tn = t}to I1. Now let (t1, . . . , tn−1), (t̃1, . . . , t̃n−1) ∈ Tn and tk = t̃k for k 6= m,while tm 6= t̃m. Let uk and ũk be the elements of I1 produed by these twopartitions. Without restrition we may assume t̃m < tm. Then uk = ũk for
k < m. Now
ũm = Γ (um−1, f

tm−1)(t̃m − tm−1) and um = Γ (um−1, f
tm−1)(tm − tm−1).



118 G. StröhmerOwing to (38) we have
Γ (ũm, f t̃m)(τ) = Γ (Γ (um−1, f

tm−1)(t̃m − tm−1), f
t̃m)(τ)

= Γ (um−1, f
tm−1)(τ + t̃m − tm−1)for 0 ≤ τ ≤ 1− t̃m + tm−1. Now with τ = tm− t̃m we have τ ≤ 1− t̃m + tm−1,and therefore

Γ (ũm, f t̃m)(tm − t̃m) = Γ (um−1, f
tm−1)(tm − tm−1) = um.Using (38) again, we get

um+1 = Γ (um, f tm)(tm+1 − tm)

= Γ (Γ (ũm, f t̃m)(tm − t̃m), f tm)(tm+1 − tm)

= Γ (ũm, f t̃m)(tm+1 − t̃m) = ũm+1.From then on all uk will of ourse be equal. So we have now proved that if wehave two elements of Tn di�ering in only one omponent, then the proedurewe laim de�nes Γ gives the same result. Now Tn is open, thus for any point
(t1, . . . , tn−1) in Tn there exists a δ > 0 suh that

{(τ1, . . . , τn−1) ∈ R
n−1 | |tk − τk| < δ, k = 1, . . . , n − 1} ⊂ Tn.It is lear that we an reah any point in this neighborhood from the enterby moving in the diretion of the oordinate axes only, so our proeduregives us the same value as at (t1, . . . , tn−1) throughout this set. Thus the setof all points where the proedure leads to a ertain value is an open subsetof Tn. As Tn is also onneted, there annot be more than one result of thisproedure, as otherwise we would be able to split Tn up into at least two opensets. Due to (38) we an always add points to any partition without hangingthe result. This proves that the result of the proedure is independent of thepartition. Also one immediately sees, using a partition ontaining s as oneof its points, that for s, t ≥ 0 we have

Γ (Γ (u0, f)(s), f s)(t) = Γ (u0, f)(s + t).With this it is easy to prove the linearity and the estimate (39) by indutionover an upper bound for ω, and the last remark is obvious by onstrution.Now all our laims are proved.For ω ∈ [0,∞], a2 ≥ 0 let us de�ne(40) ‖f‖Sω,a2
2

= sup
0≤t≤ω−1

(1 + t)a2‖f t‖S2
,and

Sω,a2

2 = {f ∈ Sω
2 | ‖f‖Sω,a2

2
< ∞}.Then we obtain



Compressible visous �uid �ow 119Theorem 17. Let [·]∗ be a seminorm de�ned on S1. Assume that thereare onstants C2, Ĉ2 and a number a1 ≥ 0 suh that for u ∈ S1,(41) [u]∗ ≤ Ĉ2‖u‖S1
,and for (u0, 0) ∈ D∞ and t ∈ [0,∞),(42) [(Γ (u0, 0))t]∗ ≤ C2(1 + t)−a1‖u0‖I1

.Then for a2 > 1 with a2 ≥ a1 there exists a onstant C3, whih only dependson C1, C2, Ĉ2, a1 and a2, suh that for all (u0, f) ∈ D∞ with f ∈ S∞,a2

2 ,(43) [(Γ (u0, f))t]∗ ≤ C3(1 + t)−a1(‖f‖S∞,a2
2

+ ‖u0‖I1
)for t ∈ [0,∞).Proof. Let ϕ ∈ C∞(R) be suh that 0 ≤ ϕ(t) ≤ 1 for t ∈ R, ϕ(t) = 0 for

|t| ≥ 1, ϕ(t) = 1 for |t| ≤ 1/2, ϕ′(t)t ≤ 0 for all t ∈ R, and |ϕ′| ≤ 2. Then itis easy to see that
1 ≤

∞∑

p=−∞

ϕ(t − p) ≤ 3

for all t ∈ R, and this sum is 1-periodi and belongs to C∞(R). Now let
Ψ(t) = ϕ(t)

( ∞∑

p=−∞

ϕ(t − p)
)−1

,

Ψk(t) = Ψ(t − k) and fk(t) = Ψk(t)f(t). Also letting uk = 0 for k ≥ 1 wehave
f(t) =

∑

0≤k≤t+1

fk(t),and fk(0) = 0 and C(uk, fk(0)) = 0 for k ≥ 1. As Ψ0(0) = 1 we have (uk, fk) ∈
D∞ even for k ≥ 0. Now, owing to the linearity of Γ and Lemma 16,

Γ (u0, f)(t) =
∑

0≤k≤t+1

Γ (uk, fk)(t)and Γ (uk, fk)(t) = 0 for t ≤ k − 1. Therefore
(Γ (u0, f))t|[0, 1] =

∑

0≤k≤t+2

(Γ (uk, fk))
t|[0, 1]

and(44) [(Γ (u0, f))t]∗ ≤
∑

0≤k≤t+2

[(Γ (uk, fk))
t]∗.We �rst onsider the ase k − 2 ≤ t ≤ k + 2 ≤ 5. Then, remembering (31)



120 G. Ströhmerfor the de�nition of S5
k ,S6

k , by Lemma 16 and (34) we have
‖(Γ (uk, fk))

t‖S1
≤ ‖Γ (uk, fk)‖S6

1

≤ C(‖fk‖S6
2

+ ‖uk‖I1
) ≤ C(‖f‖S6

2
+ ‖u0‖I1

)

≤ C(‖f‖S∞,a2
2

+ ‖u0‖I1
).If k − 2 ≤ t ≤ k + 2 > 5 then for τ ≥ k − 2,

Γ (uk, fk)(τ) = Γ (0, fk)(τ) = Γ (Γ (0, fk)(k − 2), fk−2
k )(τ − k + 2)

= Γ (0, fk−2
k )(τ − k + 2).Therefore, again using Lemma 16 and (34),

‖(Γ (uk, fk))
t‖S1

= ‖Γ (0, fk−2
k )t−k+2‖S1

≤ ‖Γ (0, fk−2
k )‖S5

1
≤ C‖fk−2

k ‖S5
2

≤ C‖fk−2‖S5
2
≤ C(1 + k)−a2‖f‖Sa2,∞

2
.Putting these two ases together we �nd that for k − 2 ≤ t ≤ k + 2,(45) ‖(Γ (uk, fk))

t‖S1
≤ C(2 + k)−a2(‖f‖Sa2,∞

2
+ ‖u0‖I1

)with a �xed onstant C.Now we onsider the ase t ≥ k + 2. Then
(Γ (uk, fk))

t = (Γ (Γ (uk, fk)(k + 2), fk+2
k ))t−k−2.Now fk+2

k = 0, and therefore by (42),
[(Γ (uk, fk))

t]∗ = [(Γ (Γ (uk, fk)(k + 2), 0))t−k−2]∗

≤ C(1 + t − k − 2)−a1‖Γ (uk, fk)(k + 2)‖I1
.Thus, keeping in mind that t ≥ k + 2, we obtain

[(Γ (uk, fk))
t]∗ ≤ C(t + 5 − k)−a1‖Γ (uk, fk)(k + 2)‖I1

≤ C(t + 5 − k)−a1‖Γ (uk, fk)
k+1‖S1

.Combining this with (45) and (41), we have
[(Γ (uk, fk))

t]∗ ≤ C(t + 5 − k)−a1(2 + k)−a2(‖f‖S∞,a2
2

+ ‖u0‖I1
)for t ≥ k − 2. Using (44), we therefore even obtain

[(Γ (u, f))t]∗ ≤ C(‖f‖S∞,a2
2

+ ‖u0‖I1
)S(t)with

S(t) =
∑

0≤k≤t+2

(5 + t − k)−a1(k + 2)−a2 .

For τ ∈ [k, k + 1] we have
(5 + t − k)−a1(k + 2)−a2 ≤ (4 + t − τ)−a1(1 + τ)−a2
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S(t) ≤

∑

0≤k≤t+2

k+1\
k

(4 + t − τ)−a1(1 + τ)−a2 dτ

≤
t+3\
0

(4 + t − τ)−a1(1 + τ)−a2 dτ.Substituting τ = σ(t + 5) − 1 and letting δ = (t + 5)−1, we get, as a1 ≤ a2and 0 ≤ σ ≤ 1,

S(t) ≤ δa1+a2−1
1−δ\

δ

(1 − σ)−a1σ−a2 dσ ≤ δa1+a2−1
1−δ\

δ

(1 − σ)−a2σ−a2 dσand for reasons of symmetry, and as a2 > 1,

1−δ\
δ

(1 − σ)−a2σ−a2 dσ = 2

1/2\
δ

(1 − σ)−a2σ−a2dσ ≤ 21+a2

1/2\
δ

σ−a2dσ

≤
21+a2

a2 − 1
δ1−a2.Thus

S(t) ≤ Cδa1+a2−1δ1−a2 = Cδa1 = C(t + 5)−a1 .This proves our theorem.6. The proof of Theorem 3. First we prove the following theorem,whih implies Theorem 3 in ase T does not depend on time.Theorem 18. There exist numbers η > 0 and C < ∞ with the followingproperties. Assume that T ∈ W 2
p (BR) and

‖T − EBR
‖W 2

p
≤ η,and for ω ∈ [1,∞) let T(x, t) = T (x) (x ∈ BR, t ∈ [0, ω]). Then for F ∈ Bω

1 ,
g ∈ Bω

2 , U0 ∈ B ∩ D1−2/p with BT (U0) = g(0) there is exatly one funtion
U ∈ Wω with U(t) ∈ B for t ∈ [0, ω] whih solves the initial boundary valueproblem given by the equations

U
′ = A1TU + F, BT(U) = g,whih are equations (18) and (17), and U(0) = U0. This funtion also satis-�es the inequality

‖U‖Wω ≤ C(‖F‖Bω
1

+ ‖g‖Bω
2

+ ‖U0‖B1 + ‖U0‖D1−2/p)with a onstant C independent of ω.Proof. The existene and uniqueness immediately follow from Theo-rem 14, therefore we only need to prove the estimate.



122 G. StröhmerWe obtain this result by ombining Theorem 1, whih, as we saw, is animmediate onsequene of Theorem 1.2 of [9℄, with Theorems 14 and 17. Inapplying this latter theorem to our problem we use
S2 = {(F, g) | F ∈ B1

1 , g ∈ B1
2} = B1

1 × B1
2and I2 = B × Lp(∂BR) with the norms

‖(F, g)‖S2
= ‖F‖B1

1
+ ‖g‖B1

2
, ‖(F, g)(t)‖I2

= ‖F (t)‖B1 + ‖g(t)‖Lp.It is easy to verify that S2 has property (34), and that if (F, g) ∈ S2, then
(F, g)(t) ∈ I2 for almost all t, and Sω

2 = Bω
1 × Bω

2 for ω ∈ [1,∞). Also it iseasy to see that there is a onstant C ∈ (0,∞) independent of ω suh that
C−1(‖F‖Bω

1
+ ‖g‖Bω

2
) ≤ ‖(F, g)‖

S
4/3,ω
2

≤ C(‖F‖Bω
1

+ ‖g‖Bω
2
).(For the de�nition of S4/3,ω

2 see (40).) Unfortunately the use of Theorem 17requires (F, g) ∈ S
4/3,∞
2 . Now, if we are given (F, g) ∈ S

4/3,ω
2 we an extend

(F, g) to in�nity by de�ning
F̃ (t) =

{
F (t) for t ≤ ω,

0 for t > ω.and with a funtion ϕ ∈ C∞(R) with 0 ≤ ϕ(t) ≤ 1, ϕ′(t) ≤ 0 and ϕ(t) = 1for t ≤ 0, ϕ(t) = 0 for t ≥ 1 we an de�ne
g̃(t) =





g(t) for t ≤ ω,
g(2ω − t)ϕ(t − ω) for ω < t ≤ 2ω,
0 for t > 2ω.Then one an easily verify

‖(F̃ , g̃)‖
S

4/3,∞
2

≤ C‖(F, g)‖
S

4/3,ω
2and (F̃ , g̃)(t) = (F, g)(t) for t ≤ ω. Furthermore, let

S1 = {U ∈ W1
1 | U(t) ∈ B for t ∈ [0, 1]}, I1 = B ∩ D1−2/pwith the norms

‖U‖S1
= ‖U‖W1

1
, ‖U‖I1

= ‖U‖B1 + ‖u‖
W

2−2/p
p

.Using the inequalities
max

0≤τ≤1
‖U(τ)‖B1 ≤ C

[1\
0

(‖U′(τ)‖p
B1 + ‖U(τ)‖p

B1) dτ
]1/p

≤ C‖U‖W1
1and inequality (23), we an easily verify ondition (33). Condition (34) for

S1 is also easy to see. We de�ne C(U, (F, g)) = (0,BT (U)−g). For (F, g) ∈ S2and U0 ∈ I1 with C(U0, (F, g)) = 0 by Theorem 14 we have a solution Uon [0, 1] of the equation U
′ = A1TU + F with initial value U(0) = U0 andboundary ondition BT(U) = g. Then we de�ne Γ (U0, (F, g)) = U.



Compressible visous �uid �ow 123It is easy to see that C(U(t), (F (t), g(t))) is a ontinuous funtion from
[0, 1] to I2, as the �rst omponent of the pair is zero. Conditions (35)�(37)follow from Theorem 14. Condition (38) is due to the uniqueness of thatsolution. The same fat implies that the abstrat Γ we onstruted in Lemma16 is idential with the solution operator that one obtains from Theorem 14for ω > 1.Now we apply Theorem 17 several times with a2 = 4/3. In the �rstappliation let a1 = 4/3 and

[U]∗ =
[ 1\

0

‖ΠU
′(τ)‖p

B1
−1

dτ
]1/p

+ sup
0≤τ≤1

‖ΠU(τ)‖
D

2/3

−1

.Using Lemma 4 we see that [U]∗ ≤ C‖U‖W1
1
, and by Theorem 1 we deduethat if U0 ∈ I1 and U = Γ (U0, 0), then with s = 2/3,

t4/3(‖ΠU
′(t)‖D1

−1
+ ‖ΠU(t)‖

D
2/3

−1

) ≤ C‖U0‖B1for t ≥ 1. Therefore
(1 + t)4/3[Ut]∗ ≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

)for t ≥ 1, while for t ≤ 1 this follows diretly from Theorem 14. ThusTheorem 17 implies that for t ≥ 0,
(1 + t)4/3[Γ (U0, (F̃ , g̃))t]∗ ≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

+ ‖(F̃ , g̃)‖
S

4/3,∞
2

)

≤ C(‖U0‖B1 + ‖u‖
W

2−2/p
p

+ ‖(F, g)‖
S

4/3,ω
2

)

≤ C(‖U0‖B1 + ‖u‖
W

2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
).Thus

[Γ (U0, (F, g))]2 = [Γ (U0, (F̃ , g̃))]2

≤ C(‖U0‖B1 + ‖u‖
W

2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
),as for t ≤ ω we have Γ (U0, (F, g))(t) = Γ (U0, (F̃ , g̃)). We omit the details ofthe ompletely analogous argument whih gives us with a1 = 1 and

[U]∗ =
[ 1\

0

(‖U′(τ)‖p
B1 + ‖ΠU(τ)‖p

D1
−1

) dτ
]1/p

that
[Γ (U0, (F, g))]1 ≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
)and �nally for a1 = 0 and

[U]∗ = ‖U‖W1
1that

‖Γ (U0, (F, g))‖Wω
1
≤ C(‖U0‖B1 + ‖u‖

W
2−2/p
p

+ ‖F‖Bω
1

+ ‖g‖Bω
2
).



124 G. StröhmerPutting these inequalities together, we onlude that if F ∈ Bω
1 , g ∈ Bω

2 ,
U0 ∈ B ∩ D1−2/p, then for ω ∈ [1,∞),
‖U‖Wω = ‖U‖Wω

1
+[U]1 +[U]2 ≤ C(‖U0‖B1 +‖u‖

W
2−2/p
p

+‖F‖Bω
1

+‖g‖Bω
2
)with U = Γ (U0, (F, g)). This ompletes the proof of Theorem 18.Now we an proeed to the ase of variable T in order to prove Theorem 3in its generality. Again Theorem 14 implies the existene and uniqueness ofthe solution. To obtain the estimate we an rewrite our equation

U
′ = A1TU + F,using T̃(t, x) = Tω(x), as

U
′ = A

1T̃
U + (A1T −A

1T̃
)U + Fand the boundary onditions as

B
T̃

(U) = B
T̃

(U) − BT(U) + g.Using Theorem 18, we obtain
‖U‖Wω ≤ C(‖F‖Bω

1
+‖g‖Bω

2
+‖(A1T−A

1T̃
)U‖Bω

1
+‖B

T̃
(U)−BT(U)‖Bω

2
).By Theorem 9 we have

‖(A1T −A
1T̃

)U‖Bω
1
≤ C‖T − T̃‖Bω‖U‖Wω ≤ Cη‖U‖Wω ,while Theorem 11 implies

‖B
T̃

(U) − BT(U)‖Bω
2
≤ C‖T− T̃‖Bω‖U‖Wω ≤ Cη‖U‖Wω .Combining these estimates we get

‖U‖Wω ≤ C(‖F‖Bω
1

+ ‖g‖Bω
2
) + Cη‖U‖Wω .For Cη ≤ 1/2 this onludes the proof of Theorem 3.

Referenes[1℄ S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions ofellipti partial di�erential equations satisfying general boundary onditions I, Comm.Pure Appl. Math. 12 (1959), 623�727.[2℄ �, �, �, Estimates near the boundary for solutions of ellipti partial di�erentialequations satisfying general boundary onditions II, ibid. 17 (1964), 35�92.[3℄ L. C. Evans, Partial Di�erential Equations, Amer. Math. So., Providene, RI, 1998.[4℄ A. Friedman, Partial Di�erential Equations, Holt, Rinehart, and Winston, NewYork, 1969.[5℄ A. P. Hooper and W. G. C. Boyd, Shear-�ow instability at the interfae between twovisous �uids, J. Fluid Meh. 128 (1983), 507�528[6℄ O. A. Ladyzhenskaya, Boundary value problems in mathematial physis III, Pro.Steklov Inst. Math. 83 (1965).



Compressible visous �uid �ow 125[7℄ G. Ströhmer, About the deay of surfae waves on visous �uids without surfaetension, in: Evolution Equations: Propagation Phenomena�Global Existene, In-�uene of Non-Linearities, R. Piard et al. (eds.), Banah Center Publ. 60, Inst.Math., Polish Aad. Si., Warszawa 2003, 55�72.[8℄ �, About the linear stability of the spherially symmetri solution for the equationsof a barotropi visous �uid under the in�uene of self-gravitation, J. Math. FluidMeh. 8 (2006), 36�63.[9℄ �, Asymptoti estimates for a semigroup related to ompressible visous �ow, Anal-ysis 27 (2007), 35�60.[10℄ �, About the stability of gas balls, J. Math. Fluid Meh., to appear.[11℄ G. Ströhmer and W. Zaj¡zkowski, On the existene and properties of the rotation-ally symmetri equilibrium states of ompressible barotropi self-gravitating �uids,Indiana Univ. Math. J. 46 (1997), 1181�1220.[12℄ H. Triebel, Interpolation Theory, Funtion Spaes, Di�erential Operators, North-Holland, Amsterdam, 1978.Department of MathematisUniversity of IowaIowa City, IA 52242, U.S.A.E-mail: strohmer�math.uiowa.eduReeived Otober 26, 2004Revised version January 17, 2008 (5524)


