
STUDIA MATHEMATICA 186 (1) (2008)

Boundedness of commutators
of an oscillatory integral operator

by

Xia Xia (Tianjin) and Shanzhen Lu (Beijing)

Abstract. We obtain a necessary and sufficient condition for Lp boundedness of
commutators of certain oscillatory integral operators and Lipschitz functions.

1. Introduction and result. The following oscillatory integral opera-
tor is closely related to the Bochner–Riesz operator below the critical index
(see [5]). Set K(x) = ei|x|

a
/|x|α, x ∈ Rn \ {0}, where a > 0, a 6= 1 and

0 < α < n. Then K belongs to the space S ′(Rn) of tempered distributions
and we set

Tf = K ∗ f, f ∈ C∞0 (Rn).

In the case n = 1, Sampson, Naparstek and Drobot [4] obtained some Lp

boundedness properties of T . In higher dimensions, there is a well known
result due to Sjölin [5].

Theorem A ([5]). If α ≥ n(1− a/2) and p0 = na/(na−n+α), then T
is bounded on Lp(Rn) if and only if p0 ≤ p ≤ p′0. If α < n(1− a/2), then T
is not bounded on any Lp(Rn), 1 ≤ p ≤ ∞.

For β > 0, the homogeneous Lipschitz space Λ̇β is the space of functions
f such that

‖f‖Λ̇β = sup
x,h∈Rn, h 6=0

|∆[β]+1
h f(x)|
|h|β

<∞,

where ∆k
h denotes the kth difference operator. It is obvious that when 0 <

β < 1, f ∈ Λ̇β implies |f(x) − f(y)| ≤ |x − y|β‖f‖Λ̇β for all x, y ∈ Rn. We
focus on the case 0 < β < 1.
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Let T be a linear operator. Then the commutator of T and a Lipschitz
function b is defined by

(1.1) [b, T ]f(x) = b(x)Tf(x)− T (bf)(x).

If T is a singular integral operator, Janson [2] showed that the condition
b ∈ Λ̇β is equivalent to (Lp, Lq) boundedness of [b, T ]. Later, Paluszyński [3]
proved that if T is the Riesz potential operator, then the condition b ∈
Λ̇β characterizes the boundedness of [b, T ] from Lp to a certain Triebel–
Lizorkin space. However, their method of proof is only suitable for operators
T bounded on Lp for all 1 < p <∞, but not for those bounded on Lp only
for some p. In this paper, we will study the Lp boundedness of commutators
of the oscillatory integral operator mentioned above and Lipschitz functions
using a method called scale changing. This method was first introduced by
Carleson and Sjölin [1], who proved that the Bochner–Riesz operator below
the critical index is bounded on some Lp(R2). To do this, they considered a
class of oscillatory integrals.

Let Ψ : Rn × Rn → C be a smooth function of compact support in x
and y, and let Φ : Rn × Rn → R be smooth. Assume that on the support
of Ψ , the Hessian determinant of Φ is nonvanishing, i.e.

(1.2) det
(
∂2Φ(x, y)
∂xi∂yj

)
6= 0.

We consider the oscillatory integral

(Tλf)(y) =
�

Rn
eiλΦ(x,y)Ψ(x, y)f(x) dx.

Then we have

Theorem B ([6]). Under the above assumptions on Φ and Ψ ,

‖Tλf‖L2(Rn) ≤ Cλ−n/2‖f‖L2(Rn).

Obviously, we also have

‖Tλf‖L∞(Rn) ≤ C‖f‖L∞(Rn), ‖Tλf‖L1(Rn) ≤ C‖f‖L1(Rn).

By interpolation,

‖Tλf‖Lp(Rn) ≤ Cλ−n/p‖f‖Lp(Rn), 2 ≤ p <∞,(1.3)

‖Tλf‖Lp(Rn) ≤ Cλ−n/p
′‖f‖Lp(Rn), 1 ≤ p < 2, 1/p+ 1/p′ = 1.(1.4)

In [5], the author proved the sufficiency part of Theorem A by using
multiplier theorems on Hp spaces. But this method cannot be applied to
our commutators. This is not surprising since the Fourier transform is not
well defined for Lipschitz functions. In this paper, we use the scale changing
method to obtain a sufficient condition for Lp boundedness of the commu-
tator mentioned above. To get a necessary condition for Lp boundedness of
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those commutators, we follow the method in [5] together with choosing a
proper Lipschitz function. Our main result can be stated as follows.

Theorem. Let a > 0, a 6= 1, 0 < β < 1, n(1 − a/2) + β ≤ α < n,
and set p0 = na/(na − n + α − β). Then the commutator [b, T ] defined by
(1.1) is bounded on Lp(Rn), for all b ∈ Λ̇β(Rn), with the operator norm
≤ C‖b‖Λ̇β(Rn), if and only if p0 ≤ p ≤ p′0. If α < n(1 − a/2) + β, then

there exists a b ∈ Λ̇β(Rn) such that [b, T ] is not bounded on any Lp(Rn),
1 ≤ p ≤ ∞.

2. Proof of Theorem. First of all, let us prove that p0 ≤ p ≤ p′0 is
a necessary condition for the boundedness of [b, T ] on Lp for any b ∈ Λ̇β.
We only give the proof of p0 ≤ p. We first treat the case a > 1, 0 <
β < 1, n(1 − a/2) + β ≤ α. If we set b0(x) = |x|β, then b0 ∈ Λ̇β(Rn) and
‖b0‖Λ̇β = 1. Since for any b ∈ Λ̇β, [b, T ] is bounded on Lp, the operator [b0, T ]
is then bounded on Lp. Now we assume that [b0, T ] is bounded on Lp(Rn),
where 1 ≤ p ≤ 2. We shall prove that p ≥ p0 = na/(na − n + α − β) > 1.
Choose ψ ∈ C∞0 (Rn) such that 0 ≤ ψ ≤ 1, ψ(x) = 1 for |x| ≤ 1/2 and
ψ(x) = 0 for |x| ≥ 1. Let ε > 0 be small enough and ψε(x) = ψ(x/ε). Then

‖ψε‖pp =
�

Rn
|ψε(x)|p dx = Cεn

for some constant C > 0. When ε is small enough,

M =
{
k ∈ N :

1
2π

(
96a
π
· ε
)−a/(a−1)

+
1
6
≤ k ≤ 1

2π

(
12a
π
· ε
)−a/(a−1)

− 1
6

}
6= ∅.

For k ∈M , let

Ik = [(2kπ − π/3)1/a + ε, (2kπ + π/3)1/a − ε],
Ak = [(2kπ + π/3)1/a − ε, (2(k + 1)π − π/3)1/a + ε].

Clearly, Ik∩Ik+1 = ∅. Furthermore, using the differential intermediate value
theorem, for some 0 < θ, ϑ < 1 and all k ∈M , we get

|Ak| = 2ε+ (2(k + 1)π − π/3)1/a − (2kπ + π/3)1/a

= 2ε+
1
a
· 4π

3
[θ(2(k + 1)π − π/3) + (1− θ)(2kπ + π/3)]1/a−1

≤ 2ε+
4π
3a

(2kπ + π/3)1/a−1 ≤ 3
[

2π
3a

(2kπ + π/3)1/a−1 − 2ε
]

≤ 3
{

1
a
· 2π

3
[ϑ(2kπ − π/3) + (1− ϑ)(2kπ + π/3)]1/a−1 − 2ε

}
≤ 3[(2kπ + π/3)1/a − (2kπ − π/3)1/a − 2ε] = 3|Ik|.
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It follows that

(2.1)
�

|x|∈Ak

|x|−αp dx ≤ C((2kπ + π/3)1/a − ε)−αp
�

Ak

rn−1 dr

≤ C((2kπ + π/3)1/a − ε)−αp[(2(k + 1)π − π/3)1/a + ε]n−1|Ak|

≤ C((2kπ + π/3)1/a − ε)−αp[(3(2kπ − π/3))1/a + ε]n−1 · 3|Ik|

≤ C31+(n−1)/a
�

Ik

r−αp+n−1 dr = C
�

|x|∈Ik

|x|−αp dx,

where C is a constant independent of k. Moreover, if we set

k0 = min{k : k ∈M} ≤ 1
2π

(
96a
π
· ε
)−a/(a−1)

+
1
6

+ 1,

k1 = max{k : k ∈M} ≥ 1
2π

(
12a
π
· ε
)−a/(a−1)

+
1
6
− 1,

then

(2k0π − π/3)1/a + ε ≤
[(

96a
π
· ε
)−a/(a−1)

+ 2π
]1/a

+ ε ≤
(

48a
π
· ε
)−1/(a−1)

,

(2k1π + π/3)1/a − ε ≥
[(

12a
π
· ε
)−a/(a−1)

− 2π
]1/a

− ε ≥
(

24a
π
· ε
)−1/(a−1)

.

It follows that[(
48a
π
· ε
)−1/(a−1)

,

(
24a
π
· ε
)−1/(a−1)]

⊂
⋃
k∈M

(Ik ∪Ak).(2.2)

Thus, setting C1 = 24a/π, by (2.1) and (2.2),

(2.3)
�

(2C1ε)−1/(a−1)≤|x|≤(C1ε)−1/(a−1)

|x|−αp dx

≤
∑
k∈M

�

|x|∈Ik

|x|−αp dx+
∑
k∈M

�

|x|∈Ak

|x|−αp dx ≤ C
∑
k∈M

�

|x|∈Ik

|x|−αp dx.

For each |x| ∈ Ik, we have 2kπ−π/3 ≤ (|x|−ε)a and (|x|+ε)a ≤ 2kπ+π/3.
It follows that (|x| − ε)a ≤ |y|a ≤ (|x| + ε)a for all y ∈ {y : |x − y| ≤ ε},
which implies

1/2 ≤ cos(|y|a) ≤ 1, |y|α ≤ (2|x|)α.

Hence

Re(K ∗ ψε)(x) =
�

Rn

cos(|y|a)
|y|α

ψε(x−y) dy ≥ C

|x|α
�

|x−y|≤ε

ψε(x−y) dy =
Cεn

|x|α
.
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Since |x| ≥ (4C1ε)−/(a−1) for |x| ∈ Ik, k ∈M , we have

|[b0, T ]ψε(x)| =
∣∣∣∣ �
Rn

ei|y|
a

|y|α
[b0(x)− b0(x− y)]ψε(x− y) dy

∣∣∣∣(2.4)

≥
�

|x−y|≤ε

cos(|y|a)
|y|α

[|x|β − |x− y|β]ψε(x− y) dy

≥ C((4C1ε)−β/(a−1) − εβ)Re (K ∗ ψε)(x)

≥ C(8C1ε)−β/(a−1)Re (K ∗ ψε)(x) ≥ C ε−β/(a−1)+n

|x|α
.

Therefore, using (2.3) and (2.4), we get

‖[b0, T ]ψε‖pp =
�

Rn
|[b0, T ]ψε(x)|p dx ≥

∑
k∈M

�

|x|∈Ik

|[b0, T ]ψε(x)|p dx

≥ C
∑
k∈M

�

|x|∈Ik

ε[−β/(a−1)+n]p

|x|αp
dx

≥ Cε[−β(a−1)+n]p
�

(2C1ε)−1/(a−1)≤|x|≤(C1ε)−1/(a−1)

|x|−αp dx

≥ Cε[−β/(a−1)+n]pε−(n−αp)/(a−1).

Since [b0, T ] is bounded on Lp, it follows that

ε[−β/(a−1)+n]p−(n−αp)/(a−1) ≤ Cεn,
and this can hold for small values of ε only if

[−β/(a− 1) + n]p− (n− αp)/(a− 1) ≥ n.
That is,

(2.5) p(na− n+ α− β) ≥ na.
The inequality α ≥ n(1 − a/2) + β yields na − n + α − β ≥ na/2 > 0, and
we conclude that

p ≥ p0 =
na

na− n+ α− β
.

Thus p0≤p≤p′0 is a necessary condition for the boundedness of [b, T ] on Lp.
We next study the case a > 1, 0 < β < 1, α < n(1−a/2)+β. As above,

let b0(x) = |x|β. If [b0, T ] is bounded on Lp with 1 ≤ p ≤ 2, then we obtain
the inequality (2.5) as above. Using the condition on α we conclude that

p ≥ na

na− n+ α− β
> 2,

which gives a contradiction. Similarly, we can prove that [b0, T ] is not bound-
ed on Lp with 2 < p < ∞. Hence [b0, T ] is not bounded on any Lp in this
case.
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We shall use an argument similar to the above to prove the necessity in
the case 0 < a < 1, 0 < β < 1, n(1−a/2) +β ≤ α < n. We shall prove that
p0 ≤ p ≤ p′0 where p0 = na/(na−n+α−β) > 1. Let ψλ(x) = ψ(x/λ), λ > 0.
Take λ large enough. There exists k0 ∈ N such that

k0 >
1

2π

(
12aλ
π

)a/(1−a)
+

1
6
,(2.6)

k0 >
1

2π
(λβ/(1−a) + λβ)a/β +

1
6
,(2.7)

k0 <
1

2π
[(4λ)1/(1−a) − λ]a +

1
6
.(2.8)

Then, for all k ≥ k0, set

Ik = [(2kπ − π/3)1/a + λ, (2kπ + π/3)1/a − λ]

Ak = [(2(k − 1)π + π/3)1/a − λ, (2kπ − π/3)1/a + λ].

Clearly Ik ∩ Ik+1 = ∅. Furthermore, Ik 6= ∅, because using the differential
intermediate value theorem and (2.6), we have

|Ik| = (2kπ + π/3)1/a − (2kπ − π/3)1/a − 2λ

≥ 1
a
· 2π

3
(2kπ − π/3)1/a−1 − 2λ > 0.

Since by (2.6),

|Ak| = (2kπ − π/3)1/a − (2(k − 1)π + π/3)1/a + 2λ

≤ 1
a
· 4π

3
(2kπ − π/3)1/a−1 + 2λ

≤ 3
[

1
a
· 2π

3
(2kπ − π/3)1/a−1 − 2λ

]
≤ 3|Ik|,

we have �

|x|∈Ak

|x|−αp dx(2.9)

≤ C[(2(k − 1)π + π/3)1/a − λ]−αp
�

Ak

rn−1 dr

≤ C2αp/a[(2(2kπ − 5π/3))1/a − 21/aλ]−αp[(2kπ − π/3)1/a + λ]n−1|Ak|

≤ C[(2kπ + π/3)1/a − 21/aλ]−αp[(2kπ − π/3)1/a + λ]n−1 · 3|Ik|

≤ C2αp[(2kπ + π/3)1/a − λ]−αp
�

Ik

rn−1 dr

≤ C
�

Ik

r−αp+n−1 dr = C
�

|x|∈Ik

|x|−αp dx,
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where C is independent of k. Moreover, by (2.8),

[(4λ)1/(1−a),+∞) ⊂
⋃
k≥k0

(Ik ∪Ak).

It follows from (2.9) that
�

|x|≥(4λ)1/(1−a)

|x|−αp ≤
∑
k≥k0

�

|x|∈Ik

|x|−αp dx+
∑
k≥k0

�

|x|∈Ak

|x|−αp dx(2.10)

≤ C
∑
k≥k0

�

|x|∈Ik

|x|−αp dx.

For each |x| ∈ Ik, we have 2kπ−π/3 ≤ (|x|−λ)a and (|x|+λ)a ≤ 2kπ+π/3.
It follows that for all |x− y| ≤ λ,

1/2 ≤ cos(|y|a) ≤ 1, |y|α ≤ C|x|α.

Hence

Re (K ∗ ψλ)(x) =
�

Rn

cos(|y|a)
|y|α

ψλ(x− y) dy

≥ C

|x|α
�

|x−y|≤λ

ψλ(x− y) dy =
Cλn

|x|α
.

Moreover, it follows from (2.7) that for |x| ∈ Ik, k ≥ k0, we have

|x|β − λβ ≥ [(2k0π − π/3)1/a + λ]β − λβ ≥ λβ/(1−a).

Therefore,

|[b0, T ]ψλ(x)| ≥
�

|x−y|≤λ

cos(|y|a)
|y|α

[|x|β − |x− y|β]ψλ(x− y) dy

≥ Cλβ/(1−a)Re (K ∗ ψλ)(x) = C
λn+β/(1−a)

|x|α
.

Consequently, together with (2.10),

‖[b0, T ]ψλ‖pp =
�

Rn
|[b0, T ]ψλ(x)|p dx ≥

∑
k≥k0

�

|x|∈Ik

|[b0, T ]ψλ(x)|p dx

≥ C
∑
k≥k0

�

|x|∈Ik

λ[n+β/(1−a)]p

|x|αp
dx

≥ Cλ[n+β/(1−a)]p
�

|x|≥(4λ)1/(1−a)

|x|−αp dx

≥ Cλ[n+β/(1−a)]pλ(n−αp)/(1−a),
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where n < αp. Since [b0, T ] is bounded on Lp, it follows that

λ[n+β/(1−a)]p+(n−αp)/(1−a) ≤ Cλn.
This can hold for large values of λ only if [n+β/(1−a)]p+ (n−αp)/(1−a)
≤ n. That is,

(2.11) p(na− n+ α− β) ≥ na.
The inequality α ≥ n(1 − a/2) + β yields na − n + α − β ≥ na/2 > 0, and
we conclude that

p ≥ p0 =
na

na− n+ α− β
.

Thus p0≤p≤p′0 is a necessary condition for the boundedness of [b, T ] on Lp.
In the case 0 < a < 1, 0 < β < 1, α < n(1 − a/2) + β, if [b0, T ] is

bounded on Lp with 1 ≤ p ≤ 2, then we obtain the inequality (2.11) as
above. Invoking the condition on α we obtain

p ≥ na

na− n+ α− β
> 2,

which gives a contradiction. Similarly, we can prove that [b0, T ] is not bound-
ed on Lp with p > 2 in this case.

It remains to prove that p0 ≤ p ≤ p′0 is a sufficient condition for Lp

boundedness of [b, T ], where b ∈ Λ̇β. We treat p0 < p < p′0 first. The proof
of Lp boundedness for [b, T ] can be reduced to showing that for λ large
enough, we have

�

[0,λ]n

∣∣∣∣ �

[0,λ]n

[b(x)− b(y)]
ei|x−y|

a

|x− y|α
f(y) dy

∣∣∣∣p dx ≤ C‖b‖pΛ̇β �

[0,λ]n

|f(x)|p dx,

where C is a constant independent of λ and f . Let I = [0, 1]n be the unit
cube in Rn. By changing variable, our goal is to prove

�

I

∣∣∣∣λn−α �
I

[b(λx)− b(λy)]
eiλ

a|x−y|a

|x− y|α
f(λy) dy

∣∣∣∣p dx ≤ C‖b‖pΛ̇β �
I

|f(λx)|p dx.

Set

Sbλf(x) = λn−α+β
�

I

[b(x)− b(y)]
eiλ

a|x−y|a

|x− y|α
f(y) dy.

Noting that ‖b(λ ·)‖Λ̇β = λβ‖b‖Λ̇β , it suffices to show

(2.12)
‖Sbλf‖Lp(I) ≤ C‖b‖Λ̇β‖f‖Lp(I),

na

na− n+ α− β
< p <

na

n− α+ β
.

Let Ωk, k = 0, 1, . . . , denote the set of all dyadic cubes in [−2, 2]n with
side length 2−k, and Ω∗k the set of all cubes which are unions of 2n cubes
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in Ωk. For each ω∗ ∈ Ω∗k, its side length is 2−k+1. If x ∈ I and x does not
belong to the boundary of any dyadic cube, then there exists a unique cube
ω∗k(x) ∈ Ω∗k such that x ∈ 1

2ω
∗
k(x). Let ω∗−1 = [−2, 2]n. For a measurable

set D, write

E(x,D) = λn−α+β
�

D

[b(x)− b(y)]
eiλ

a|x−y|a

|x− y|α
f(y) dy, x ∈ I,

Ek(x) = E(x, [ω∗k−1(x) \ ω∗k(x)] ∩ I), k ≥ 0.

Then we get

(2.13) Sbλf(x) =
∞∑
k=0

Ek(x) =
kN∑
k=0

Ek(x) +
∞∑

k=kN+1

Ek(x),

where 2−kN < λ−1 ≤ 2−kN+1. Note that for k large enough we must have
ω∗k(x) ⊂ I, so we may assume Ek(x) = E(x, ω∗k−1 \ ω∗k(x)). It follows from
the construction that ω∗k−1(x) \ω∗k(x) is made up of 4n− 2n cubes with side
length 2−k. If we set F (ω) = 4ω \ 2ω, then

∑
ω∈Ωk χF (ω)(x) ≤ 4n − 2n.

Hölder’s inequality yields

|Ek(x)|p ≤ C
∑
ω∈Ωk

|E(x, ω)|pχF (ω)(x).

Therefore, for any k,
�

I

|Ek(x)|p dx ≤ C
∑
ω∈Ωk

�

F (ω)

|E(x, ω)|p dx,

where the constant C only depends on n, p. Let xω be the point of ω ∈ Ωk
such that xi ≤ yi, i = 1, . . . , n, for all y = (y1, . . . , yn) ∈ ω.

When k ≥ kN + 1,
�

F (ω)

|E(x, ω)|p dx

= 2−nk
�

F (I)

(
λn−α+β2−k(n−α)

�

I

|b(2−kx+ xω)− b(2−ky + xω)|

× |f(2−ky + xω)|
|x− y|α

dy

)p
dx

≤ C(2−kλ)p(n−α+β)‖b‖p
Λ̇β
‖f‖pLp(ω)

≤ C(2−k+kN )p(n−α+β)‖b‖p
Λ̇β
‖f‖pLp(ω).
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Thus
∞∑

k=kN+1

‖Ek‖Lp(I) ≤ C
∞∑

k=kN+1

(2−k+kN )n−α+β‖b‖Λ̇β‖f‖Lp(I)(2.14)

≤ C‖b‖Λ̇β‖f‖Lp(I).

We consider the case 0 ≤ k ≤ kN . Recalling that the side length of ω is
2−k, we have
�

F (ω)

|E(x, ω)|p dx

=
�

F (ω)

∣∣∣∣λn−α+β
�

ω

[b(x)− b(y)]
eiλ

a|x−y|a

|x− y|α
f(y) dy

∣∣∣∣pdx
≤ Cλp(n−α+β)

�

F (ω)

|b(x)− b(xω)|p
∣∣∣∣�
ω

eiλ
a|x−y|a

|x− y|α
f(y) dy

∣∣∣∣pdx
+ Cλp(n−α+β)

�

F (ω)

∣∣∣∣�
ω

eiλ
a|x−y|a

|x− y|α
[b(xω)− b(y)]f(y) dy

∣∣∣∣pdx
≤ Cλp(n−α+β)2−kpβ‖b‖p

Λ̇β

�

F (ω)−xω

∣∣∣∣ �

[0,2−k]n

eiλ
a|x−y|a

|x− y|α
f(y + xω) dy

∣∣∣∣pdx
+ Cλp(n−α+β)

�

F (ω)−xω

∣∣∣∣ �

[0,2−k]n

eiλ
a|x−y|a

|x− y|α
[b(xω)−b(y + xω)]f(y+xω) dy

∣∣∣∣pdx
= Cλp(n−α+β)2−kp(n−α+β)2−kn‖b‖p

Λ̇β

�

F (I)

∣∣∣∣�
I

ei(2
−kλ)a|x−y|a

|x− y|α
f(2−ky+xω) dy

∣∣∣∣pdx
+ Cλp(n−α+β)2−kp(n−α)−kn

×
�

F (I)

∣∣∣∣�
I

ei(2
−kλ)a|x−y|a

|x− y|α
[b(xω)− b(2−ky + xω)]f(2−ky + xω) dy

∣∣∣∣pdx.
In order to apply Theorem B, we set Φ(x, y) = |x − y|a and let Ψ be a
smooth function defined on F (I)×I. Without loss of generality, we consider
Ψ(x, y) = 1/|x− y|α. Since

det
(
∂2Φ(x, y)
∂xi∂yj

)
= (−a)n(a− 1)|x− y|n(a−2),

for a 6= 1, x ∈ F (I) and y ∈ I we have det
(∂2Φ(x,y)
∂xi∂yj

)
6= 0, as required in
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(1.2). When 2 ≤ p, using (1.3), we get
�

F (ω)

|E(x, ω)p dx

≤ Cλp(n−α+β)2−kp(n−α+β)2−kn‖b‖p
Λ̇β

(2−kλ)−na
�

I

|f(2−kx+ xω)|p dx

+ Cλp(n−α+β)2−kp(n−α)2−kn(2−kλ)−na

×
�

I

|[b(xω)− b(2−kx+ xω)]f(2−kx+ xω)|p dx

≤ C(2−kλ)p(n−α+β−na/p)‖b‖p
Λ̇β
‖f‖pLp(ω).

When 1 < p < 2, using (1.4), we get
�

F (ω)

|E(x, ω)|p dx

≤ Cλp(n−α+β)2−kp(n−α+β)2−kn‖b‖p
Λ̇β

(2−kλ)−nap/p
′
�

I

|f(2−kx+ xω)|p dx

+ Cλp(n−α+β)2−kp(n−α)2−kn(2−kλ)−nap/p
′

×
�

I

|[b(xω)− b(2−kx+ xω)]f(2−kx+ xω)|p dx

≤ C(2−kλ)p(n−α+β−na/p′)‖b‖p
Λ̇β
‖f‖pLp(ω).

If 2 ≤ p < p′0, choose δ = na/p − n + α − β > 0. If p0 < p < 2, choose
δ = na/p′ − n+ α− β > 0. Consequently, for p0 < p < p′0,

kN∑
k=0

‖Ek‖Lp(I) ≤ C
kN∑
k=0

(2−kλ)−δ‖b‖Λ̇β‖f‖Lp(I)(2.15)

≤
kN∑
k=0

(2−k+kN−1)−δ‖b‖Λ̇β‖f‖Lp(I)

≤ C‖b‖Λ̇β‖f‖Lp(I).

Therefore, using (2.13)–(2.15), we have

‖Sbλf‖Lp(I) ≤ C
kN∑
k=0

‖Ek‖Lp(I) + C

∞∑
kN+1

‖Ek‖Lp(I) ≤ C‖b‖Λ̇β‖f‖Lp(I),

where p0 < p < p′0 and C is a constant independent of λ and f . This implies
(2.12).



26 X. Xia and S. Z. Lu

Finally, we will prove ‖[b, T ]f‖Lp0 (Rn) ≤ C‖b‖Λ̇β‖f‖Lp0 (Rn) where p0 =
na/(n− α+ β). In fact,

(2.16) |[b, T ]f(x)| ≤ ‖b‖Λ̇β
�

Rn

|f(y)|
|x− y|α−β

dy

= ‖b‖Λ̇β
�

Rn
e−i|x−y|

a ei|x−y|
a

|x− y|α−β
|f(y)| dy

=‖b‖Λ̇β

[ �

Rn
(e−i|x−y|

a−ei|x−y|a)
ei|x−y|

a

|x− y|α−β
|f(y)| dy+

�

Rn

e2i|x−y|
a

|x− y|α−β
|f(y)| dy

]

= ‖b‖Λ̇β

[
−2i

�

Rn
(sin |x− y|a) ei|x−y|

a

|x− y|α−β
|f(y)| dy +

�

Rn

e2i|x−y|
a

|x− y|α−β
|f(y)| dy

]

≤ 3‖b‖Λ̇β

∣∣∣∣ �
Rn

e2i|x−y|
a

|x− y|α−β
| f(y)| dy

∣∣∣∣
= 3‖b‖Λ̇β2(α−β−n)/a

∣∣∣∣ �
Rn

ei|2
1/ax−y|a

|21/ax− y|α−β
|f(2−1/ay)| dy

∣∣∣∣.
Set f̃(x) = f(2−1/ay) and

Tα−βf(x) =
�

Rn

ei|x−y|
a

|x− y|α−β
f(y) dy.

Then by Theorem A (see [5]), Tα−β is bounded on Lp0(Rn). It follows from
(2.16) that

|[b, T ]f(x)| ≤ C‖b‖Λ̇β |T
α−β f̃(21/ax)|.

Hence,

‖[b, T ]f‖Lp0 (Rn) ≤ C‖b‖Λ̇β
( �

Rn
|Tα−β f̃(21/ax)|p0 dx

)1/p0
≤ C‖b‖Λ̇β‖f‖Lp0 (Rn).

By duality, we complete the proof.
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