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Ekeland’s variational principle in locally
p-convex spaces and related results

by

J. H. Qiu (Suzhou) and S. Rolewicz (Warszawa)

Abstract. In the framework of locally p-convex spaces, two versions of Ekeland’s
variational principle and two versions of Caristi’s fixed point theorem are given. It is shown
that the four results are mutually equivalent. Moreover, by using the local completeness
theory, a p-drop theorem in locally p-convex spaces is proven.

1. Introduction. The variational principle discovered by Ekeland (see
[6]) in 1972 is one of the most important results of nonlinear functional
analysis and it has significant applications in optimization, control theory,
game theory, global analysis and various other fields; see, for example, [1,
7, 8, 18]. It is well known that this principle is equivalent to Caristi’s fixed
point theorem [2], to Daneš’ drop theorem [4, 5], and to the petal theorem
[10, 19]. In the past decade, Ekeland’s variational principle and some related
results were extended from the Banach space setting to the topological vector
space setting, in particular, to locally convex spaces (see, for example, [3, 9,
11, 17, 22–24, 28]). By using the local convergence and local completeness
theory on locally convex spaces (we refer to [12, p. 225] and [20, Chap. 5]), we
presented general versions of Ekeland’s variational principle and some related
theorems in locally convex spaces (see [23], [24]). Recently [25] we introduced
the notion of local completeness of locally p-convex spaces and established a
general version of the Borwein–Preiss variational principle in locally p-convex
spaces. It is natural to consider extensions of Ekeland’s variational principle
and the related results to locally complete locally p-convex spaces. This is
the main topic of the present paper.

The paper is organized as follows. In Section 2, we recall some basic
facts on p-convex sets, absolutely p-convex sets and locally complete locally
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p-convex spaces. In Section 3, using a modified version of the Bishop–Phelps
lemma [21] we give two versions of Ekeland’s variational principle in locally
complete locally p-convex spaces and prove that they are indeed equivalent.
In Section 4, by using the two versions of Ekeland’s variational principle of
Section 3, we deduce two versions of Caristi’s fixed point theorem in locally
p-convex spaces. It turns that the two versions of fixed point theorems and
the two versions of Ekeland’s variational principle are all equivalent to each
other. Finally, in Section 5, we give a p-drop theorem in locally p-convex
spaces, which extends the result in [15]. Our proof is direct and only depends
on the local completeness of locally p-convex spaces.

2. Preliminaries and notations. In this paper we need some know-
ledge of p-convex sets and absolutely p-convex sets (see, for example, [13–16,
26–27]). Moreover, we need the notions of local convergence, local closed-
ness and local completeness in locally p-convex spaces (for details, see [25]),
which generalize the corresponding notions in locally convex spaces (see, for
example, [20]).

Definition 2.1 (see [13, 14, 16, 27]). Let X be a linear space, 0 < p ≤ 1
and C ⊂ X be nonempty. If αx+ βy ∈ C for any x, y ∈ C and any α, β ≥ 0
with αp+βp = 1, then C is called p-convex. If C is in addition circled then it
is called absolutely p-convex. Obviously C is absolutely p-convex if and only
if αx+βy ∈ C for any x, y ∈ C and any scalars α, β such that |α|p+|β|p ≤ 1.

By induction, C is p-convex (resp. absolutely p-convex) if and only if∑n
i=1 αiA⊂A whenever αi ≥ 0 with

∑n
i=1 α

p
i = 1 (resp. whenever

∑n
i=1 |αi|p

≤ 1), with n running through all positive integers. It is easy to verify that
arbitrary intersections of p-convex sets (resp. absolutely p-convex sets) are
still p-convex (resp. absolutely p-convex). Thus for any nonempty S ⊂ X
there is a smallest p-convex set (resp. absolutely p-convex set) containing S,
which is called the p-convex hull of S (resp. the absolutely p-convex hull of S).
We denote the p-convex hull of S by p-co(S) and the absolutely p-convex
hull of S by p-aco(S). It is easy to see that

p-co(S) =
{ n∑
i=1

αixi : n ∈ N, x1, . . . , xn ∈ S, α1, . . . , αn ≥ 0,
n∑
i=1

αpi = 1
}
,

p-aco(S) =
{ n∑
i=1

αixi : n ∈ N, x1, . . . , xn ∈ S,
n∑
i=1

|αi|p ≤ 1
}
.

Let x ∈ X and B ⊂ X be nonempty. We denote p-co({x} ∪B) by Dp(x,B),
and p-aco({x}∪B) by Γp(x,B). If B is p-convex, we call Dp(x,B) the p-drop
determined by x and B.
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Remark 2.1. Assume that 0 < p < 1 and C is a p-convex set in a linear
space X. Then αx ∈ C for any x ∈ C and any α such that 21−1/p ≤ α ≤ 1.
Hence αx ∈ C for any x ∈ C and any 0 < α ≤ 1. Thus either 0 belongs to C
or it is an algebraic boundary point of C (see [14, p. 177]). If the p-convex
set C is algebraic closed or locally closed, then clearly 0 ∈ C. Hence for any
nonempty subset S of X, p-co(S) can also be written as

p-co(S)=
{ n∑
i=1

αixi : n ∈ N, x1, . . . , xn∈S, α1, . . . , αn ≥ 0, 0<
n∑
i=1

αpi ≤ 1
}
.

Besides, we remark that if C is a convex set (i.e. p = 1), we cannot deduce
αx ∈ C from x ∈ C and 0 < α < 1.

Remark 2.2. From Remark 2.1 we know that for any p-convex set C
(0 < p < 1), we can define its gauge as follows:

qC(x) =
{

inf{t > 0 : x ∈ t1/pC} if there exists t > 0 such that x ∈ t1/pC,
∞ else.

Clearly, for any x, y ∈ X and any α > 0, we have qC(x+ y) ≤ qC(x)+ qC(y)
and qC(αx) = αpqC(x). Moreover, if C is absorbing, then qC(0) = 0 and
0 ≤ qC(x) <∞ for any x ∈ X.

For any convex set C containing 0, we can define its gauge as follows:

qC(x) =
{

inf{t > 0 : x ∈ tC} if there exists t > 0 such that x ∈ tC,
∞ else.

Clearly, for any x, y ∈ C and any α ≥ 0, we have qC(x+ y) ≤ qC(x) + qC(y)
and qC(αx) = αqC(x). Moreover, if C is absorbing, then 0 ≤ qC(x) <∞ for
any x ∈ X.

In general, a function q : X → R∪{+∞} is called subadditive if q(x+ y)
≤ q(x) + q(y) for any x, y ∈ X, and positive p-homogeneous if q(αx) =
αpq(x) for any x ∈ X and α ≥ 0 (when p = 1, we call it briefly positive
homogeneous). Obviously, the gauge of a p-convex set (0 < p ≤ 1) containing
0 is a subadditive, positive p-homogeneous function.

Now we turn to the discussion of locally p-convex spaces. A Hausdorff
topological linear space (briefly, a topological linear space) is called locally
p-convex (0 < p ≤ 1) if there is a basis U of 0-neighborhoods consisting of
absolutely p-convex sets. It is easy to see that a topological linear space X is
locally p-convex if and only if there is a family {‖ ‖λ}λ∈Λ of p-homogeneous
F-pseudonorms which determines the topology of X (see, for example, [27]).
In particular, a locally 1-convex space is called locally convex.

Definition 2.2 (see [25]). Let X be a locally p-convex space. A subset
B of X is called a p-disc if it is bounded and absolutely p-convex. Let EB
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denote the linear span of B, span[B], endowed with the topology determined
by the gauge qB. If EB is complete, then the p-disc B is called self-complete.
A sequence (xn) in X is called a locally Cauchy sequence if there is a p-disc
B in X such that (xn) is a Cauchy sequence in EB. A sequence (xn) in
X is said to be locally convergent to a point x0 if there is a p-disc B such
that xn → x0 in EB. Clearly, (xn) is locally convergent to x0 if and only if
(xn − x0) is locally convergent to 0. A point x0 is called a locally limit point
of a set A in X if there is a sequence (xn) in A locally convergent to x0. The
set A is called locally closed if every locally limit point of A belongs to A.

Lemma 2.1 (see [25]). Let X be a locally p-convex space. Then the fol-
lowing three statements are equivalent :

(i) For each bounded set A in X there is a self-complete p-disc B such
that A ⊂ B.

(ii) Every locally Cauchy sequence in X is locally convergent.
(iii) Every closed p-disc is self-complete.

Definition 2.3 (see [25]). A locally p-convex space X is called locally
complete if one of the three equivalent statements in Lemma 2.1 is satisfied.
A subset A of a locally p-convex space is called locally complete if every
locally Cauchy sequence in A is locally convergent to a point in A.

Obviously, every locally complete set is locally closed and every locally
closed subset of a locally complete space is locally complete.

Let X be a locally p-convex space and let f : X → R ∪ {+∞}. The
effective domain of f is dom f = {x ∈ X : f(x) < ∞}. If dom f 6= ∅, we
say that f is proper. As in [23], we introduce the notion of locally lower
semicontinuous function as follows.

Definition 2.4. Let X be a locally p-convex space and f : X → R ∪
{+∞} be a proper function. If the set {x ∈ X : f(x) ≤ r} is locally closed
in X for every r ∈ R, then f is called locally lower semicontinuous.

Concerning the relationship between locally lower semicontinuous func-
tions, sequentially lower semicontinuous functions and lower semicontinuous
functions, we refer to [23]. In the next section we shall consider some exten-
sions of Ekeland’s variational principle concerning locally lower semicontin-
uous functions in the setting of locally p-convex spaces.

3. Ekeland’s variational principle in locally p-convex spaces.
First we give a modified version of the Bishop–Phelps lemma.

Lemma 3.1. Let X be a locally complete locally p-convex space and q :
X → R+∪{+∞} be a locally lower semicontinuous, positive p-homogeneous,
subadditive proper function such that B := {x ∈ X : q(x) ≤ 1} is bounded.
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If a nonempty set A ⊂ X × R is locally closed and inf{r : (x, r) ∈ A} = 0,
then for any β > 0 and any (x0, r0) ∈ A, there exists

(x, r) ∈ A ∩ (Kβ + (x0, r0))

such that
{(x, r)} = A ∩ (Kβ + (x, r)),

where Kβ := {(x, r) ∈ X ×R : βq(x) ≤ −r}.
Proof. It is easy to verify that (0, 0) ∈ Kβ , Kβ + Kβ ⊂ Kβ and Kβ is

locally closed in X × R. Define h : X × R→ R as follows:
h(x, r) = r, ∀(x, r) ∈ X × R.

Put A0 := A ∩ (Kβ + (x0, r0)). Then
0 = inf h(A) ≤ inf h(A0) ≤ r0 <∞.

There exists (x1, r1) ∈ A0 such that
r1 < inf h(A0) + 1.

Put A1 := A ∩ (Kβ + (x1, r1)). Then
A1 ⊂ A ∩ (Kβ +Kβ + (x0, r0)) ⊂ A ∩ (Kβ + (x0, r0)) = A0.

Clearly,
0 ≤ inf h(A0) ≤ inf h(A1) ≤ r1 <∞.

Hence there exists (x2, r2) ∈ A1 such that
r2 < inf h(A1) + 1/2.

Repeating this process we obtain a sequence {(xn, rn)}n∈N such that

(xn+1, rn+1) ∈ An = A ∩ (Kβ + (xn, rn)) and rn+1 < inf h(An) +
1

n+ 1
.

Clearly, for any m > n > 1,

βq(xm − xn) ≤ rn − rm < inf h(An−1) +
1
n
− rm

≤ inf h(Am−1) +
1
n
− rm ≤

1
n
,

so {xn}n∈N is a locally Cauchy sequence in X, and hence is locally con-
vergent to some x ∈ X. Also, {rn} is convergent to some r ∈ R. Since
An = A ∩ (Kβ + (xn, rn)) is locally closed, (xm, rm) ∈ An for every m > n
and {(xm, rm)}m>n is locally convergent to (x, r), we have (x, r) ∈ An and
hence (x, r) ∈

⋂∞
n=0An. In particular,

(x, r) ∈ A0 = A ∩ (Kβ + (x0, r0)).

Next we show that {(x, r)} = A∩ (Kβ +(x, r)). Indeed, if (y, s) ∈ A∩ (Kβ +
(x, r)), then for every n,

(y, s) ∈ A ∩ (Kβ +Kβ + (xn, rn)) ⊂ A ∩ (Kβ + (xn, rn)) = An.
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Thus (y − xn, s− rn) ∈ Kβ and hence

βq(y − xn) ≤ rn − s < inf h(An−1) +
1
n
− s ≤ inf h(An) +

1
n
− s ≤ 1

n
.

Therefore {xn} is locally convergent to y and {rn} is convergent to s. By the
uniqueness of limits, we have y = x and s = r, as desired.

Theorem 3.1. Let X be a locally complete locally p-convex space and q :
X → R+∪{+∞} be a locally lower semicontinuous, positive p-homogeneous,
subadditive proper function such that B := {x ∈ X : q(x) ≤ 1} is bounded.
Let f : X → R ∪ {+∞} be a locally lower semicontinuous, bounded from
below , proper function and let x0 ∈ dom f . Then for any β > 0, there exists
z ∈ X such that

(i) f(z) + βq(z − x0) ≤ f(x0);
(ii) for any x 6= z, f(z) < f(x) + βq(x− z).
Proof. We may assume that inf f(X) = 0. Put A := {(x, r) ∈ X × R :

f(x) ≤ r}. Then inf{r : (x, r) ∈ A} = 0. Clearly (x0, f(x0)) ∈ A. By
Lemma 3.1, there exists

(1) (z, r) ∈ A ∩ (Kβ + (x0, f(x0)))

such that

(2) {(z, r)} = A ∩ (Kβ + (z, r)).

From (1), we have f(z) ≤ r and

βq(z − x0) ≤ f(x0)− r ≤ f(x0)− f(z),

proving (i).
Next we show that f(z) = r. If not, we have f(z) < r. Clearly (z, f(z)) ∈

A and by (2),
(z, f(z)) 6∈ Kβ + (z, r),

which implies that

(0, f(z)− r) 6∈ Kβ, i.e. 0 = βq(0) > r − f(z),

contradicting f(z) < r. Thus r = f(z) and hence (2) becomes

(3) {(z, f(z))} = A ∩ (Kβ + (z, f(z))).

If x ∈ X and f(x) = ∞, then certainly (ii) holds. Let x ∈ dom f and
x 6= z. Then by (3) we have

(x, f(x)) 6∈ Kβ + (z, f(z)),

that is, (x−z, f(x)−f(z)) 6∈ Kβ , or equivalently, βq(x−z) > f(z)−f(x).

Lemma 3.2. Let X be a locally p-convex space with the topology generated
by a family {‖ ‖λ}λ∈Λ of p-homogeneous F -pseudonorms and {αλ}λ∈Λ be a
family of positive real numbers. Then B :=

⋂
λ∈Λ{x ∈ X : αλ‖x‖λ ≤ 1} is a



Ekeland’s variational principle 225

closed , bounded , absolutely p-convex set in X, and qB(x) = supλ∈Λ αλ‖x‖λ
for any x ∈ X, where

qB(x) =
{

inf{t > 0 : x ∈ t1/pB} if there exists t > 0 such that x ∈ t1/pB,
∞ else.

Proof. It is easy to verify that B is closed, bounded, and absolutely
p-convex. For any x ∈ X and ε > 0, by the definition of qB we have

x

(qB(x) + ε)1/p
∈ B,

which means that

αλ

∥∥∥∥ x

(qB(x) + ε)1/p

∥∥∥∥
λ

≤ 1, ∀λ ∈ Λ.

Hence αλ
qB(x) + ε

‖x‖λ ≤ 1, ∀λ ∈ Λ.

This implies that
sup
λ∈Λ

αλ‖x‖λ ≤ qB(x).

Suppose that there exist x0 ∈ X and ε > 0 such that

sup
λ∈Λ

αλ‖x0‖λ < qB(x0)− ε.

Then

sup
λ∈Λ

αλ

∥∥∥∥ x0

(qB(x0)− ε)1/p

∥∥∥∥
λ

= sup
λ∈Λ

αλ‖x0‖λ
qB(x0)− ε

< 1.

Hence
x0

(qB(x0)− ε)1/p
∈ B, i.e., x0 ∈ (qB(x0)− ε)1/pB.

But this contradicts the definition of qB. Therefore

qB(x) = sup
λ∈Λ

αλ‖x‖λ, ∀x ∈ X.

Theorem 3.2. Let X be a locally complete locally p-convex space with the
topology generated by a family {‖ ‖λ}λ∈Λ of p-homogeneous F-pseudonorms
and {αλ}λ∈Λ be a family of positive real numbers. Let f : X → R ∪ {+∞}
be a locally lower semicontinuous, bounded from below , proper function and
let x0 ∈ dom f . Then for any β > 0, there exists z ∈ X such that

(i) f(z) + β supλ∈Λ αλ‖z − x0‖λ ≤ f(x0);
(ii) for any x 6= z, f(z) < f(x) + β supλ∈Λ αλ‖x− z‖λ.
Proof. Put B :=

⋂
λ∈Λ{x ∈ X : αλ‖x‖λ ≤ 1}. By Lemma 3.2,

(4) qB(x) = sup
λ∈Λ

αλ‖x‖λ, ∀x ∈ X.

Combining (4) and Theorem 3.1 completes the proof.
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Since a complete p-norm space is a locally complete locally p-convex
space whose topology is generated by a single p-norm, from Theorem 3.2 we
have the following:

Corollary 3.1. Let (X, ‖ ‖) be a complete p-normed space, f : (X, ‖ ‖)
→ R∪{+∞} be a lower semicontinuous, bounded from below , proper function
and x0 ∈ dom f . Then for any β > 0, there exists z ∈ X such that

(i) f(z) + β‖z − x0‖ ≤ f(x0);
(ii) for any x 6= z, f(z) < f(x) + β‖x− z‖.
Theorem 3.3. Theorems 3.1 and 3.2 are mutually equivalent.

Proof. We only need to prove that Theorem 3.2 implies Theorem 3.1. In
fact, we shall prove that Corollary 3.1 implies Theorem 3.1. Let X, q,B and
f be as in Theorem 3.1 and let x0 ∈ dom f . We denote by T the closure of
Γp(x0, B). SinceX is a locally complete locally p-convex space, by Lemma 2.1
and Definition 2.3 we know that T is a self-complete p-disc, i.e., (XT , ‖ ‖T )
is a complete p-normed space. Here XT := span[T ] and for any x ∈ XT ,
‖x‖T := inf{t > 0 : x ∈ t1/pT}. Put

C := {x ∈ XT : f(x) + βq(x− x0) ≤ f(x0)}.
Then C is closed in (XT , ‖ ‖T ) since f and q are locally lower semicontinuous.
Define a function g on XT as follows:

g(x) =
{
f(x) if x ∈ C,
∞ if x ∈ XT \ C.

Then g is a lower semicontinuous, bounded from below, proper function on
(XT , ‖ ‖T ) and x0 ∈ dom g. Now applying Corollary 3.1 to the complete
p-normed space (XT , ‖ ‖T ) and the function g, we conclude that there exists
z ∈ XT such that

(i) g(z) + β‖z − x0‖T ≤ g(x0) = f(x0);
(ii) for any x ∈ XT and x 6= z,

(5) g(z) < g(x) + β‖x− z‖T .
From (i), we know that g(z) <∞ and hence z ∈ C, that is,

(6) f(z) + βq(z − x0) ≤ f(x0).

Thus (i) in Theorem 3.1 holds. Next we show that (ii) in Theorem 3.1 holds
in each of the following three possible cases.

Case 1. Let x 6= z and x ∈ C. Then by (5) we have

(7) f(z) < f(x) + β‖x− z‖T .
Since T ⊃ B and ‖ ‖T is the gauge of T , and clearly q is the gauge of B,
we have ‖ · ‖T ≤ q(·). Combining this with (7), we conclude that f(z) <
f(x) + βq(x− z).
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Case 2. Let x 6= z and x ∈ XT \ C. From the definition of C, we have

f(x) + βq(x− x0) > f(x0).

Combining this with (6), we have

f(z) + βq(z − x0) ≤ f(x0) < f(x) + βq(x− x0)(8)
≤ f(x) + βq(x− z) + βq(z − x0).

By (6), we know that βq(z−x0) <∞, so (8) yields f(z) < f(x)+βq(x− z).
Case 3. Let x 6= z and x 6∈ XT . Since z ∈ XT , we have x − z 6∈ XT .

Thus x − z 6∈ t1/pB for any t > 0, so q(x − z) = ∞ and obviously f(z) <
f(x) + βq(x− z).

Obviously Theorem 3.1 is an extension of [11, Theorem 2] and [24, Corol-
lary 3.2]. And Theorem 3.2 is an extension of [11, Theorem 3] and [24,
Corollary 3.1]. In fact, by slightly modifying Lemma 3.1 we can obtain the
following extensions of [24, Theorems 3.2 and 3.1].

Theorem 3.1′. Let X be a locally p-convex space and q : X → R+ ∪
{+∞} be a locally lower semicontinuous, positive p-homogeneous, subadditive
proper function such that B := {x ∈ X : q(x) ≤ 1} is bounded. Let f : X →
R ∪ {+∞} be a locally lower semicontinuous, bounded from below, proper
function and let x0 ∈ dom f . If {x ∈ X : f(x) ≤ f(x0)} or B is locally
complete, then for any β > 0, there exists z ∈ X such that

(i) f(z) + βq(z − x0) ≤ f(x0);
(ii) for any x 6= z, f(z) < f(x) + βq(x− z).
Theorem 3.2′. Let X be a locally p-convex space with the topology gen-

erated by a family {‖ ‖λ}λ∈Λ of p-homogeneous F -pseudonorms and {αλ}λ∈Λ
be a family of positive real numbers. Let f : X → R∪{+∞} be a locally lower
semicontinuous, bounded from below, proper function and let x0 ∈ dom f . If
{x ∈ X : f(x) ≤ f(x0)} or

⋂
λ∈Λ{x ∈ X : αλ‖x‖λ ≤ 1} is locally complete,

then for any β > 0, there exists z ∈ X such that

(i) f(z) + β supλ∈Λ αλ‖z − x0‖λ ≤ f(x0);
(ii) for any x 6= z, f(z) < f(x) + β supλ∈Λ αλ‖x− z‖λ.

4. Equivalence of Ekeland’s variational principle and Caristi’s
fixed point theorem. By using Theorems 3.1 and 3.2, we can deduce the
following two versions of Caristi’s fixed point theorem in locally p-convex
spaces.

Theorem 4.1 (Extended Caristi’s fixed point theorem). Let X be a lo-
cally complete locally p-convex space and q : X → R+ ∪ {+∞} be a locally
lower semicontinuous, positive p-homogeneous, subadditive, proper function
such that {x ∈ X : q(x) ≤ 1} is bounded. Let f : X → R∪{+∞} be a locally
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lower semicontinuous, bounded from below , proper function. If T : X → 2X

has the property that for any x ∈ X and any y ∈ Tx,
βq(y − x) + f(y) ≤ f(x), where β > 0 is a constant ,

then for any x0 ∈ domf , there exists z ∈ (Tx0)∼ such that Tz = {z}, where
(Tx0)∼ := {y ∈ X : βq(y − x0) + f(y) ≤ f(x0)}.

Proof. By Theorem 3.1, there exists z ∈ X such that

(i) f(z) + βq(z − x0) ≤ f(x0);
(ii) for any x 6= z, f(z) < f(x) + βq(x− z).

From (i) we know that z ∈ (Tx0)∼. We show that Tz = {z}. If not, there
exists y ∈ Tz and y 6= z. From (ii), we have

(9) f(z) < f(y) + βq(y − z).
On the other hand, as y ∈ Tz, by the hypothesis on T we have βq(y−z)+f(y)
≤ f(z), which contradicts (9).

Similarly we can deduce the following version of Caristi’s fixed point
theorem from Theorem 3.2.

Theorem 4.2 (Extended Caristi’s fixed point theorem). Let X be a lo-
cally complete locally p-convex space with the topology generated by a family
{‖ ‖λ}λ∈Λ of p-homogeneous F-pseudonorms, {αλ}λ∈Λ be a family of positive
real numbers and let f : X → R ∪ {+∞} be a locally lower semicontinuous,
bounded from below , proper function. If T : X → 2X has the property that
for any x ∈ X and any y ∈ Tx,

αλ‖x− y‖λ + f(y) ≤ f(x), ∀λ ∈ Λ,
then for any x0 ∈ dom f , there exists z ∈ (Tx0)∼ such that Tz = {z}, where
(Tx0)∼ := {y ∈ X : αλ‖x0 − y‖λ + f(y) ≤ f(x0), ∀λ ∈ Λ}.

In fact, the two versions of Caristi’s fixed point theorem and the two
versions of Ekeland’s variational principle of Section 3 are equivalent to one
another.

Theorem 4.3. Theorems 3.1, 3.2, 4.1 and 4.2 are equivalent to one an-
other.

Proof. We only need to prove that Theorem 4.1 implies Theorem 3.1 and
that Theorem 4.2 implies Theorem 3.2. Here we only give the proof of the
former implication; the other proof is similar. Let X, q,B and f be as in
Theorem 3.1 and let x0 ∈ dom f . Define T : X → 2X by

Tx := {y ∈ X : βq(y − x) + f(y) ≤ f(x)}.
Obviously x ∈ Tx and T satisfies the hypothesis of Theorem 4.1. Hence
there exists z ∈ (Tx0)∼ = {y ∈ X : βq(y − x0) + f(y) ≤ f(x0)} such
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that Tz = {z}. Thus βq(z − x0) + f(z) ≤ f(x0), i.e., Theorem 3.1(i) holds.
Moreover, for any x 6= z, we have x 6∈ Tz, i.e.,

βq(x− z) + f(x) > f(z).

Thus Theorem 3.1(ii) holds.

5. A p-drop theorem in locally p-convex spaces (0 < p < 1). In
order to obtain a general p-drop theorem in locally p-convex spaces, we need
the following lemmas.

Lemma 5.1 (see [15]). Let X be a linear space and let C ⊂ X be p-convex.
Then

Dp(x,C) = {αx+ βy : y ∈ C, α, β ∈ [0, 1], αp + βp = 1}.

Proof. Fix z ∈ Dp(x,C). Then z = α0x +
∑n

i=1 αiyi, where y1, . . . , yn
∈ C and α0, α1, . . . , αn ∈ [0, 1] with

∑n
i=0 α

p
i = 1.

If α0 =1, then clearly z=x ∈ {αx+βy : y ∈ C, α, β ∈ [0, 1], αp+βp = 1}.
If 0 ≤ α0 < 1, then

z = α0x+
( n∑
i=1

αpi

)1/p
n∑
i=1

αi

(
∑n

j=1 α
p
j )1/p

yi.

Observe that
n∑
i=1

(
αi

(
∑n

j=1 α
p
j )1/p

)p
= 1, yi ∈ C and C is p-convex,

so we have
n∑
i=1

αi

(
∑n

j=1 α
p
j )1/p

yi ∈ C.

Since αp0 + [(
∑n

i=1 α
p
i )

1/p]p = 1, the proof is complete.

Lemma 5.2. Let C be a p-convex set and a ∈ Dp(x,C). Then Dp(a,C) ⊂
Dp(x,C).

Proof. For any z ∈ Dp(a,C), by Lemma 5.1 we can write

z = αa+ βy, where y ∈ C, α, β ∈ [0, 1], αp + βp = 1.

Since a ∈ Dp(x,C), we have

a = λx+ µy′, where y′ ∈ C, λ, µ ∈ [0, 1], λp + µp = 1.

Thus

z = αa+ βy = α(λx+ µy′) + βy = αλx+ αµy′ + βy

= αλx+ ((αµ)p + βp)1/p · αµy′ + βy

((αµ)p + βp)1/p
.
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Since C is p-convex and y, y′ ∈ C, we have
αµy′ + βy

((αµ)p + βp)1/p
∈ C.

To complete the proof, it suffices to observe that

(αλ)p + (αµ)p + βp = αp(λp + µp) + βp = αp + βp = 1.

In the following we always assume that X is a locally p-convex space.

Lemma 5.3. Let B ⊂ X be a locally closed , bounded , p-convex set , and
let x0 ∈ X. Then Dp(x0, B) is also locally closed and bounded.

Proof. Since X has a 0-neighborhood base consisting of absolutely p-
convex sets, the absolutely p-convex hull of the bounded set {x0} ∪ B, i.e.
Γp(x0, B), is bounded, and hence so is Dp(x0, B) ⊂ Γp(x0, B).

Now we prove that Dp(x0, B) is locally closed. Let (ai) ⊂ Dp(x0, B)
be locally convergent to a0, that is, there is a bounded p-disc A such that
ai → a0 in EA. We may assume that A ⊃ Γp(x0, B) ⊃ Dp(x0, B). Since
ai ∈ Dp(x0, B), by Lemma 5.1 we have

ai = λix0 + (1− λpi )
1/pbi, where bi ∈ B, 0 ≤ λi ≤ 1.

Since (λi) ⊂ [0, 1], there exists a subsequence (λij ) convergent to some λ0 ∈
[0, 1].

If λ0 = 1, then (1 − λpij )
1/pbij → 0 and λijx0 → λ0x0 = x0. Hence

aij = λijx0 + (1− λpij )
1/pbij → x0. Thus a0 = x0 ∈ Dp(x0, B).

If 0 ≤ λ0 < 1, then in EA,

λijx0 → λ0x0 and λijx0 + (1− λpij )
1/pbij → a0.

Hence in EA,

(1− λpij )
1/pbij → a0 − λ0x0 and bij →

a0 − λ0x0

(1− λp0)1/p
.

Put
b0 :=

a0 − λ0x0

(1− λp0)1/p
.

Then b0 ∈ B since B is locally closed. Thus

a0 = λ0x0 + (1− λp0)
1/pb0 ∈ Dp(x0, B).

Lemma 5.4 (see [13, p. 101] or [27, p. 94]). Let S ⊂ X be an absolutely
p-convex set. Then for any scalars α1, . . . , αn, we have α1S+ · · ·+αnS ⊂ γS
provided that γ ≥ (

∑n
i=1 |αi|p)1/p.

Proof. Since
∑n

i=1 |αi/γ|p ≤ 1, for any x1, . . . , xn ∈ S, we have∑n
i=1(αi/γ)xi ∈ S. From this,

∑n
i=1 αixi ∈ γS, and hence α1S + · · ·+ αnS

⊂ γS.
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Lemma 5.5. Let B ⊂ X be p-convex and A ⊂ X be nonempty. If there
exists a p-convex absorbing set W such that W ∩ (A−B) = ∅, then for any
x0 ∈ A and any ε, 0 < ε < 1, there exists a ∈ Dp(x0, B) ∩A such that

Dp(a,B) ∩A ⊂ {λa+ (1− λp)1/pb : (1− ε)1/p < λ ≤ 1, b ∈ B}.
Proof. Let qW be the gauge of W . Since W ∩ (A − B) = ∅ and W is

absorbing, we have

1 ≤ qW (x− y) <∞, ∀x ∈ A, y ∈ B.
Clearly,

(10) 1 ≤ α := inf{qW (x− y) : x ∈ Dp(x0, B) ∩A, y ∈ B} <∞.
For any ε such that 0 < ε < 1, there exist a ∈ Dp(x0, B) ∩ A and b1 ∈ B
such that

(11) qW (a− b1) < α(1 + ε).

Take any z ∈ Dp(a,B)∩A. By Lemma 5.1 we may assume that z = λa+µb2,
where λ, µ ≥ 0, λp + µp = 1 and b2 ∈ B. Since b1, b2 ∈ B and B is p-convex,
we have

(12) λb1 + µb2 ∈ B.
By Lemma 5.2 we know that Dp(a,B) ⊂ Dp(x0, B), hence

(13) z ∈ Dp(x0, B) ∩A.
From (10), (12) and (13), we have

α ≤ qW (z − λb1 − µb2) = qW (λa+ µb2 − λb1 − µb2)
= qW (λ(a− b1)) = λpqW (a− b1).

Now using (11), we obtain

α ≤ λpqW (a− b1) < λpα(1 + ε).

Since 0 < 1 ≤ α <∞, we have 1 < λp(1 + ε). From this,

1− ε < 1
1 + ε

< λp, and so (1− ε)1/p < λ.

Thus we have shown that

Dp(a,B) ∩A ⊂ {λa+ µb : (1− ε)1/p < λ ≤ 1, µ ≥ 0, λp + µp = 1, b ∈ B}
= {λa+ (1− λp)1/pb : (1− ε)1/p < λ ≤ 1, b ∈ B}.

Now we can give a p-drop theorem in locally p-convex spaces under a
very weak assumption.

Theorem 5.1. Let X be a locally complete locally p-convex space, A ⊂ X
be locally closed and B ⊂ X be locally closed , bounded and p-convex. If there
exists a p-convex absorbing set W such that W ∩ (A−B) = ∅, then for any
x0 ∈ A there exists a ∈ Dp(x0, B) ∩A such that Dp(a,B) ∩A = {a}.
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Proof. Take a sequence (εn) of positive real numbers such that

0 < εn < 1− (1− 1/2n)p < 1/2n, n = 1, 2, . . . .

By Lemma 5.5 there exists a1 ∈ Dp(x0, B) ∩A such that

Dp(a1, B) ∩A ⊂ {λa1 + (1− λp)1/pb : (1− ε1)1/p < λ ≤ 1, b ∈ B}.
Similarly, there exists a2 ∈ Dp(a1, B) ∩A such that

Dp(a2, B) ∩A ⊂ {λa2 + (1− λp)1/pb : (1− ε2)1/p < λ ≤ 1, b ∈ B}.
Continuing, we obtain a sequence (an) with

a1 = λ0x0 + (1− λp0)
1/pb0, where 0 ≤ λ0 ≤ 1, b0 ∈ B,

a2 = λ1a1 + (1− λp1)
1/pb1, where (1− ε1)1/p < λ1 ≤ 1, b1 ∈ B,

...
an+1 = λnan + (1− λpn)1/pbn, where (1− εn)1/p < λn ≤ 1, bn ∈ B,

...

Hence

an+2 − an+1 = (1− λpn+1)
1/pbn+1 − (1− λn+1)an+1,

...
an+k+1 − an+k = (1− λpn+k)

1/pbn+k − (1− λn+k)an+k.

By adding the above k equalities, we obtain

an+k+1 − an+1 = (1− λpn+1)
1/pbn+1 + · · ·+ (1− λpn+k)

1/pbn+k(14)
− (1− λn+1)an+1 − · · · − (1− λn+k)an+k.

Obviously for every i,

(15) bn+i ∈ B ⊂ Γp(x0, B).

Also, by Lemma 5.2,

an+i ∈ Dp(an+i−1, B) ⊂ · · · ⊂ Dp(an, B) ⊂ · · · ⊂ Dp(x0, B) ⊂ Γp(x0, B),

where Γp(x0, B) is circled, hence

(16) −an+i ∈ Γp(x0, B).

Combining (14)–(16) and applying Lemma 5.4, we have

an+k+1 − an+1 ∈ (1− λpn+1)
1/pΓp(x0, B) + · · ·+ (1− λpn+k)

1/pΓp(x0, B)(17)
+ (1− λn+1)Γp(x0, B) + · · ·+ (1− λn+k)Γp(x0, B)

⊂ [εn+1 + · · ·+ εn+k + (1− (1− εn+1)1/p)p + · · ·
+ (1− (1− εn+k)1/p)p]1/pΓp(x0, B).
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By the choice of (εn) we know that (1−εn)1/p > 1−1/2n, so 1−(1−εn)1/p <
1/2n and hence

(1− (1− εn)1/p)p < 1/2np,

so from (17) we have

an+k+1 − an+1 ∈
[

1
2n+1

+ · · ·+ 1
2n+k

+
1

2(n+1)p
+ · · ·+ 1

2(n+k)p

]1/p

Γp(x0, B)

⊂
(

1
2n

+
1

2p − 1
· 1
2np

)
Γp(x0, B).

Thus (an) is a locally Cauchy sequence, and hence is locally convergent to
some point a. Next we consider two cases.

Case 1. Assume that there exists a subsequence (ani)i∈N of (an)n∈N
such that ani = x0 for all i. Then for any z ∈ Dp(x0, B) ∩ A, we have
z ∈ Dp(ani , B) ∩A for i = 1, 2, . . . , and z can be written as

z = λ′ni
ani + (1− λ′ni

)p)1/pb′i, where (1− εni)
1/p < λ′ni

≤ 1 and b′i ∈ B.
Letting i→∞, we obtain

z = lim
i→∞

(λ′ni
ani + (1− (λ′ni

)p)1/pb′i) = lim
i→∞

(λ′ni
x0 + (1− (λ′ni

)p)1/pb′i) = x0.

Hence Dp(x0, B) ∩A = {x0}.
Case 2. Assume that there exists some m ∈ N such that an 6= x0 for

every n > m. We may assume that an 6= x0 for all n. Since B is a locally
closed bounded p-convex set, by Lemma 5.3, Dp(an, B) is locally closed and
hence Dp(an, B) ∩ A is locally closed. As (an+k)k∈N ⊂ Dp(an, B) ∩ A and
(an+k)k∈N is locally convergent to a, we infer that a ∈ Dp(an, B) ∩ A. This
holds for every n, so a ∈

⋂∞
n=1Dp(an, B) ∩ A. We assert that Dp(a,B) ∩ A

= {a}. In fact, take any z ∈ Dp(a,B) ∩ A. Then z ∈ Dp(an, B) ∩ A for
every n. Thus we may assume that

z = µnan + (1− µnp)1/pyn, where (1− εn)1/p < µn ≤ 1, yn ∈ B.
Hence

z − an = (1− µpn)1/pyn + µnan − an
∈ (1− µpn)1/pΓp(x0, B) + (1− µn)Γp(x0, B)

⊂ [1− µpn + (1− µn)p]1/pΓp(x0, B)

⊂ [εn + (1− (1− εn)1/p)p]1/pΓp(x0, B)

⊂
(

1
2n

+
1

2np

)1/p

Γp(x0, B) ⊂
(

1
2np

+
1

2np

)1/p

Γp(x0, B)

⊂ 21/p

2n
Γp(x0, B).
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Thus (an) is locally convergent to z. At the same time, it is locally convergent
to a. Therefore z = a, i.e., Dp(a,B) ∩A = {a}.

Remark 5.1. From the proof of Theorem 5.1 we observe that every
an ∈ Dp(x0, B) ∩ A. If A or B is locally complete, we can deduce that
Dp(x0, B)∩A is still locally complete. Thus we see that in Theorem 5.1 the
condition that X is locally complete can be replaced by the condition that
B or A is locally complete.
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