
STUDIA MATHEMATICA 186 (3) (2008)

Heating of the Beurling operator:
Sufficient conditions for the two-weight case

by

S. Petermichl (Bordeaux) and J. Wittwer (Salt Lake City, UT)

Abstract. We establish sufficient conditions on the two weights w and v so that the
Beurling–Ahlfors transform acts continuously from L2(w−1) to L2(v). Our conditions are
simple estimates involving heat extensions and Green’s potentials of the weights.

Notation.

• C a constant not depending on any functions, other than the weights.
C will not necessarily denote the same constant at each occurrence.
• x := (x1, x2), ∂1f(x) := ∂f/∂x1.
• Φ(x, t) = Φt(x) := (4πt)−1e−‖x‖

2/4t the heat kernel on the plane.
• f̃(x, t) the heat extension of a function f(x) in the plane:

f̃(x, t) :=
� �
f(x− y)Φt(y) dA(y).

• G(f)(x, t) the Green’s potential of a function f(x, t):

G(f)(x, t) :=
t�

0

�

R2

Φ(x− y, t− s)f(y, s) dA(y) ds.

• C(R,R2) = B(0, R)× (0, R2) a cylinder in R3
+.

• C δ(R,R2) = B(0, R − δ) × [δ, (R − δ)2] a slightly smaller compact
cylinder.
• R1, R2 the Riesz transforms in R2, Ri(f) = f ∗Ki, Ki(x) = cnxi/|x|3.

1. Introduction. The goal of this paper is to present a set of conditions
on the weights w and v so that the Beurling operator from L2(w−1)→ L2(v)
is bounded. The Beurling operator is a two-dimensional analogue of the
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Hilbert transform and plays an important role in the study of differential
equations.

Two-weight estimates for the Beurling operator come up naturally in
various areas of analysis, perturbation theory and probability theory. They
are connected to a well-known homotopy problem for chord arc curves [2].

It has been understood for a long time that dyadic operators, such as
martingale transforms, are an excellent model for singular integral operators
like the Hilbert transform, the Beurling operator and the like. The method of
Bellman functions is well suited to tackling problems that find their origins
in dyadic estimates. This method reduces dyadic sum estimates to the exis-
tence of a function with certain restrictions on its domain, range and some
differential inequalities. It probably first appeared in harmonic analysis in the
works by Burkholder on martingale inequalities in [4]–[6]. It seems though
that it had not been understood how universal it was until it was reinvented
by Nazarov, Treil and Volberg in their work concerning two-weight questions
for Haar multipliers in [11]; it was then extensively developed in [9], and was
a major tool in [8], [13], [14], [19], [16], [17], [15], [12], [10].

Many of these involved surprising mutations of the original. For example,
in [16] we used some of the ideas and techniques from [19] to prove a sharp
weighted bound for the Hilbert transform. This required the extension of the
methods of [11] and [19] to the continuous case with harmonic extensions,
relying on a Littlewood–Paley identity involving the Hilbert transform.

In this paper, rather than using harmonic extensions of the weights, we
will use heat extensions, which make working with the Beurling operator
particularly nice. In [15], sharp results for the one-weight estimate of the
Beurling operator were obtained by using a heat extension of the Mucken-
houpt A2 condition. This result in turn solved a long standing problem in
regularity theory for Beltrami equations (see [1] and [3]).

If one considers the case of one weight, a condition involving heat exten-
sions of the weights is necessary and sufficient for boundedness. Moreover,
the condition involving the heat extension is similar to the classical Mucken-
houpt condition in the sense that the ratios of the classical and heat charac-
teristics are bounded. In this paper we also frame the conditions on the two
weights in terms of their heat extensions, and in terms of potentials involving
the Green’s function of the heat equation. We establish linear and bilinear
embedding theorems for this situation. Our conditions on the weights are
the appropriate conditions for the embedding to hold.

2. Main result. We are interested in the Beurling operator

Tϕ(z) :=
1
π

� � ϕ(ζ) dA(ζ)
(ζ − z)2
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understood as a Calderón–Zygmund operator (dA denotes area Lebesgue
measure on C). This operator has the important property that it turns z̄-
derivatives into z-derivatives:

B(∂z̄f) = ∂zf.

Here is our main result:

Theorem 2.1. The following set of conditions is sufficient for the bound-
edness of the Beurling operator from L2(w−1) to L2(v):

sup
(x,t)∈R3

+

w̃(x, t)ṽ(x, t) ≤ C,(2.1)

G(|∂1ṽ|2w̃)(x, t) ≤ Cṽ(x, t),(2.2)

G(|∂1w̃|2ṽ)(x, t) ≤ Cw̃(x, t),(2.3)
G(|∂1w̃| |∂1ṽ|)(x, t) ≤ C,(2.4)

G
(
|∂1w̃| |∂1ṽ|

ṽ

)
(x, t) ≤ Cw̃(x, t),(2.5)

G
(
|∂1w̃| |∂1ṽ|

w̃

)
(x, t) ≤ Cṽ(x, t).(2.6)

3. Proof

3.1. Useful facts. In this section we will give an overview of some useful
background information.

We only need to prove the theorem for non-negative functions, since we
can then extend it to all functions by linearity. The heat extension of a
non-negative, non-zero function is positive, since the heat kernel is positive.
The fundamental solution of the heat equation, Φ(x, t), is also non-negative,
so the Green’s potential G(f)(x, t) of a non-negative function f(x, t) is non-
negative. We can use the Cauchy–Schwarz inequality for heat extensions:
(f̃g)2 ≤ f̃2g̃2.

The Green’s function for the heat equation in the cylinder is a non-
negative function G with the following properties [7, 15]:

(
∂

∂t
+∆

)
G = −δ0,1/2 in C(1, 1) = B(0, 1)× (0, 1),

G = 0 on ∂′C(1, 1) = ∂B(0, 1)× (0, 1),
G = 0 when t = 1.

Here δ0,1/2 is the Dirac measure at the point (0, 1/2). Furthermore

(3.1) G(x, 0) ≥ a(1− ‖x‖),

where a is a positive absolute constant.
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We will also use Green’s function GR adapted to the cylinder C(R,R2)
= B(0, R)× (0, R2):

(
∂

∂t
+∆

)
GR = −δ0,R2/2 in C(R,R2),

GR = 0 on ∂′C(R,R2) = ∂B(0, R)× (0, R2),
GR = 0 when t = R2.

One can easily see that the following connection holds:

GR(x, t) =
1
R2

G

(
x

R
,
t

R2

)
.

Let b be a positive, sufficiently differentiable function. Then we have the
following Green’s formula, which is a consequence of integration by parts
and properties of G [15]:

b(0, R2/2) = −
� � �

C(R,R2)

(
∂

∂t
+∆

)
GR(x, t)b(x, t) dx1 dx2 dt(3.2)

≥
� � �

C(R,R2)

GR(x, t)
(
∂

∂t
−∆

)
b(x, t) dx1 dx2 dt.

Given a smooth function B and a vector-function k(x, t) whose entries are
solutions to the heat equation or Green’s potential functions, we will have to
relate (∂t−∆)B(k(x, t)) to the Hessian of B. The following lemma is proven
by straightforward differentiation.

Lemma 3.1 ([15]). Let

k(x, t) = (f1(x, t), . . . , fs(x, t),G(g1)(x, t), . . . ,G(gm)(x, t)),

where the fi(x, t) are the heat extensions of fi(x), and the G(gi) are Green’s
potentials of gi. Then for B a function of s + m variables and b(x, t) =
B(k(x, t)),(
∂

∂t
−∆

)
b(x, t)

=
(

(−d2B)
∂k

∂x1
,
∂k

∂x1

)
Rs+m

+
(

(−d2B)
∂k

∂x2
,
∂k

∂x2

)
Rs+m

+
m∑
i=1

∂B

∂ks+i
gi(x, t).

3.2. Transforming the estimate. In this section we reduce the required
estimate to an estimate on four integrals that do not directly involve the
Beurling operator itself anymore. We will use the following fact from [15]
which we state here as a lemma:

Lemma 3.2.

‖R2
i f‖v ≤ C‖f‖w−1 , i = 1, 2 ⇒ ‖Tf‖v ≤ C‖f‖w−1 .
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In other words, to estimate the Beurling operator, it is sufficient to esti-
mate the squares of the Riesz transforms. This lemma follows from the fact
that the Fourier multiplier for the Beurling operator is a combination of the
squares of the multipliers of the Riesz transforms and rotations thereof. In
what follows, we will estimate R2

1; the proof for R2
2 is analogous.

By L2 duality it is enough to show the following inequality for test func-
tions:

|(R2
1φ, ψ)| ≤ C‖φ‖w−1‖ψ‖v−1 .

This follows if we prove

|(R2
1φ, ψ)| ≤ C(‖φ‖2w−1 + ‖ψ‖2v−1),

since the latter implies that

|(R2
1φ, ψ)| =

∣∣∣∣(cR2
1φ,

1
c
ψ

)∣∣∣∣ ≤ C(c‖φ‖2w−1 +
1
c
‖ψ‖2v−1

)
∀c > 0.

Letting c = ‖ψ‖v−1/‖φ‖w−1 brings us back to the original equation.
Instead of estimating the inner product |(R2φ, ψ)| we wish to estimate an

integral that involves derivatives of the heat extensions of φ and ψ instead.
To accomplish this, we will use the following lemma from [15] in a crucial
way. For completeness, we repeat the proof here.

Lemma 3.3. Let ϕ,ψ ∈ C∞0 . The integral
	 	 	 ∂ϕ

∂x1
· ∂ψ∂x1

dx1 dx2 dt con-
verges absolutely and

(3.3)
� �
R2

1ϕ · ψ dx1 dx2 = −2
� � �

R3
+

∂1φ̃ ∂1ψ̃ dx1 dx2 dt.

Proof. We have
� �
ψR2

1ϕdx1 dx2 =
� � ξ2

1

ξ2
1 + ξ2

2

ϕ̂(ξ1, ξ2)ψ̂(−ξ1,−ξ2) dξ1 dξ2

= 2
� �∞�

0

e−2t(ξ21+ξ22)ξ2
1ϕ̂(ξ1, ξ2)ψ̂(ξ1, ξ2) dξ1 dξ2 dt

= −2
∞�

0

� �
iξ1ϕ̂(ξ1, ξ2)e−t(ξ

2
1+ξ22) · iξ1ψ̂(−ξ1,−ξ2)e−t(ξ

2
1+ξ22) dξ1 dξ2 dt

= −2
∞�

0

� � ∂ϕ
∂x1

(x1, x2, t)
∂ψ

∂x1
(x1, x2, t) dx1 dx2 dt

= −2
� � �

R3
+

∂ϕ

∂x1
(x1, x2, t)

∂ψ

∂x1
(x1, x2, t) dx1 dx2 dt.

Here we have used Parseval’s formula twice, as well as the absolute conver-
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gence of the two integrals
	 	 	

R3
+
e−2t(ξ21+ξ22)ξ2

1ϕ̂(ξ1, ξ2)ψ̂(ξ1, ξ2) dξ1 dξ2 dt and	 	 	
R3

+

∂ϕ
∂x1

(x1, x2, t) ∂ψ∂x1
(x1, x2, t) dx1 dx2 dt. For the first integral this is ob-

vious. The absolute convergence of the second integral can be quite easily
proved.

By Lemmas 3.2 and 3.3 we see that it suffices to estimate
� � �

R3
+

|∂1φ̃∂1ψ̃| dx1 dx2 dt.

Now we strategically add and subtract terms in the integral, split it, and
estimate each resulting integral separately:

� � �

R3
+

|∂1φ̃ ∂1ψ̃| dx1 dx2 dt ≤
� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1φ̃

φ̃
− ∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ dA(x) dt

+
� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ dA(x) dt

+
� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1φ̃

φ̃
− ∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ṽ

ṽ

∣∣∣∣ dA(x) dt

+
� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ṽ

ṽ

∣∣∣∣ dA(x) dt

= I1 + I2 + I3 + I4.

We turn to estimating the integrals I1–I4.

3.3. Estimate of I1. Starting with the easiest estimate, we need to bound

I1 =
� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1φ̃

φ̃
− ∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ dA(x) dt,

for which we invoke our first Bellman function.
Consider

B(A, a,w, Y, y, v) = A− a2

w
+ Y − y2

v
.

On the domain A, a,w, Y, y, v ≥ 0, a2/w ≤ A, y2/v ≤ Y , this function has
the following properties, which can be verified by direct calculation:

(i) 0 ≤ B(A, a,w, Y, y, v) ≤ A+ Y ,

(ii) −d2B =
2a2

w

∣∣∣∣daa − dw

w

∣∣∣∣2 +
2y2

v

∣∣∣∣dyy − dv

v

∣∣∣∣2.
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Remark 3.4. The notation in the second property, which is very conve-
nient in this context, is to be understood in the following way:

(dA, da, dw, dY, dy, dv)(−d2B)(dA, da, dw, dY, dy, dv)t

=
2a2

w

∣∣∣∣daa − dw

w

∣∣∣∣2 +
2y2

v

∣∣∣∣dyy − dv

v

∣∣∣∣2.
Note that

k(x, t) = (φ̃2w−1(x, t), φ̃(x, t), w̃(x, t), ψ̃2v−1(x, t), ψ̃(x, t), ṽ(x, t))

is in the above domain for every (x, t), by our comments earlier in Section 3.1.
Consider

b(x, t) = B(k(x, t)).

By Lemma 3.1, we have(
∂

∂t
−∆

)
b(x, t)

=
(

(−d2B)
∂k

∂x1
,
∂k

∂x1

)
Rk+m

+
(

(−d2B)
∂k

∂x2
,
∂k

∂x2

)
Rk+m

= 2
φ̃2

w̃

∣∣∣∣∂1φ̃

φ̃
− ∂1w̃

w̃

∣∣∣∣2 + 2
ψ̃2

ṽ

∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣2
by (ii). By the Cauchy–Schwarz inequality and the fact that w̃ṽ ≤ c, this is

≥ C|φ̃| |ψ̃|
∣∣∣∣∂1φ̃

φ̃
− ∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣.
Furthermore, by (i),

b(0, R2/2) ≤ φ̃2w−1(0, R2/2) + ψ̃2v−1(0, R2/2)

=
1
π

2
R2

� �

R2

(φ2w−1(x) + ψ2v−1(x)) exp
(
−2|x|2

4R2

)
dA(x)

≤ 2
πR2

(‖φ‖2w−1 + ‖ψ‖2v−1).

Putting these together, and using our Green’s formula (3.2), we get
2

πR2
(‖φ‖2w−1 + ‖ψ‖2v−1) ≥ b(0, R2/2)

≥
� � �

C(R,R2)

GR(x, t)
(
∂

∂t
−∆

)
b(x, t) dx1 dx2 dt

≥ C

R2

� � �

C(R,R2)

G1

(
x

R
,
t

R2

)
|φ̃| |ψ̃|

∣∣∣∣∂1φ̃

φ̃
− ∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ dx1 dx2 dt.
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Multiply both sides by R2 and let R → ∞ (keeping in mind that G1(0, 0)
> 0) to obtain

2
π

(‖φ‖2w−1 + ‖ψ‖2v−1) ≥ C
� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1φ̃

φ̃
− ∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ dA(x) dt,

as desired.

3.4. Estimates of I2, I3. We will prove the bound of the second integral.
The third is handled in the same manner.

Thus we wish to bound

I2 =
� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ dA(x) dt.

Consider

B(A, a,w, Y, y, v,M) = A− a2

w +M
+Y − y

2

v
= B1(A, a,w,M)+B2(Y, y, v).

In the domain A, a,w, Y, y, v ≥ 0, 0 < M ≤ Cw, a2/w ≤ A, y2/v ≤ Y this
function satisfies

(i) 0 ≤ B(A, a,w, Y, y, v,M) ≤ A+ Y ,
(ii) −d2B1 ≥ 0,

(iii) ∂MB1 ≥
a2

Cw2
,

(iv) −d2B2 =
2y2

v

∣∣∣∣dyy − dv

v

∣∣∣∣2.
Note that k(x, t) = (φ̃2w−1, φ̃, w̃, ψ̃2v−1, ψ̃, ṽ,G((∂1w̃)2ṽ))(x, t) is in the

above domain for every (x, t). In particular, we use here assumption (2.3),

G(|∂1w̃|2ṽ)(x, t) ≤ Cw̃(x, t)

for the estimate on the derivative in M . Now consider

b(x, t) = B(k(x, t)).

By Lemma 3.1,(
∂

∂t
−∆

)
b(x, t) ≥ 2

ψ̃2

ṽ

∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣2 +
∂B

∂M
(∂1w̃)2ṽ

≥ 2
ψ̃2

ṽ

∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣2 +
φ̃2

Cw̃2
(∂1w̃)2ṽ ≥ C ψ̃

ṽ

∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ φ̃w̃ (∂1w̃)ṽ.

As before,

b(0, R2/2) ≤ 2
πR2

(‖φ‖2w−1 + ‖ψ‖2v−1).
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Combining the estimates gives
2

πR2
(‖φ‖2w−1 + ‖ψ‖2v−1) ≥ b(0, R2/2)

≥
� � �

C(R,R2)

GR(x, t)
(
∂

∂t
−∆

)
b(x, t) dx1 dx2 dt

≥ C

R2

� � �

C(R,R2)∩{t>ε}

G1

(
x

R
,
t

R2

)
ψ̃φ̃

∂1w̃

w̃

∣∣∣∣∂1ψ̃

ψ̃
− ∂1ṽ

ṽ

∣∣∣∣ dx1 dx2 dt.

As before, multiply by R2, and let R→∞.

3.5. Estimate of I4. This integral is the most difficult to estimate and
a careful analysis of the corresponding dyadic situation was necessary to
establish the Bellman functions considered. These go back to [11], [19] and
[16]. We wish to prove that

� � �

R3
+

|φ̃| |ψ̃|
∣∣∣∣∂1w̃

w̃

∣∣∣∣ ∣∣∣∣∂1ṽ

ṽ

∣∣∣∣ dA(x) dt ≤ C(‖φ‖2w−1 + ‖ψ‖2v−1).

We will do this via the following Bilinear Embedding Theorem (see different
versions also in [11, 16]):

Theorem 3.5. If α(x, t) ≥ 0 and w, v are two weights so that 0 <
w̃(x, t)ṽ(x, t) ≤ C for all (x, t) ∈ R3

+ and

G(α(x, t)w̃(x, t)ṽ(x, t)) ≤ C,
G(α(x, t)w̃(x, t)) ≤ Cw̃(x, t),
G(α(x, t)ṽ(x, t)) ≤ Cṽ(x, t),

then for φ, ψ ≥ 0 in L2 we have
� � �

R3
+

α(x, t)φ̃(x, t)ψ̃(x, t) dA(x) dt ≤ C ′(‖φ‖2w−1 + ‖ψ‖2v−1).

Thus, if we let

α(x, t) =
|∂1w̃(x, t)| |∂1ṽ(x, t)|

w̃(x, t)ṽ(x, t)
,

and use Theorem 3.5 and assumptions (2.4)–(2.6), then I4 is bounded as
desired.

It remains to prove Theorem 3.5.

3.5.1. Proof of the Bilinear Embedding Theorem. The Bellman function
in this section will be complicated, and its properties non-trivial.
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Consider the following set of variables, and the following domain:

{(A, a, r, Y, y, s,M,N,K) : A, a, r, Y, y, s,M,N,K > 0;
0 ≤ rs ≤ C; a2 ≤ Ar; y2 ≤ Y s; M ≤ Cr; N ≤ Cs; K ≤ C}.

Note that this domain requires that 0 ≤ rs ≤ C, as opposed to 1 ≤ rs ≤ C
in [16].

Now consider the following Bellman function from [16]:

B(A, a, r, Y, y, s,M,N,K)
= B1(A, a, r,M) +B2(Y, y, s,N) +B3(A, a, r, Y, y, s,K),

where

B1(A, a, r,M) = A− a2

r +M
,

B2(Y, y, s,N) = Y − y2

s+N
,

B3(A, a, r, Y, y, s,K)

=


A+ Y − a2s− 2ayK + y2r

rs−K2
if yr − aK > 0, as− yK > 0,

A+ Y − y2/s otherwise, and a2/r ≥ y2/s,
A+ Y − a2/r otherwise, and a2/r ≤ y2/s.

Lemma 3.6. This Bellman function satisfies the following estimates:

(i)
∂B1

∂M
≥ C a2

r2
,

∂B2

∂N
≥ C y2

s2
,

∂B3

∂K
≥

{
c
ay

rs
if both K ≤ yr

4a
and K ≤ as

4y
,

0 else,
(ii) B is concave,
(iii) 0 ≤ B ≤ 3(A+ Y ).

Proof. The first two derivative conditions are straightforward. As for the
third, a calculation shows that

∂B3

∂K
=

2(as− yK)(yr − aK)
(K2 − rs)2

for yr > aK and as > yK, and ∂B3/∂K = 0 else. That proves non-
negativity.

Furthermore, when aK ≤ yr/4 and yK ≤ as/4, we have yr − aK ≥
3/4yr, as − yK ≥ as − as/4 = 3as/4 and K2ay ≤ yras/16. The latter
implies that K2 ≤ rs/16, so 0 < rs−K2 ≤ rs.
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Thus in that range
2(as− yK)(yr − aK)

(K2 − rs)2
≥ C asyr

(K2 − rs)2
≥ C ay

rs
,

which proves the third derivative estimate.
It is easy to check that the matrices −d2B1, −d2B2 are positive semi-

definite, and thus B1 and B2 are concave. As for B3, it is useful here to
observe that

B3 = A+ Y − sup
α>0

(
a2

r + αK
+

y2

s+ α−1K

)
(see [11, 16]). The quantity in parentheses is convex. Thus the function as a
whole is an infimum of concave functions, and therefore concave. Hence B
is concave.

Furthermore, 0 ≤ Bi ≤ A + Y for i = 1, 2, 3. The upper bounds are
obvious, as is the positivity, except in the case of B3 when yr−AK > 0 and
as− yK > 0. For that case, note that

A+ Y − a2s− 2ayK + y2r

rs−K2
= A− a(as− yK)

rs−K2
+ Y − y(yr − aK)

rs−K2
.

We will prove that

A ≥ a(as− yK)
rs−K2

.

The other half goes the same way.
Since as > yK, we see that α1 = as/yK > 1, and similarly α2 =

yr/aK > 1, and
asyr

yKaK
=

sr

K2
= α1α2 > 1.

Thus
a(as− yK)
rs−K2

=
a
(
1− 1

α1

)
as(

1− 1
α1α2

)
sr

=
1− 1

α1

1− 1
α1α2

a2

r
≤ A,

since 0 < 1−1/α1

1−1/α1α2
= α1α2−α2

α1α2−1 = 1 + 1−α2
α1α2−1 ≤ 1.

As before, we wish to plug in heat extensions and Green’s potentials for
our variables.

We let
A = φ̃2w−1, a = φ̃, r = w̃,

Y = ψ̃2v−1, y = ψ̃, s = ṽ,

K = G(αw̃ṽ), M = G(αṽK), N = G(αw̃K).

All of these variables are positive. Moreover, the assumptions of the
lemma imply that
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K ≤ C, M = G(αṽK) ≤ CG(αṽ) ≤ C ′ṽ(x, t), N ≤ C ′w̃(x, t).

Thus k(x, t) = (φ̃2w−1, φ̃, w̃, ψ̃2v−1, ψ̃, ṽ,G(αṽ(G(αw̃ṽ))),G(αw̃(G(αw̃ṽ))),
G(αw̃ṽ)) is in the domain of B.

We wish to use b(x, t) = B(k(x, t)). In this case, however, B (or more
specifically B3) is not smooth enough to use in the Green’s formula. Thus
we will mollify B3 first.

For δ small, we consider the set Dδ = {k(x, t) : (x, t) ∈ C δ(R,R2)}.
Since C δ(R,R2) is compact, Dδ is a compact subset of the domain of B. Let
ε(δ) be the smallest distance between Dδ and the union of the hyperplanes
A = 0, a = 0, r = 0, Y = 0, y = 0, s = 0, M = 0, N = 0, K = 0. We
pick φε(δ) to be a C∞ approximate identity in R9 with radius ε(δ)/2. By this
we mean a smooth, radial and non-negative bump function supported by a
disk around 0 of radius ε(δ)/2 and normalized to

	
φε(δ) = 1. We consider

the convolution Bδ
3 = B3 ∗φε(δ). The resulting function is smooth in Dδ and

it has size, derivative and concavity properties similar to B3. It is easy to
see that only the constants change by a factor of 3/2 for the size estimate
and by 1/9 in the case of the derivative estimate for all choices of δ. The
derivative estimate of Bδ

3 will only hold for smaller K, namely {K ≤ yr/18a
and K ≤ as/18y}. In this sense

−d2Bδ
3 ≥ 0 in Dδ.

Let bi(x, t) = Bi(k(x, t)) for i = 1, 2, and bδ3(x, t) = bδ3(k(x, t)). The sum
b1 + b2 + bδ3 is denoted by bδ. This function is defined on C δ(R,R2) only, so
we estimate our integral on a slightly smaller region first and then pass to
the limit. We divide C δ(R,R2) into three parts

A1 =
{

(x, t) ∈ C δ(R,R2) : K(x, t) ≥ ψ̃(x, t)ṽ(x, t)

18φ̃(x, t)

}
,

A2 =
{

(x, t) ∈ C δ(R,R2) : K(x, t) ≥ φ̃(x, t)w̃(x, t)

18ψ̃(x, t)

}
,

A3 = C δ(R,R2) \ (A1 ∪A2).

If (x, t) ∈ A1, then(
∂

∂t
−∆

)
b1(x, t) ≥ ∂B1

∂M

((
∂

∂t
−∆

)
M

)
≥ 1

4Q2

φ̃(x, t)2

ṽ(x, t)2
α(x, t)ṽ(x, t)K(x, t)

≥ 1
4Q2

φ̃(x, t)2

ṽ(x, t)2
α(x, t)ṽ(x, t)Q

ψ̃(x, t)ṽ(x, t)

18φ̃(x, t)

=
1

72Q
α(x, t)φ̃(x, t)ψ̃(x, t).
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Similarly, if (x, t) ∈ A2, then(
∂

∂t
−∆

)
b2(x, t) ≥ 1

72Q
α(x, t)φ̃(x, t)ψ̃(x, t).

If (x, t) ∈ A3 then(
∂

∂t
−∆

)
bδ3(x, t) ≥ ∂bδ3

∂K

((
∂

∂t
−∆

)
K

)
≥ c

Q

φ̃(x, t)ψ̃(x, t)
w̃(x, t)ṽ(x, t)

α(x, t)w̃(x, t)ṽ(x, t)

=
c

Q
α(x, t)φ̃(x, t)ψ̃(x, t).

Since (∂/∂t−∆)b1,2, (∂/∂t−∆)bδ3 ≥ 0 on all of C δ(R,R2) we have altogether(
∂

∂t
−∆

)
bδ(x, t) ≥ α(x, t)φ̃(x, t)ψ̃(x, t).

Now by the Green’s formula (3.2),

bδ(0, (R− δ)2/2) ≥
� � �

C
δ
(R,R2)

GR−δ(x, t)
(
∂

∂t
−∆

)
bδ(x, t) dx dt

≥
� � �

C
δ
(R,R2)

GR−δ(x, t)α(x, t)φ̃(x, t)ψ̃(x, t) dx dt

=
� � �

C
δ
(R,R2)

1
(R− δ)2

G(0, 1)α(x, t)φ̃(x, t)ψ̃(x, t) dx dt

≥ C

(R− δ)2

� � �

C
δ
(R,R2)

α(x, t)φ̃(x, t)ψ̃(x, t) dx dt.

By the upper bound on B, we see that

bδ(0, (R− δ)2/2) ≤ φ̃2w−1(0, (R− δ)2/2) + ψ̃2v−1(0, (R− δ)2/2)

=
2

π(R− δ)2

� �

R2

φ2(y)w−1(y) exp
(
− 2‖y‖2

(R− δ)2

)
dy

+
2

π(R− δ)2

� �

R2

ψ2(y)v−1(y) exp
(
− 2‖y‖2

(R− δ)2

)
dy

≤ 2
π(R− δ)2

(‖φ‖L2(w−1) + ‖ψ‖L2(v−1)).
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Putting these two together, we see that
C

(R− δ)2

� � �

C((R−δ),(R−δ)2)

α(x, t)φ̃(x, t)ψ̃(x, t) dx dt

≤ 2
π(R− δ)2

(‖φ‖L2(w−1) + ‖ψ‖L2(v−1)).

Canceling the R− δ factors, and letting R→∞ and δ → 0, we see that� � �

R3
+

α(x, t)φ̃(x, t)ψ̃(x, t) dx dt ≤ C(‖φ‖2w−1 + ‖ψ‖2v−1),

which finishes the proof of the lemma.
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