On linear extension for interpolating sequences

by

Eric Amar (Bordeaux)

Abstract

Let A be a uniform algebra on X and σ a probability measure on X. We define the Hardy spaces $H^{p}(\sigma)$ and the $H^{p}(\sigma)$ interpolating sequences S in the p spectrum \mathcal{M}_{p} of σ. We prove, under some structural hypotheses on A and σ, that if S is a "dual bounded" Carleson sequence, then S is $H^{s}(\sigma)$-interpolating with a linear extension operator for $s<p$, provided that either $p=\infty$ or $p \leq 2$.

In the case of the unit ball of \mathbb{C}^{n} we find, for instance, that if S is dual bounded in $H^{\infty}(\mathbb{B})$ then S is $H^{p}(\mathbb{B})$-interpolating with a linear extension operator for any $1 \leq p<\infty$.

 Already in this case this is a new result.1. Introduction. Let \mathbb{B} be the unit ball of \mathbb{C}^{n}; in this case we take the algebra of holomorphic functions in \mathbb{B} continuous on $\overline{\mathbb{B}}$ for A and for σ the normalized Lebesgue measure on $\partial \mathbb{B}$ and, as usual, we denote by $H^{p}(\mathbb{B})$ the Hardy space of holomorphic functions in \mathbb{B}, i.e. the closure in $L^{p}(\sigma)$ of A if $p<\infty$ and the algebra of bounded holomorphic functions in \mathbb{B} if $p=\infty$.

Let S be a sequence of points in \mathbb{B} and $1 \leq p \leq \infty$; we say that S is $H^{p}(\mathbb{B})$-interpolating, $S \in I H^{p}$ for short, if

$$
\forall \lambda \in \ell^{p}(S), \exists f \in H^{p}(\mathbb{B}), \forall a \in S, \quad f(a)=\lambda_{a}\left(1-|a|^{2}\right)^{n / p}
$$

for $p=\infty$, we set, as usual, $\left(1-|a|^{2}\right)^{n / p}=1$ for all $a \in \mathbb{B}$.
It is a well known consequence of Baire's theorem that if $S \in I H^{p}(\mathbb{B})$ we can choose an f interpolating the sequence $\lambda \in \ell^{p}$ such that $\|f\|_{p} \leq C\|\lambda\|_{p}$ with a constant $C>0$ independent of λ.

Let $a \in \mathbb{B}$ and $k_{a}(z):=1 /(1-\bar{a} \cdot z)^{n}$ be the reproducing kernel for a (the Cauchy kernel), i.e.

$$
\forall f \in H^{1}(\mathbb{B}), \quad f(a)=\left\langle f, k_{a}\right\rangle:=\int_{\partial \mathbb{B}} f(\zeta) \bar{k}_{a}(\zeta) d \sigma(\zeta)
$$

Let $k_{p, a}:=k_{a} /\left\|k_{a}\right\|_{p}$, the normalized reproducing kernel for a in $H^{p}(\mathbb{B})$.
Because $\left\|k_{a}\right\|_{p^{\prime}} \simeq\left(1-|a|^{2}\right)^{-n / p}$, with p^{\prime} the conjugate exponent for p, $S \in I H^{p}(\mathbb{B})$ is equivalent to

$$
\forall \lambda \in \ell^{p}, \exists f \in H^{p}(\mathbb{B}), \forall a \in S, \quad\left\langle f, k_{p^{\prime}, a}\right\rangle=\lambda_{a}
$$

Now if S is $H^{p}(\mathbb{B})$-interpolating, then by interpolating the basic sequences of ℓ^{p} we have

$$
\exists C>0, \forall a \in S, \exists \varrho_{a} \in H^{p}(\mathbb{B}), \quad\left\|\varrho_{a}\right\|_{p} \leq C, \quad\left\langle\varrho_{a}, k_{p^{\prime}, b}\right\rangle=\delta_{a b}
$$

Hence the system $\left\{\varrho_{a}\right\}_{a \in S}$ is dual to $\left\{k_{p^{\prime}, a}\right\}_{a \in S}$ and bounded in $H^{p}(\mathbb{B})$. This leads to the definition:

Definition 1.1. We shall say that S is dual bounded (or uniformly minimal [15]) in $H^{p}(\mathbb{B})$ if:

$$
\exists C>0, \forall a \in S, \exists \varrho_{a} \in H^{p}(\mathbb{B}), \quad\left\|\varrho_{a}\right\|_{p} \leq C, \quad\left\langle\varrho_{a}, k_{p^{\prime}, b}\right\rangle=\delta_{a b}
$$

Hence if S is $H^{p}(\mathbb{B})$-interpolating, then it is dual bounded in $H^{p}(\mathbb{B})$.
Definition 1.2. We say that the $H^{p}(\mathbb{B})$-interpolating sequence S has the linear extension property (L.E.P.) if there is a bounded linear operator $E: \ell^{p} \rightarrow H^{p}(\mathbb{B})$ such that for every $\lambda \in \ell^{p}, E \lambda$ interpolates the sequence λ in $H^{p}(\mathbb{B})$ on S, i.e.

$$
\forall \lambda \in \ell^{p}, \forall a \in S, \quad E \lambda(a)=\lambda_{a}\left\|k_{a}\right\|_{p^{\prime}}
$$

Natural questions are the following:

- If S is dual bounded in $H^{p}(\mathbb{B})$, is $S \in I H^{p}(\mathbb{B})$?
- If $S \in I H^{p}(\mathbb{B})$, does S automatically have the L.E.P.?

This is true in the classical case of the Hardy spaces of the unit disc \mathbb{D} :
For $p=\infty$ the positive answer to the first question is the famous characterization of H^{∞}-interpolating sequences by L. Carleson [8].

The positive answer to the second question was given by P. Beurling [7].
For $p \in[1, \infty[$ the positive answer to the first question was established by H. Shapiro and A. Shields [18], who also proved that the interpolating sequences are the same for all $p \in[1, \infty]$.

The positive answer to the second question was obtained explicitly by $\bar{\partial}$ methods in [2].

For the Bergman classes $A^{p}(\mathbb{D})$, it is no longer true that the interpolating sequences are the same for $A^{p}(\mathbb{D})$ and $A^{q}(\mathbb{D}), q \neq p$. But A. P. Schuster and K. Seip [17], [16] proved that S dual bounded in $A^{p}(\mathbb{D})$ implies that S is $A^{p}(\mathbb{D})$-interpolating with the L.E.P.

The first question is still open, even in the ball \mathbb{B} of $\mathbb{C}^{n}, n \geq 2$, for $H^{p}(\mathbb{B})$, the usual Hardy spaces of the ball and in the polydisc \mathbb{D}^{n} of $\mathbb{C}^{n}, n \geq 2$, for the usual Hardy spaces.

The second one is known only in the case $p=\infty$, and is positive (see [3] and the references therein).

Nevertheless in the case of the unit ball of \mathbb{C}^{n}, B. Berndtsson [5] proved that if the product of the Gleason distances of the points of S is bounded
below away from 0 , then S is $H^{\infty}(\mathbb{B})$-interpolating. He also proved that this condition is not necessary for $n>1$, in contrast to the case of $n=1$.
B. Berndtsson, S-Y. A. Chang and K.-C. Lin [6] proved the same theorem in the polydisc of \mathbb{C}^{n}.

In this paper we shall prove that S dual bounded in $H^{p}(\mathbb{B})$ implies that for all $s<p, S \in I H^{s}(\mathbb{B})$ with the L.E.P., provided that $1<p \leq 2$ or $p=\infty$. In particular:

Theorem 1.3. If $S \subset \mathbb{B}$ is dual bounded in $H^{p}(\mathbb{B})$, then it is $H^{s}(\mathbb{B})$ interpolating for any $1 \leq s<p$, provided that either $p \in] 1,2]$ or $p=\infty$. Moreover, in these cases, S has the linear extension property.

In [3] a generalization of the interpolating Blaschke products to the ball is studied via $\bar{\partial}$ methods, and a condition is given on a sequence S of points in \mathbb{B} to ensure that S is $H^{p}(\mathbb{B})$-interpolating for all $p \in[1, \infty[$. This condition implies that S is dual bounded in $H^{\infty}(\mathbb{B})$, hence the result here is stronger than the one in [3].

I want to thank the referee for all his suggestions and his very pertinent questions.

The methods we use being purely functional-analytic, our results extend to the setting of uniform algebras.

The paper is organized this way:

- Section 2: we recall facts related to uniform algebras and reproducing kernels.
- Section 3: we define and study Carleson and weak Carleson sequences.
- Section 4: we state the structural hypotheses we shall need.
- Section 5: we define the H^{p}-interpolating sequences and the dual boundedness in this abstract context.
- Section 6: we state our main results. The reader may go directly to this section to get an idea of the results and to have some comments about them.
- Section 7: we apply the main results in the special cases of the ball and of the polydisc.

2. Uniform algebras and reproducing kernels. Let A be a uniform algebra on the compact space X, i.e. A is a subalgebra of $\mathcal{C}(X)$, the continuous functions on X, which separates the points of X and contains 1 .

Let σ be a probability measure on X. For $1 \leq p<\infty$ we define as usual the Hardy space $H^{p}(\sigma)$ as the closure of A in $L^{p}(\sigma) ; H^{\infty}(\sigma)$ will be the weak-* closure of A in $L^{\infty}(\sigma)$.

Let \mathcal{M} be the Gelfand spectrum of A, i.e. the non-zero multiplicative elements of A^{\prime}, the dual space of A. We denote an element of A and its

Gelfand transform using the same notation:

$$
\forall a \in \mathcal{M} \subset A^{\prime}, \forall f \in A, \quad f(a):=\hat{f}(a)=a(f)
$$

We shall use the following notions, already introduced in [4].
Definition 2.1. Let \mathcal{M} be the spectrum of A and $a \in \mathcal{M}$. We call $k_{a} \in H^{p}(\sigma)$ a p-reproducing kernel for the point a if

$$
\forall f \in A, \quad f(a)=\int_{X} f(\zeta) \bar{k}_{a}(\zeta) d \sigma(\zeta)
$$

We define the p-spectrum of σ as the subset \mathcal{M}_{p} of those elements of \mathcal{M} that have a p^{\prime}-reproducing kernel, with p^{\prime} the conjugate exponent for p, $1 / p+1 / p^{\prime}=1$.

The reproducing kernel for $a \in \mathcal{M}$, if it exists, is unique. Indeed, suppose there are two, say $k_{a} \in H^{p}(\sigma)$ and $l_{a} \in H^{q}(\sigma)$. Then

$$
\forall f \in A, \quad 0=f(a)-f(a)=\int_{X} f\left(\bar{k}_{a}-\bar{l}_{a}\right) d s, \quad \text { so } \quad k_{a}=l_{a} \sigma \text {-a.e. }
$$

because, by definition, A is dense in $H^{r}(\sigma)$ with $r:=\min (p, q)$. Hence it is correct to denote it by k_{a} without reference to the $H^{p}(\sigma)$ where it belongs.

Let $a \in \mathcal{M}_{p}$. Then $k_{a} \in H^{p^{\prime}}(\sigma)$; if $p<q$ then $q^{\prime}<p^{\prime}$, hence $k_{a} \in H^{q^{\prime}}(\sigma)$ because σ is a probability measure, so $a \in \mathcal{M}_{q}$. Thus $p<q \Rightarrow \mathcal{M}_{p} \subset \mathcal{M}_{q}$.

To simplify the notation we shall write $\langle f, g\rangle:=\int_{X} f \bar{g} d \sigma$, whenever this is meaningful.
3. Carleson sequences. We denote by $k_{q, a}:=k_{a} /\left\|k_{a}\right\|_{q}$ the normalized reproducing kernel in $H^{q}(\sigma)$.

Definition 3.1. Let $1 \leq q<\infty$. We say that a sequence $S \subset \mathcal{M}_{q^{\prime}}$ is a q-Carleson sequence if

$$
\exists D_{q}>0, \forall \mu \in \ell^{q}, \quad\left\|\sum_{a \in S} \mu_{a} k_{q, a}\right\|_{q} \leq D_{q}\|\mu\|_{q}
$$

Let $2 \leq q<\infty$. We say that the sequence $S \subset \mathcal{M}_{q^{\prime}}$ is a weakly q-Carleson sequence if

$$
\exists D_{q}>0, \forall \mu \in \ell^{q}, \quad\left\|\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|k_{q, a}\right|^{2}\right\|_{q / 2} \leq D_{q}\|\mu\|_{q}^{2}
$$

We call the second condition "weakly" Carleson because:
Lemma 3.2. If $2 \leq q<\infty$ and S is q-Carleson then it is weakly q Carleson.

Proof. With every sequence S we associate a sequence $\left\{\varepsilon_{a}\right\}_{a \in S}$ of independent random variables with the same law $P\left(\varepsilon_{a}=1\right)=P\left(\varepsilon_{a}=-1\right)=$ $1 / 2$. We shall denote by \mathbb{E} the associated expectation.

In the following, $a \lesssim b$ means that there exists a constant C, independent of a and b, such that $a \leq C b ; a \simeq b$ means that $a \lesssim b$ and $b \lesssim a$.

Let S be a q-Carleson sequence. For the associated $\left\{\varepsilon_{a}\right\}_{a \in S}$ we have

$$
\left\|\sum_{a \in S} \mu_{a} \varepsilon_{a} k_{q, a}\right\|_{q}^{q} \lesssim\|\mu\|_{q}^{q}
$$

because $\left|\varepsilon_{a}\right|=1$. Taking expectation on both sides leads to

$$
\left\|\mathbb{E}\left[\left|\sum_{a \in S} \mu_{a} \varepsilon_{a} k_{q, a}\right|^{q}\right]\right\|_{1}=\mathbb{E}\left[\left\|\sum_{a \in S} \mu_{a} \varepsilon_{a} k_{q, a}\right\|_{q}^{q}\right] \lesssim\|\mu\|_{q}^{q}
$$

Now using Khinchin's inequalities for the left expression,

$$
\left\|\mathbb{E}\left[\left|\sum_{a \in S} \mu_{a} \varepsilon_{a} k_{q, a}\right|^{q}\right]\right\|_{1} \simeq\left\|\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|k_{q, a}\right|^{2}\right\|_{q / 2}^{q / 2},
$$

we get

$$
\left\|\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|k_{q, a}\right|^{2}\right\|_{q / 2}^{q / 2} \lesssim \mathbb{E}\left[\left\|\sum_{a \in S} \mu_{a} \varepsilon_{a} k_{q, a}\right\|_{q}^{q}\right] \lesssim\|\mu\|_{q}^{q},
$$

and the lemma.
Now if S is weakly q-Carleson, is S weakly p-Carleson for other p ? Notice that any sequence S is weakly 2 -Carleson:

$$
\forall \nu \in \ell^{1}, \quad\left\|\sum_{a \in S} \nu_{a}\left|k_{2, a}\right|^{2}\right\|_{1} \leq \sum_{a \in S}\left|\nu_{a}\right|\left\|\left|k_{2, a}\right|^{2}\right\|_{1} \leq\|\nu\|_{1},
$$

because $\left\|k_{2, a}\right\|_{2}=\left\|\left|k_{2, a}\right|^{2}\right\|_{1}=1$. Hence if S is weakly q-Carleson with $q>2$ we can try to use interpolation of linear operators.

By a theorem of E. Stein and G. Weiss [19] we know that if a linear operator U is bounded from $\ell^{q}\left(\gamma_{q}\right)$ to $L^{q}(\sigma)$ and from $\ell^{1}\left(\gamma_{1}\right)$ to $L^{1}(\sigma)$ then U is bounded from $\ell^{p}\left(\gamma_{p}\right)$ to $L^{p}(\sigma)$ with $1 \leq p \leq q$ provided that the weight satisfies the condition

$$
\begin{equation*}
\frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{q} \Rightarrow \forall a \in S, \gamma_{p}(a)=\gamma_{1}(a)^{p(1-\theta)} \gamma_{q}(a)^{p \theta / q} \tag{*}
\end{equation*}
$$

Here the weighted ℓ^{q} space $\ell^{q}\left(\gamma_{q}\right)$ is defined by

$$
\ell^{q}\left(\gamma_{q}\right):=\left\{\lambda:\|\lambda\|_{\ell^{q}\left(\gamma_{q}\right)}^{q}:=\sum_{a \in S}\left|\lambda_{a}\right|^{q} \gamma_{q}(a)<\infty\right\}
$$

The hypothesis means that

$$
\forall \lambda \in \ell^{q}\left(\gamma_{q}\right), \quad\|U \lambda\|_{L^{q}(\sigma)} \leq M_{q}\|\lambda\|_{\ell^{q}\left(\gamma_{q}\right)}
$$

and

$$
\forall \lambda \in \ell^{1}\left(\gamma_{q}\right), \quad\|U \lambda\|_{L^{1}(\sigma)} \leq M_{1}\|\lambda\|_{\ell^{1}\left(\gamma_{q}\right)}
$$

and the conclusion is, provided that $(*)$ is true:

$$
\forall p \in[1, q], \exists M_{p}>0, \forall \lambda \in \ell^{p}\left(\gamma_{q}\right), \quad\|U \lambda\|_{L^{p}(\sigma)} \leq M_{p}\|\lambda\|_{\ell^{p}\left(\gamma_{p}\right)}
$$

In order to use this result, we need
Lemma 3.3. Let $q \geq 1$ and $1 / p=(1-\theta) / 1+\theta / q$ with $0<\theta<1$. Then

$$
\left\|k_{a}\right\|_{2 p} \leq\left\|k_{a}\right\|_{2}^{1-\theta}\left\|k_{a}\right\|_{2 q}^{\theta} .
$$

Proof. Let

$$
\frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{q}=\frac{1}{s}+\frac{1}{r} \quad \text { with } \quad s=\frac{1}{1-\theta} \quad \text { and } \quad r=\frac{q}{\theta}
$$

Hölder's inequality gives, for $f \in L^{s}(\sigma), g \in L^{r}(\sigma)$,

$$
\left(\int_{X}|f g|^{p} d \sigma\right)^{1 / p} \leq\left(\int_{X}|f|^{s} d \sigma\right)^{1 / s}\left(\int_{X}|g|^{r} d \sigma\right)^{1 / r}
$$

Setting $f=\left|k_{a}\right|^{2(1-\theta)}$ and $g:=\left|k_{a}\right|^{2 \theta}$ we get

$$
\left(\int_{X}\left|k_{a}\right|^{2 p} d \sigma\right)^{1 / p} \leq\left(\int_{X}\left|k_{a}\right|^{2(1-\theta) s} d \sigma\right)^{1 / s}\left(\int_{X}\left|k_{a}\right|^{2 \theta r} d \sigma\right)^{1 / r}
$$

hence replacing s, r gives

$$
\left(\int_{X}\left|k_{a}\right|^{2 p} d \sigma\right)^{1 / p} \leq\left(\int_{X}\left|k_{a}\right|^{2} d \sigma\right)^{1-\theta}\left(\int_{X}\left|k_{a}\right|^{2 q} d \sigma\right)^{\theta / q}
$$

For $p \in[1, q]$ define

$$
T: \ell^{p}\left(\omega_{p}\right) \rightarrow L^{p}(\sigma), \quad T \lambda:=\sum_{a \in S} \lambda_{a}\left|k_{a}\right|^{2},
$$

with $\omega_{p}(a):=\left\|k_{a}\right\|_{2 p}^{-2 p}$.
To say that T is bounded is the same as saying that the sequence S is weakly p-Carleson.

Lemma 3.4. If S is weakly s-Carleson with $s>2$, then it is weakly r-Carleson for any $2 \leq r \leq s$.

Proof. Let $q:=s / 2$. We know that T is bounded for $p=1$ and for $p=q$. Applying the Stein-Weiss result to $U:=T$ with $\gamma_{1}=\omega_{1}, \gamma_{q}=\omega_{q}$, we get, for any $1 \leq p \leq q$,

$$
\|T \lambda\|_{L^{p}(\sigma)} \leq M_{p}\|\lambda\|_{\ell^{p}\left(\gamma_{p}\right)}
$$

with the weight γ_{p} defined as:

$$
\text { if } \quad \frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{q}, \quad \text { then } \quad \gamma_{p}(a):=\gamma_{1}(a)^{p(1-\theta)} \gamma_{q}(a)^{p \theta / q} \text { for } a \in S
$$

Replacing ω_{1}, ω_{q} by their values, this means

$$
\gamma_{p}(a)=\left\|k_{a}\right\|_{2}^{-2 p(1-\theta)}\left\|k_{a}\right\|_{2 q}^{-2 p \theta} .
$$

Hence

$$
\exists M_{p}>0, \quad\|T \lambda\|_{p}^{p} \leq M_{p}\|\lambda\|_{\ell\left(\gamma_{p}\right)}^{p}=M_{p} \sum_{a \in S}\left|\lambda_{a}\right|^{p} \gamma_{p}(a) .
$$

But Lemma 3.3 gives $\left\|k_{a}\right\|_{2 p} \leq\left\|k_{a}\right\|_{2}^{1-\theta}\left\|k_{a}\right\|_{2 q}^{\theta}$, which precisely says that $\gamma_{p}(a) \leq \omega_{p}(a)$ for all $a \in S$, hence

$$
\|T \lambda\|_{p}^{p} \leq M_{p} \sum_{a \in S}\left|\lambda_{a}\right|^{p} \omega_{p}(a),
$$

and T is indeed bounded from $l^{p}\left(\omega_{p}\right)$ to $L^{p}(\sigma)$, which proves the lemma with $r=2 p$.

We also notice that any sequence S is 1-Carleson:

$$
\forall \mu \in \ell^{1}, \quad\left\|\sum_{a \in S} \mu_{a} k_{1, a}\right\|_{1} \leq \sum_{a \in S}\left|\mu_{a}\right|\left\|k_{1, a}\right\|_{1} \leq\|\mu\|_{1},
$$

and the same proof as above also gives
Lemma 3.5. If S is q-Carleson with $q>1$, then S is p-Carleson for any $1 \leq p \leq q$.
4. Structural hypotheses. We shall need some structural hypotheses on σ relative to the reproducing kernels.

Definition 4.1. Let $q \in] 1, \infty[$. Then we say that the measure σ satisfies the structural hypothesis $S H(q)$ if, with q^{\prime} the conjugate of q :

$$
\begin{equation*}
\exists \alpha=\alpha_{q}>0, \forall a \in \mathcal{M}_{q} \cap \mathcal{M}_{q^{\prime}} \subset \mathcal{M}_{2}, \quad\left\|k_{a}\right\|_{2}^{2} \geq \alpha\left\|k_{a}\right\|_{q}\left\|k_{a}\right\|_{q^{\prime}} \tag{4.1}
\end{equation*}
$$

This goes the opposite way to Hölder inequalities. Because $a \in \mathcal{M}_{q} \cap$ $\mathcal{M}_{q^{\prime}} \subset \mathcal{M}_{2}$, we have $k_{a}(a)=\int_{X} k_{a}(\zeta) \bar{k}_{a}(\zeta) d \sigma=\left\|k_{a}\right\|_{2}^{2}$ and the condition above is the same as

$$
\left\|k_{a}\right\|_{q}\left\|k_{a}\right\|_{q^{\prime}} \leq \alpha_{q}^{-1} k_{a}(a)
$$

Definition 4.2. Let $p, s \in[1, \infty]$ and q be such that $1 / s=1 / p+1 / q$. We say that the measure σ satisfies the structural hypothesis $S H(p, s)$ if

$$
\begin{equation*}
\exists \beta=\beta_{p, q}>0, \forall a \in \mathcal{M}_{s}, \quad\left\|k_{a}\right\|_{s^{\prime}} \leq \beta\left\|k_{a}\right\|_{p^{\prime}}\left\|k_{a}\right\|_{q^{\prime}} \tag{4.2}
\end{equation*}
$$

This is meaningful because $s<p, s<q$, and hence $\mathcal{M}_{s} \subset \mathcal{M}_{p} \cap \mathcal{M}_{q}$.
We proved in [4] that $S H(q)$ and $S H(p, s)$ are true for all values of q, p and s in the case of the unit ball of \mathbb{C}^{n} with σ the Lebesgue mesure on $\partial \mathbb{B}$ and the algebra $A(\mathbb{B})$ of holomorphic functions in \mathbb{B}, continuous in $\overline{\mathbb{B}}$.

The same is true [4] in the case of the unit polydisc \mathbb{D}^{n} of \mathbb{C}^{n}, with σ the Lebesgue mesure on \mathbb{T}^{n} and the algebra $A\left(\mathbb{D}^{n}\right)$ of holomorphic functions in \mathbb{D}^{n}, continuous in $\overline{\mathbb{D}}^{n}$, still for all values of q, p and s.

5. Interpolating sequences

Definition 5.1. We say that $S \subset \mathcal{M}_{p}$ is $H^{p}(\sigma)$-interpolating for $1 \leq$ $p<\infty$, abbreviated as $S \in I H^{p}(\sigma)$, if

$$
\forall \lambda \in \ell^{p}, \exists f \in H^{p}(\sigma), \forall a \in S, \quad f(a)=\lambda_{a}\left\|k_{a}\right\|_{p^{\prime}}
$$

We say that $S \subset \mathcal{M}_{\infty}$ is $H^{\infty}(\sigma)$-interpolating, written $S \in I H^{\infty}(\sigma)$, if

$$
\forall \lambda \in \ell^{\infty}, \exists f \in H^{\infty}(\sigma), \forall a \in S, \quad f(a)=\lambda_{a} .
$$

Remark 5.2. If S is $H^{p}(\sigma)$-interpolating then there is a constant C_{I}, the interpolating constant, such that [4]

$$
\forall \lambda \in \ell^{p}, \exists f \in H^{p}(\sigma), \quad\|f\|_{p} \leq C_{I}\|\lambda\|_{p}, \quad f(a)=\lambda_{a}\left\|k_{a}\right\|_{p^{\prime}}, \forall a \in S .
$$

Definition 5.3. We say that the $H^{p}(\sigma)$-interpolating sequence S has the linear extension property (L.E.P.) if there is a bounded linear operator $E \ell^{p} \rightarrow H^{p}(\sigma)$ such that for every $\lambda \in \ell^{p}, E \lambda$ interpolates the sequence λ in $H^{p}(\sigma)$ on S, i.e.

$$
\forall \lambda \in \ell^{p}, \forall a \in S, \quad E \lambda(a)=\lambda_{a}\left\|k_{a}\right\|_{p^{\prime}}
$$

Let $S \subset \mathcal{M}_{p}$, so $k_{p^{\prime}, a}:=k_{a} /\left\|k_{a}\right\|_{p^{\prime}}$, the normalized reproducing kernel, exists for any $a \in S$; consider a dual system $\left\{\varrho_{a}\right\}_{a \in S} \subset H^{p}(\sigma)$, i.e. $\left\langle\varrho_{a}, k_{p^{\prime}, b}\right\rangle=\delta_{a, b}$ for all $a, b \in S$, when it exists.

Definition 5.4. We say that $S \subset \mathcal{M}_{p}$ is dual bounded in $H^{p}(\sigma)$ if a dual system $\left\{\varrho_{a}\right\}_{a \in S} \subset H^{p}(\sigma)$ exists and is bounded in $H^{p}(\sigma)$, i.e.

$$
\exists C>0, \forall a \in S, \exists \varrho_{a} \in H^{p}(\sigma), \quad\left\|\varrho_{a}\right\|_{p} \leq C, \quad\left\langle\varrho_{a}, k_{p^{\prime}, b}\right\rangle=\delta_{a b} .
$$

We shall need the following facts proved in [4]:
Theorem 5.5. Let $p>1$. If $S \subset \mathcal{M}_{p}$ and $S \in I H^{\infty}(\sigma)$, and σ satisfies $S H(p)$, then $S \in I H^{p}(\sigma)$ with the L.E.P.

Theorem 5.6. If $S \subset \mathcal{M}_{1}$ and S is dual bounded in $H^{p}(\sigma)$ for some $p>1$, then $S \in I H^{1}(\sigma)$.

We shall also need to truncate S to its first N elements, written S_{N}. Clearly if $S \in I H^{p}(\sigma)$ then $S_{N} \in I H^{p}(\sigma)$ with a smaller interpolating constant. Let $I_{S_{N}}^{p}:=\left\{f \in H^{p}(\sigma): f_{\mid S_{N}}=0\right\}$ be the module over A of functions that are zero on S_{N}. For $\lambda \in \ell^{p}$, with $\left\{\varrho_{a}\right\}_{a \in S}$ a bounded dual sequence, the function $f_{N}:=\sum_{a \in S_{N}} \lambda_{a} \varrho_{a}$ interpolates λ on S_{N} and $\left\|f_{N}\right\|_{H^{p}(\sigma) / I_{S_{N}}^{p}} \leq C_{I}\|\lambda\|_{p}$.

We also have the converse for $1<p \leq \infty$, which is all that we need [4]:
Lemma 5.7. If all truncations S_{N} of S are in $I H^{p}(\sigma)$ for some $p>1$, with a uniform constant C_{I}, then $S \in I H^{p}(\sigma)$ with the same constant.
6. Main results. Now we are in a position to state and comment on our main results.

ThEOREM 6.1. Let $1<p \leq 2,1 \leq s<p$ and q be such that $1 / s=$ $1 / p+1 / q$. Suppose that $S \subset \mathcal{M}_{s} \cap \mathcal{M}_{q^{\prime}}$ is dual bounded in $H^{p}(\sigma)$ and weakly q-Carleson, and σ satisfies the structural hypotheses $S H(q)$ and $S H(p, s)$. Then S is $H^{s}(\sigma)$-interpolating and has the L.E.P. in $H^{s}(\sigma)$.

The passage from $p=2$ to $p \leq 2$ in the case of the ball is due to F. Bayart (oral communication): he uses Khinchin's inequalities which prove to be very well fitted to this problem.

Using this time the fact that Khinchin's inequalities also provide a way to put absolute values inside sums, we get the other extremity of the range of p 's:

Theorem 6.2. Let $1 \leq s<\infty$ and $p>2 s$. Suppose that $S \subset \mathcal{M}_{s} \cap$ $\mathcal{M}_{s^{\prime}}$ is dual bounded in $H^{\infty}(\sigma)$ and weakly p-Carleson, and σ satisfies the structural hypotheses $S H(p, s)$ and $S H(q)$ for q such that $1 / s=1 / p+1 / q$. Then S is $H^{s}(\sigma)$-interpolating with the L.E.P.

This theorem is the best possible in this generality. There is no hope to show that dual boundedness in H^{∞} implies H^{∞}-interpolation as L. Carleson proved for the unit disc:

In [11] and [13] the authors proved that in the spectrum \mathcal{M} of the uniform algebra $H^{\infty}(\mathbb{D})$ there are sequences S of points, $S \subset \mathcal{M} \backslash \mathbb{D}$, such that the product of the Gleason distances is bounded below away from 0, which implies that S is dual bounded in $H^{\infty}(\mathbb{D})$, but S is not H^{∞}-interpolating.

The above theorems will be consequences of the next lemma.
As above, to a sequence S of points in \mathcal{M}, we associate a sequence $\left\{\varepsilon_{a}\right\}_{a \in S}$ of independent Bernoulli variables.

Lemma 6.3. Let $S \subset \mathcal{M}_{p}$ be a sequence of points such that a dual system $\left\{\varrho_{p, a}\right\}_{a \in S}$ exists in $H^{p}(\sigma)$. Let $1 \leq s<p$ and q be such that $1 / s=1 / p+1 / q$. Suppose that

$$
\forall \lambda \in \ell^{p}(S), \quad \mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right] \lesssim\|\lambda\|_{\ell^{p}}^{p}
$$

S is weakly q-Carleson (if $q>2$), and σ satisfies $S H(q)$ and $S H(p, s)$. Then S is $H^{s}(\sigma)$-interpolating and moreover S has the L.E.P.

REMARK 6.4. If $q \leq 2$ we do not assume any Carleson condition on S.
Proof. If $p=1$ we set

$$
\forall \lambda \in \ell^{1}, \quad T(\lambda):=\sum_{a \in S} \lambda_{a} \varrho_{1, a}
$$

the sum converges in $H^{1}(\sigma)$ because the functions $\varrho_{1, a}$ are uniformly bounded in $H^{1}(\sigma)$. Then $T(\lambda)$ interpolates the sequence λ, and clearly the operator T is linear. Moreover, $\|T(\lambda)\|_{1} \leq \sup _{a \in S}\left\|\varrho_{1, a}\right\|\|\lambda\|_{\ell^{1}}$, so T is bounded.

If $p>1$, we may suppose that $1<s<p$ because if $S \in I H^{s}(\sigma)$ then by Theorem 5.6, for $S \subset \mathcal{M}_{1}$ we also have $S \in I H^{1}(\sigma)$.

First we truncate the sequence to the first N elements and get estimates independent of N, i.e. for $s \in\left[1, p\left[\right.\right.$ and $\nu \in \ell_{N}^{s}$ we shall build a function $h \in H^{s}(\sigma)$ such that

$$
\forall j=0, \ldots, N-1, \quad h\left(a_{j}\right)=\nu_{j}\left\|k_{a_{j}}\right\|_{s^{\prime}} \quad \text { and } \quad\|h\|_{H^{s}} \leq C\|\nu\|_{\ell_{N}^{s}},
$$

with the constant C independent of N. The conclusion then follows using Lemma 5.7.

Since $1 / s=1 / p+1 / q$, we have $q \in] p^{\prime}, \infty\left[\right.$. We set $\nu_{j}=\lambda_{j} \mu_{j}$ with $\mu_{j}:=\left|\nu_{j}\right|^{s / q} \in \ell^{q}$ and $\lambda_{j}:=\left(\nu_{j} /\left|\nu_{j}\right|\right)\left|\nu_{j}\right|^{s / p} \in \ell^{p}$. Then $\|\nu\|_{s}=\|\lambda\|_{p}\|\mu\|_{q}$. Let

$$
c_{a}:=\frac{\left\|k_{a}\right\|_{s^{\prime}}}{\left\|k_{a}\right\|_{p^{\prime}} k_{q, a}(a)}=\frac{\left\|k_{a}\right\|_{s^{\prime}}\left\|k_{a}\right\|_{q}}{\left\|k_{a}\right\|_{p^{\prime}} k_{a}(a)} .
$$

By $S H(q)$ we have $k_{a}(a) \geq \alpha\left\|k_{a}\right\|_{q}\left\|k_{a}\right\|_{q^{\prime}}$, hence

$$
c_{a} \leq \frac{\left\|k_{a}\right\|_{s^{\prime}}}{\alpha\left\|k_{a}\right\|_{p^{\prime}}\left\|k_{a}\right\|_{q^{\prime}}} \leq \frac{\beta}{\alpha}
$$

by $S H(p, s)$.
Now set $h(z)=\sum_{a \in S} \nu_{a} c_{a} \varrho_{a} k_{q, a}$. Then

$$
\forall a \in S, \quad h(a)=\nu_{a}\left\|k_{a}\right\|_{s^{\prime}},
$$

because $\varrho_{a}(b)=\delta_{a b}\left\|k_{a}\right\|_{p^{\prime}}$. This means that h interpolates ν and clearly h is linear in ν. To estimate the $H^{s}(\sigma)$ norm of h, set

$$
f(\varepsilon, z):=\sum_{a \in S} \lambda_{a} c_{a} \varepsilon_{a} \varrho_{a}(z), \quad g(\varepsilon, z):=\sum_{a \in S} \mu_{a} \varepsilon_{a} k_{q, a}(z) .
$$

Then $h(z)=\mathbb{E}(f(\varepsilon, z) g(\varepsilon, z))$ because $\mathbb{E}\left(\varepsilon_{j} \varepsilon_{k}\right)=\delta_{j k}$. So we get

$$
|h(z)|^{s}=|\mathbb{E}(f g)|^{s} \leq(\mathbb{E}(|f g|))^{s} \leq \mathbb{E}\left(|f g|^{s}\right),
$$

hence

$$
\|h\|_{s}=\left(\int_{X}|h(z)|^{s} d \sigma(z)\right)^{1 / s} \leq\left(\int_{X} \mathbb{E}\left(|f g|^{s}\right) d \sigma(z)\right)^{1 / s} .
$$

Using Hölder's inequality, we obtain

$$
\begin{align*}
\int_{X} \mathbb{E}\left(|f g|^{s}\right) d \sigma(z) & =\mathbb{E}\left[\int_{X}|f g|^{s} d \sigma(z)\right] \tag{6.1}\\
& \leq\left(\mathbb{E}\left[\int_{X}|f|^{p} d \sigma\right]\right)^{s / p}\left(\mathbb{E}\left[\int_{X}|g|^{q} d \sigma\right]\right)^{s / q} .
\end{align*}
$$

Let $\widetilde{\lambda}_{a}:=c_{a} \lambda_{a}$ for $a \in S$. Then $\|\widetilde{\lambda}\|_{p} \leq \alpha^{-1} \beta\|\lambda\|_{p}$ and the first factor above is controlled by hypothesis:

$$
\begin{equation*}
\mathbb{E}\left[\int_{X}|f|^{p} d \sigma\right]=\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} c_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right] \lesssim\|\widetilde{\lambda}\|_{p}^{p} \lesssim\|\lambda\|_{\ell^{p}}^{p} \tag{6.2}
\end{equation*}
$$

Fubini's theorem gives, for the second factor in (6.1),

$$
\mathbb{E}\left[\int_{X}|g|^{q} d \sigma\right]=\int_{X} \mathbb{E}\left[|g|^{q}\right] d \sigma
$$

Khinchin's inequalities yield

$$
\mathbb{E}\left[|g|^{q}\right] \simeq\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|k_{q, a}\right|^{2}\right)^{q / 2}
$$

Now, if $q>2, S$ weakly q-Carleson implies

$$
\begin{equation*}
\int_{X} \mathbb{E}\left[|g|^{q}\right] d \sigma \lesssim \int_{X}\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|k_{q, a}\right|^{2}\right)^{q / 2} d \sigma \lesssim\|\mu\|_{\ell^{q}}^{q} \tag{6.3}
\end{equation*}
$$

If $q \leq 2$ then $\left(\sum_{a \in S}\left|\mu_{a}\right|^{2}\left|k_{q, a}\right|^{2}\right)^{q / 2} \leq \sum_{a \in S}\left|\mu_{a}\right|^{q}\left|k_{q, a}\right|^{q}$, hence integrating over X we get

$$
\begin{equation*}
\int_{X} \mathbb{E}\left[|g|^{q}\right] d \sigma \leq \int_{X}\left(\sum_{a \in S}\left|\mu_{a}\right|^{q}\left|k_{q, a}\right|^{q}\right) d \sigma \leq \sum_{a \in S}\left|\mu_{a}\right|^{q} \int_{X}\left|k_{q, a}\right|^{q} d \sigma=\|\mu\|_{\ell} \tag{6.4}
\end{equation*}
$$

So putting (6.2) and (6.3) or (6.4) in (6.1) we get the lemma.
6.1. Proof of Theorem 6.1. We state and prove a more precise version of Theorem 6.1:

Theorem 6.5. Let $1<p \leq 2,1 \leq s<p$ and q be such that $1 / s=$ $1 / p+1 / q$. Suppose that $S \subset \mathcal{M}_{s} \cap \mathcal{M}_{q^{\prime}},\left\{\varrho_{p, a}\right\}_{a \in S}$ is a norm bounded sequence in $H^{p}(\sigma), S$ is weakly q-Carleson, and σ satisfies the structural hypotheses $S H(q)$ and $S H(p, s)$. Then S is $H^{s}(\sigma)$-interpolating with the L.E.P.

Proof. It remains to prove that the hypotheses of the theorem imply those of Lemma 6.3.

We have to prove that

$$
\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right] \lesssim\|\lambda\|_{\ell^{p}}^{p}
$$

knowing that $\left\{\varrho_{p, a}\right\}_{a \in S}$ is bounded in $H^{p}(\sigma)$, i.e. $\sup _{a \in S}\left\|\varrho_{p, a}\right\|_{p} \leq C$. By Fubini's theorem,

$$
\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right]=\int_{X} \mathbb{E}\left[\left.\left|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right|\right|^{p}\right] d \sigma
$$

and by Khinchin's inequalities,

$$
\mathbb{E}\left[\left|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right|^{p}\right] \simeq\left(\sum_{a \in S}\left|\lambda_{a}\right|^{2}\left|\varrho_{p, a}\right|^{2}\right)^{p / 2} .
$$

Now $p \leq 2$, so $\left(\sum_{a \in S}\left|\lambda_{a}\right|^{2}\left|\varrho_{p, a}\right|^{2}\right)^{1 / 2} \leq\left(\sum_{a \in S}\left|\lambda_{a}\right|^{p}\left|\varrho_{p, a}\right|^{p}\right)^{1 / p}$, hence

$$
\int_{X} \mathbb{E}\left[\left|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right|^{p}\right] d \sigma \leq \int_{X}\left(\sum_{a \in S}\left|\lambda_{a}\right|^{p}\left|\varrho_{p, a}\right|^{p}\right) d \sigma=\sum_{a \in S}\left|\lambda_{a}\right|^{p}\left\|\varrho_{p, a}\right\|_{p}^{p} .
$$

So, finally,

$$
\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right] \lesssim \sup _{a \in S}\left\|\varrho_{p, a}\right\|_{p}^{p}\|\lambda\|_{p}^{p},
$$

and the assertion holds.
An alternative proof was suggested to me by F. Lust-Piquard. Recall the definition of the type of a Banach space ([14, p. 162]) for the reader's convenience:

Definition 6.6. The Banach space X is of type $p, 1 \leq p \leq 2$, if there is a constant $C \geq 1$ such that

$$
\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in X, \quad\left(\mathbb{E}\left(\left\|\sum_{j=1}^{n} \varepsilon_{j} x_{j}\right\|_{X}^{2}\right)\right)^{1 / 2} \leq C\left(\sum_{j=1}^{n}\left\|x_{j}\right\|_{X}^{p}\right)^{1 / p}
$$

Now since any subspace of $L^{p}(\sigma)$ is of type p for $1 \leq p \leq 2$ ([14, Th. III.9, p. 169]), for instance $H^{p}(\sigma)$, we get

$$
\left(\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{2}\right]\right)^{1 / 2} \leq C\left(\sum_{a \in S}\left|\lambda_{a}\right|^{p}\left\|\varrho_{p, a}\right\|_{p}^{p}\right)^{1 / p},
$$

hence

$$
\left(\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}\right]\right)^{1 / 2} \leq C \sup _{a \in S}\left\|\varrho_{p, a}\right\|_{p}\left(\sum_{a \in S}\left|\lambda_{a}\right|^{p}\right)^{1 / p}=C \sup _{a \in S}\left\|\varrho_{p, a}\right\|_{p}\|\lambda\|_{p} .
$$

On the other hand, because $p \leq 2$, we have

$$
\left(\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right]\right)^{1 / p} \leq\left(\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{2}\right]\right)^{1 / 2} .
$$

Finally,

$$
\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right] \leq C^{p}\left(\sup _{a \in S}\left\|\varrho_{p, a}\right\|_{p}^{p}\right)\|\lambda\|_{\ell p}^{p} \lesssim\|\lambda\|_{\ell p}^{p},
$$

and again the conclusion follows.
6.2. Proof of Theorem 6.2. Again we state a more precise version of Theorem 6.2:

ThEOREM 6.7. Let $1 \leq s<\infty$ and $p>2 s$. Suppose that $S \subset \mathcal{M}_{s} \cap \mathcal{M}_{s^{\prime}}$, $\left\{\varrho_{a}\right\}_{a \in S}$ is a norm bounded sequence in $H^{\infty}(\sigma)$, S is weakly p-Carleson, and σ satisfies the structural hypotheses $S H(p, s)$ and $S H(q)$ for q such that $1 / s=1 / p+1 / q$. Then S is $H^{s}(\sigma)$-interpolating with the L.E.P.

Proof. The idea is still to use Lemma 6.3, but in two steps.
Set $\varrho_{p, a}:=\varrho_{a} k_{p, a}$ for $a \in S$. Then $\left\|\varrho_{p, a}\right\|_{p} \leq\left\|\varrho_{a}\right\|_{\infty}\left\|k_{p, a}\right\|_{p}=\left\|\varrho_{a}\right\|_{\infty} \leq C$ by hypothesis.

By Khinchin's inequalities we have

$$
\mathbb{E}\left[\left|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right|^{p}\right] \simeq\left(\sum_{a \in S}\left|\lambda_{a}\right|^{2}\left|\varrho_{p, a}\right|^{2}\right)^{p / 2}
$$

but this time we use the fact that $\left|\varrho_{p, a}\right| \leq\left\|\varrho_{\infty, a}\right\|\left|k_{a, p}\right| \leq C\left|k_{a, p}\right|$, hence

$$
\mathbb{E}\left[\left|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right|^{p}\right] \lesssim C^{p}\left(\sum_{a \in S}\left|\lambda_{a}\right|^{2}\left|k_{a, p}\right|^{2}\right)^{p / 2}
$$

Since S is weakly p-Carleson, we get

$$
\left\|\sum_{a \in S}\left|\lambda_{a}\right|^{2}\left|k_{a, p}\right|^{2}\right\|_{p / 2}^{p / 2} \leq D\|\lambda\|_{p}^{p}
$$

hence

$$
\mathbb{E}\left[\left\|\sum_{a \in S} \lambda_{a} \varepsilon_{a} \varrho_{p, a}\right\|_{p}^{p}\right] \lesssim \int_{X}\left(\sum_{a \in S}\left|\lambda_{a}\right|^{2}\left|k_{a, p}\right|^{2}\right) d \sigma \lesssim\|\lambda\|_{\ell^{p}}^{p}
$$

and Lemma 6.3 shows that S is $H^{s}(\sigma)$-interpolating with the L.E.P. provided that S is weakly q-Carleson if $q>2$. But because $p>2 s$ we have $q=$ $s p /(p-s) \leq p$, hence if $q>2$, then because $q \leq p, S$ weakly p-Carleson implies S weakly q-Carleson by Lemma 3.4 , and the theorem is proved.
7. Application to the polydisc and to the ball. In [4] it is proved that the structural hypotheses hold in the polydisc. In that case the Carleson sequences are characterized geometrically and they are the same for all $p \in$ $] 1, \infty[$ (see [9], [10]), i.e. if S is a p-Carleson sequence for some $p>1$, then it is r-Carleson for any $r \in[1, \infty]$. So in that case we just say that S is a Carleson sequence if it is p-Carleson for some $p>1$.

Moreover, still in that case, p-Carleson is the same as weakly p-Carleson, so it is enough to say "Carleson sequence" in the theorem:

Theorem 7.1. Let $S \subset \mathbb{D}^{n}$ be a Carleson sequence that is dual bounded in $H^{p}\left(\mathbb{D}^{n}\right)$ with either $p=\infty$ or $p \leq 2$. Then S is $H^{s}\left(\mathbb{D}^{n}\right)$-interpolating for any $1 \leq s<p$ with the L.E.P.

Still in [4] it is proved that the structural hypotheses hold in the ball. Again the Carleson measures, hence the Carleson sequences, are characterized geometrically and they are the same for all $p \in] 1, \infty[$ (see [12]); also, S Carleson is the same as S weakly Carleson.

Moreover, an easy corollary [4] of a theorem of P. Thomas [20] gives that S dual bounded in $H^{p}(\mathbb{B})$ implies S Carleson, hence:

Theorem 7.2. Let $S \subset \mathbb{B}$ be dual bounded in $H^{p}(\mathbb{B})$ with either $p=\infty$ or $p \leq 2$. Then S is $H^{s}(\mathbb{B})$-interpolating for any $1 \leq s<p$ with the L.E.P.

We have for free the same result for the Bergman classes of the ball by the "subordination lemma" [1]: to a function $f(z)$ defined for $z=\left(z_{1}, \ldots, z_{n}\right) \in$ $\mathbb{B}_{n} \subset \mathbb{C}^{n}$ associate the function $\tilde{f}(z, w):=f(z)$ defined for $(z, w)=\left(z_{1}, \ldots\right.$, $\left.z_{n}, w\right) \in \mathbb{B}_{n+1} \subset \mathbb{C}^{n+1}$. Then $f \in A^{p}\left(\mathbb{B}_{n}\right) \Leftrightarrow \tilde{f} \in H^{p}\left(\mathbb{B}_{n+1}\right)$ with the same norm. Moreover, if $F \in H^{p}\left(\mathbb{B}_{n+1}\right)$ then $f(z):=F(z, 0) \in A^{p}\left(\mathbb{B}_{n}\right)$ with $\|f\|_{A^{p}\left(\mathbb{B}_{n}\right)} \leq\|F\|_{H^{p}\left(\mathbb{B}_{n+1}\right)}$.

Suppose that $S \subset \mathbb{B}_{n}$ is dual bounded in $A^{p}\left(\mathbb{B}_{n}\right)$. This means that

$$
\exists\left\{\varrho_{a}\right\}_{a \in S}, \forall a \in S, \quad\left\|\varrho_{a}\right\|_{A^{p}\left(\mathbb{B}_{n}\right)} \leq C \text { and } \varrho_{a}(b)=\delta_{a b}\left(1-|a|^{2}\right)^{-(n+1) / p},
$$

because the normalized reproducing kernel for $A^{p}\left(\mathbb{B}_{n}\right)$ is

$$
b_{a}(z):=\frac{\left(1-|a|^{2}\right)^{(n+1) / p^{\prime}}}{(1-\bar{a} \cdot z)^{n+1}}
$$

Embed S in \mathbb{B}_{n+1} as $\widetilde{S}:=\{(a, 0): a \in S\}$, as in [1]. Then the sequence $\left\{\widetilde{\varrho}_{a}\right\}_{a \in S}$ is precisely a bounded dual sequence for $\widetilde{S} \subset \mathbb{B}_{n+1}$ in $H^{p}\left(\mathbb{B}_{n+1}\right)$, hence we can apply the previous theorem: if $p=\infty$ or $p \leq 2$ and $s<p$, then \widetilde{S} is $H^{s}\left(\mathbb{B}_{n+1}\right)$-interpolating with the L.E.P. If T is the operator realizing the extension,

$$
\begin{gathered}
\lambda \in \ell^{s} \rightarrow T \lambda \in H^{s}\left(\mathbb{B}_{n+1}\right), \\
(T \lambda)(a, 0)=\lambda_{a}\left\|k_{(a, 0)}\right\|_{H^{s^{\prime}}\left(\mathbb{B}_{n+1}\right)}, \quad\|T \lambda\|_{H^{s}\left(\mathbb{B}_{n+1}\right)} \leq C_{I}\|\lambda\|_{s},
\end{gathered}
$$

then the operator $(U \lambda)(z):=(T \lambda)(z, 0)$ is a bounded linear operator from ℓ^{s} to $A^{s}\left(\mathbb{B}_{n}\right)$ realizing the extension because $\left\|k_{(a, 0)}\right\|_{H^{s^{\prime}}\left(\mathbb{B}_{n+1}\right)}=\left\|b_{a}\right\|_{A^{s^{\prime}}\left(\mathbb{B}_{n}\right)}$, where k is the kernel for $H^{s}\left(\mathbb{B}_{n+1}\right)$ and b is the kernel for $A^{s}\left(\mathbb{B}_{n}\right)$. Hence we proved

Corollary 7.3. Let $S \subset \mathbb{B}$ be dual bounded in $A^{p}(\mathbb{B})$ with either $p=\infty$ or $p \leq 2$. Then S is $A^{s}(\mathbb{B})$-interpolating for any $1 \leq s<p$ with the L.E.P.

We also get the same result for the Bergman spaces with weight of the form $\left(1-|z|^{2}\right)^{k}, k \in \mathbb{N}$, just by the same method, but considering $H^{p}\left(\mathbb{B}_{n+k+1}\right)$ instead of $H^{p}\left(\mathbb{B}_{n+1}\right)$.

References

[1] E. Amar, Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de \mathbb{C}^{n}, Canad. J. Math. 30 (1978), 711-737.
[2] -, Extension de fonctions holomorphes et courants, Bull. Sci. Math. 107 (1983), 24-48.
[3] —, Interpolating sequences in the ball of \mathbb{C}^{n}, Ark. Mat. 38 (2000), 1-20.
[4] -, On interpolation of interpolating sequences, Indag. Math. (N.S.) 18 (2007), 177187.
[5] B. Berndtsson, Interpolating sequences for H^{∞} in the ball, Proc. Kon. Ned. Akad. Wetensch. 88 (1985), 1-10.
[6] B. Berndtsson, S.-Y. A. Chang, and K.-C. Lin, Interpolating sequences in the polydisc, Trans. Amer. Math. Soc. 302 (1987), 161-169.
[7] P. Beurling and L. Carleson, Research on interpolation problems, preprint, Uppsala, 1962.
[8] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
[9] S.-Y. A. Chang, Carleson measure in the bi-disc, Ann. of Math. 109 (1979), 613-620.
[10] S.-Y. A. Chang and R. A. Fefferman, Some recent developments in Fourier analysis and H^{p}-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43.
[11] P. Gorkin, R. Mortini, and H. M. Lingenberg, Homeomorphic disks in the spectrum of H^{∞}, Indiana Univ. Math. J. 39 (1990), 961-983.
[12] L. Hörmander, L ${ }^{p}$ estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65-78.
[13] K. Izuchi, Interpolating sequences in the maximal ideal space of H^{∞}, J. Math. Soc. Japan 43 (1991), 721-731.
[14] D. Li et H. Queffélec, Introduction à l'étude des espaces de Banach, Cours spécialisés 12, Soc. Math. France, 2004.
[15] N. K. Nikolskii, Treatise on the Shift Operator, Grundlehren Math. Wiss. 273, Springer, 1986.
[16] A. P. Schuster and K. Seip, Weak conditions for interpolation in holomorphic spaces, Publ. Mat. Barc. 44 (2000), 277-293.
[17] —, 一, A Carleson type condition for interpolation in Bergman spaces, J. Reine Angew. Math. 497 (1998), 223-233.
[18] H. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-522.
[19] E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172.
[20] P. J. Thomas, Hardy space interpolation in the unit ball, Indag. Math. 90 (1987), 325-351.

Université Bordeaux I
351 Cours de la Libération
33405 Talence, France
E-mail: Eric.Amar@math.u-bordeaux1.fr

