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Ascent spectrum and essential ascent spectrum

by

O. Bel Hadj Fredj (Lille), M. Burgos (Granada) and
M. Oudghiri (Oujda)

Abstract. We study the essential ascent and the related essential ascent spectrum of
an operator on a Banach space. We show that a Banach space X has finite dimension if and
only if the essential ascent of every operator on X is finite. We also focus on the stability
of the essential ascent spectrum under perturbations, and we prove that an operator F
on X has some finite rank power if and only if σe

asc(T + F ) = σe
asc(T ) for every operator

T commuting with F . The quasi-nilpotent part, the analytic core and the single-valued
extension property are also analyzed for operators with finite essential ascent.

1. Introduction. Throughout this paper X will be an infinite-dimen-
sional complex Banach space. We will denote by L (X) the algebra of all
operators on X, and by F (X) and K (X) its ideals of finite rank and
compact operators on X, respectively. For an operator T ∈ L (X), write
T ∗ for its adjoint, N(T ) for its kernel and R(T ) for its range. Also, denote
by σ(T ), σap(T ) and σsu(T ) its spectrum, approximate point spectrum and
surjective spectrum, respectively. An operator T ∈ L (X) is upper semi-
Fredholm (respectively lower semi-Fredholm) if R(T ) is closed and dim N(T )
(respectively codim R(T )) is finite. If T is upper or lower semi-Fredholm,
then T is called semi-Fredholm. The index of such an operator is given by
ind(T ) = dim N(T ) − codim R(T ), and when it is finite we say that T is
Fredholm. Recall that for T ∈ L (X), the ascent, a(T ), and the descent,
d(T ), are defined by

a(T ) = inf{n ≥ 0: N(Tn) = N(Tn+1)},
d(T ) = inf{n ≥ 0: R(Tn) = R(Tn+1)},

where the infimum over the empty set is taken to be infinite. From [12,
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Lemma 1.1], given an operator T ∈ L (X) and a positive integer d,

d(T ) ≤ d ⇔ R(Tn) + N(T d) = X for some (equivalently all) n∈N,(1.1)
a(T ) ≤ d ⇔ R(T d) ∩N(Tn) = {0} for some (equivalently all) n∈N.(1.2)

Associated to an operator T on X we consider the non-increasing sequence
([11])

cn(T ) = dim N(Tn+1)/N(Tn).

Clearly, N(Tn) has finite codimension in N(Tn+1) if and only if it has finite
codimension in N(Tn+k) for some (equivalently all) k ∈ N, which is equiva-
lent to dim R(Tn)∩N(T k) <∞ for some (equivalently all) k ∈ N (see [12]).
Consequently, cn(T ) = dim N(T ) ∩ R(Tn) for all n ∈ N.

Following [17], the essential ascent of T is defined as

ae(T ) = inf{n ≥ 0: cn(T ) is finite}.
If ae(T ) is finite, let p(T ) be the smallest positive integer k with cn(T ) =
ck(T ) for all n ≥ k. Trivially, ae(T ) ≤ p(T ), and if a(T ) is finite, then
a(T ) = p(T ). Operators with finite essential ascent play a significant role in
[11], [12] and [17]. In [12], it was established that if T ∈ L (X) has finite
essential ascent, then

(1.3) R(Tn) is closed for some n > ae(T )
⇔ R(Tn) is closed for all n ≥ ae(T ).

The ascent resolvent set and essential ascent resolvent set of an operator
T ∈ L (X) are respectively defined by

%asc(T ) = {λ ∈ C : a(T − λ) is finite and R(T a(T−λ)+1) is closed},
%e
asc(T ) = {λ ∈ C : ae(T − λ) is finite and R(T ae(T−λ)+1) is closed}.

The complementary sets σasc(T ) = C \ %asc(T ) and σe
asc(T ) = C \ %e

asc(T )
are the ascent spectrum and essential ascent spectrum of T , respectively. It
is clear that

σe
asc(T ) ⊆ σasc(T ) ⊆ σ(T ).

This paper is organized as follows. The second section is devoted to the
study of the ascent spectrum and essential ascent spectrum. We show that
they are compact subsets of the spectrum, and that for T ∈ L (X), σe

asc(T )
is empty precisely when T is algebraic. Furthermore, we establish that the
ascent (respectively essential ascent) of every operator acting on X is finite
if and only if X has finite dimension. In Section 3, we are concerned with the
stability of the essential ascent spectrum under finite rank perturbations. We
prove that Fn ∈ F (X) for some n ∈ N if and only if σe

asc(T + F ) = σe
asc(T )

(equivalently, σasc(T + F ) = σasc(T )) for every operator T in the commu-
tant of F . The results appearing in these sections cover the essential ascent
counterpart of the descent case studied in [8], which partially motivated this
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study. Finally, in terms of the quasi-nilpotent part and the analytic core, we
derive in Section 4 several necessary and sufficient conditions for an operator
T ∈ L (X), with 0 /∈ σe

asc(T ), and its adjoint to satisfy a localized version
of the single-valued extension property.

2. Ascent and essential ascent spectra. Given an operator T ∈
L (X), the generalized kernel and generalized range of T are the subspaces
of X defined by N ∞(T ) =

⋃
n N(Tn) and R∞(T ) =

⋂
n R(Tn), respectively.

Recall that T is semiregular if R(T ) is closed and N(T ) ⊆ R∞(T ). The
semiregular spectrum of T , σs(T ), is defined as those complex numbers λ for
which T −λ is not semiregular. It is well known that σs(T ) is a closed subset
of σ(T ) and that ∂σ(T ) ⊂ σs(T ) (see [18]). In the next theorem, we show
that if 0 /∈ σe

asc(T ) then either T is semiregular or 0 is an isolated point of its
semiregular spectrum. The proof requires the following technical lemmas.

Lemma 2.1. If T ∈ L (X) is such that ae(T ) is finite and R(T ae(T )+1)
is closed , then the operator induced by T on X/N(T p(T )) is both semiregular
and upper semi-Fredholm.

Proof. Let p = p(T ) and let T̃ be the operator induced by T onX/N(T p).
Then N(T̃ ) has finite dimension, and R(T̃ ) = (R(T ) + N(T p))/N(T p) =
(T−p(R(T p+1))/N(T p) is closed. Thus T̃ is upper semi-Fredholm. Now, as
N(T )∩R(T p) = N(T )∩R(T p+n) for all n ∈ N, it is straightforward to show
that N(T p+1) ⊆ R(Tn)+N(T p) for all n ∈ N. Hence, N(T̃ ) ⊆ R∞(T ), which
proves that T̃ is semiregular.

Lemma 2.2. Let T ∈ L (X) be semiregular with finite-dimensional ker-
nel. Then dim N(Tn) = n dim N(T ) for all n ∈ N.

Proof. Let n be a positive integer. Since N(Tn−1) ⊆ R(T ), T is a sur-
jection from N(Tn) to N(Tn−1), and consequently dim N(Tn) = dim N(T ) +
dim N(Tn−1). By induction, dim N(Tn) = n dim N(T ) for all n ∈ N.

Theorem 2.3. Let T ∈L (X) be such that ae(T ) is finite and R(T ae(T )+1)
is closed. There exists δ > 0 such that for every λ with 0 < |λ| < δ the
following assertions hold :

(i) T − λ is semiregular ,
(ii) dim N(T − λ)n = n dim N(T p(T )+1)/N(T p(T )) for all n ∈ N,
(iii) codim R(T − λ)n = n dim R(T p(T ))/R(T p(T )+1) for all n ∈ N.

Proof. Let p = p(T ) and let T̃ be the operator induced by T onX/N(T p).
By Lemma 2.1 and [16, Proposition 2.1] there exists δ > 0 such that T̃ −λ is
semiregular and semi-Fredholm with dim N(T̃ − λ) = dim N(T̃ ) for |λ| < δ.
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Fix λ ∈ C with 0 < |λ| < δ. We have

N(T̃ − λ)n = N((T − λ)nT p)/N(T p) = (N(T − λ)n ⊕N(T p))/N(T p),(2.1)

R(T̃ − λ) = (R(T − λ) + N(T p))/N(T p) = R(T − λ)/N(T p).(2.2)

Consequently, R(T − λ) is closed and contains the finite-dimensional sub-
space N(T − λ)n for all n ∈ N. This implies that T − λ is semiregular and
upper semi-Fredholm. Moreover, by (2.1) and the previous lemma,

dim N(T − λ)n = dim N(T̃ − λ)n = n dim N(T̃ − λ) = n dim N(T̃ )
= n dim N(T p+1)/N(T p).

Now by the continuity of the index we get

codim R(T−λ)n = codim R(T − λ)n/N(T p) = codim R(T̃ − λ)n

= dim N(T̃−λ)n − ind(T̃−λ)n = n dim N(T̃ )− n ind(T̃−λ)

= n dim N(T̃ )− n ind(T̃ ) = n codim R(T̃ )
= n dimX/(R(T ) + N(T p)) = n dim R(T p)/R(T p+1).

As a direct consequence of Theorem 2.3 we obtain the following result
for operators with finite ascent.

Corollary 2.4. Let T ∈L (X) be such that a(T ) is finite and R(T a(T )+1)
is closed. There exists δ > 0 such that for every λ with 0 < |λ| < δ the
following assertions hold :

(i) T − λ is bounded below ,
(ii) codim R(T − λ)n = n dim R(T a(T ))/R(T a(T )+1).

Remark 2.5. As a consequence of Theorem 2.3, Corollary 2.4, and the
continuity of the index, a semi-Fredholm operator T ∈ L (X) has finite
essential ascent (respectively finite ascent) if and only if T is upper semi-
Fredholm (respectively 0 is an isolated point of σap(T )).

Corollary 2.6. Let T ∈ L (X). Then σe
asc(T ) and σasc(T ) are compact

subsets of σ(T ). Moreover , σasc(T ) \ σe
asc(T ) is an open set.

Proof. The first assertion follows directly from Theorem 2.3 and Corol-
lary 2.4. Let λ ∈ σasc(T ) \ σe

asc(T ) and set p = p(T − λ). By Theorem 2.3,
there exists a punctured open neighbourhood V of λ such that V ⊆ %e

asc(T )
and

dim N(T − µ)n = n dim N(T − λ)p+1/N(T − λ)p) for all n ∈ N and µ ∈ V.
Since T −λ has infinite ascent, dim N(T −λ)p+1/N(T −λ)p is non-zero, and
consequently {dim N(T − µ)n}n is a strictly increasing sequence for each
µ ∈ V . Thus V ⊆ σasc(T ), as desired.

It is clear that the ascent spectrum, and therefore the essential ascent
spectrum, of an operator can be empty. In the next theorem we show that
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this occurs precisely for algebraic operators. For T ∈ L (X), denote by E(T )
the set of all poles of the resolvent of T .

Theorem 2.7. Let T ∈ L (X). Then
ρe
asc(T ) ∩ ∂σ(T ) = ρasc(T ) ∩ ∂σ(T ) = E(T ).

Moreover , the following assertions are equivalent :

(1) σasc(T ) = ∅,
(2) σe

asc(T ) = ∅,
(3) ∂σ(T ) ⊆ ρasc(T ),
(4) ∂σ(T ) ⊆ ρe

asc(T ),
(5) T is algebraic.

Proof. Since E(T ) ⊆ ρasc(T ) ∩ ∂σ(T ) ⊆ ρe
asc(T ) ∩ ∂σ(T ), it suffices to

show that ρe
asc(T )∩∂σ(T ) ⊆ E(T ). Let λ ∈ ρe

asc(T )∩∂σ(T ) and p = p(T−λ).
By Theorem 2.3, there exists a punctured neighbourhood U of λ such that
dim N(T−µ) = dim N(T−λ)p+1/N(T−λ)p and codim R(T−µ) = dim R(T−
λ)p/R(T − λ)p+1 for all µ ∈ U . As U \ σ(T ) is non-empty,

dim N(T − λ)p+1/N(T − λ)p = dim R(T − λ)p/R(T − λ)p+1 = 0.
Hence T −λ has finite ascent and descent, that is, λ is a pole of the resolvent
of T .

All the desired implications are clear from the above paragraph just by
pointing out that ∂σ(T ) ⊆ ρe

asc(T ) if and only if σ(T ) = ∂σ(T ) consists of
the poles of the resolvent of T , which is equivalent to T being algebraic (cf.
[8, Theorem 1.5]).

Corollary 2.8. Let X be a Banach space. The following assertions are
equivalent :

(1) X has finite dimension,
(2) every T ∈ L (X) has finite ascent ,
(3) every T ∈ L (X) has finite essential ascent ,

Proof. The implications (1)⇒(2)⇒(3) are obvious. Suppose that X has
infinite dimension. Let {en} be an infinite sequence of linearly independent
vectors, and {fn} be continuous linear forms such that fi(ej) = δij for all
positive integers i, j. Consider the bounded operator T =

∑
p λpf2p ⊗ ep

where {λp} is a sequence of non-zero elements such that
∑
|λp| ‖f2p‖ ‖ep‖

is finite. It is easy to verify that the sequence {e2k+1p+2k} consists of lin-
early independent vectors of N(T k+1)\N(T k). Hence T has infinite essential
ascent.

Theorem 2.9. Let T ∈ L (X) and Ω be a connected component of
%e
asc(T ). Then

Ω ⊂ σ(T ) or Ω \ EΩ ⊆ ρ(T ),
where EΩ = Ω ∩ E(T ).
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Proof. Let Ωr = {λ∈Ω : T−λ is both semiregular and semi-Fredholm}.
By Theorem 2.3, Ωo = Ω \ Ωr is at most countable, and hence Ωr is con-
nected. Suppose that Ω ∩ ρ(T ) is non-empty. Then so is Ωr ∩ ρ(T ), and
since dim N(T − λ) and codim R(T − λ) are constant functions on Ωr (see
[16, Proposition 2.1]), we obtain Ωr ⊆ ρ(T ). Consequently, Ωo consists of
isolated points of the spectrum with finite essential ascent. That is,

Ωo ⊆ ∂σ(T ) ∩ %e
asc(T ) = E(T ).

Finally, Ω \ EΩ ⊆ Ωr ⊆ ρ(T ), as desired.

Directly from the preceding theorem and Corollary 2.6 we obtain the
next result.

Corollary 2.10. Let T ∈ L (X). The following conditions are equiva-
lent :

(1) σ(T ) is at most countable,
(2) σasc(T ) is at most countable,
(3) σe

asc(T ) is at most countable.

In this case, σe
asc(T ) = σasc(T ) and σ(T ) = σasc(T ) ∪ E(T ).

From this corollary it follows in particular that T ∈ L (X) is meromor-
phic (i.e. σ(T ) \ {0} ⊆ E(T )) if and only if σasc(T ) ⊆ {0}, if and only if
σe

asc(T ) ⊆ {0}.
It is an important well known fact that

(2.3) σ(TS) \ {0} = σ(ST ) \ {0}
for all T, S ∈ L (X). In [4] Barnes studies the common operator properties
of the operators TS and ST and shows that the equality (2.3) holds for
some parts of the spectrum. In particular, he proves that for all non-zero
λ ∈ C, λ− TS has closed range if and only if λ− ST has closed range, and
that a(λ− TS) is finite if and only if so is a(λ− ST ).

Theorem 2.11. For all T, S ∈ L (X) the following equalities hold :

σasc(TS) \ {0} = σasc(ST ) \ {0}, σe
asc(TS) \ {0} = σe

asc(ST ) \ {0}.

Proof. Arguing as in the proof of [4, Proposition 10] we get, for n ∈ N,

(I − TS)n+1 = I − TUn, (I − ST )n+1 = I − UnT,
where Un =

∑n+1
k=1(−1)k−1

(
n+1
k

)
S(TS)k−1. Therefore, R(I−TS)n+1 is closed

if and only if R(I − ST )n+1 is closed. To complete the proof, it suffices to
show that ae(I − TS) = ae(I − ST ). Since SN(I − UnS) = N(I − SUn)
for all n ∈ N, the operator S̃ induced by S from N(I − Un+1S)/N(I − UnS)
to N(I − SUn+1)/N(I − SUn) is surjective. Moreover, because N(S) ∩
N(I − Un+1) = {0}, we easily see that S̃ is an isomorphism, as desired.
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For T ∈ L (X), LT : L (X) → L (X) denotes the left multiplication
operator by T , given by LT (S) = TS for all S ∈ L (X).

Proposition 2.12. Let T ∈ L (X). The following are equivalent :

(1) a(T ) is finite,
(2) a(LT ) is finite,
(3) ae(LT ) is finite.

Moreover , if X is a Hilbert space, then σasc(LT ) = σasc(T ).

Proof. The implications (1)⇒(2)⇒(3) are clear. Assume that T has in-
finite ascent. Let n be a positive integer and choose x ∈ N(Tn+1) \ N(Tn).
Consider an infinite sequence {fk} of linearly independent continuous linear
forms. It follows that {fk⊗x} ⊆ N(LTn+1) is a sequence of linearly indepen-
dent vectors of N(LTn+1) \ N(LTn). Thus LT has infinite essential ascent.
This shows (3)⇒(1).

It is well known that if R(LT ) is closed, then so is R(T ). If in addition
X is a Hilbert space, then the converse is also true (see [9]). From this, the
last assertion follows easily.

Corollary 2.13. Let T ∈ L (X). The following are equivalent :

(i) a(T ) and d(T ) are finite,
(ii) a(LT ) and d(LT ) are finite.

Proof. Taking into account Proposition 2.12 and [8], it suffices to show
that, if a(T ) = d(T ) = d is finite, then so is d(LT ). This follows from [5,
Theorem 17], since X = R(T d+1)⊕N(T d+1).

We conclude this section by considering the ascent and essential ascent
of an element in the more general setting of unital complex Banach al-
gebras. Let A be a unital complex (infinite-dimensional) Banach algebra.
Denote by Rad(A ) its (Jacobson) radical and by N (A ) its set of nilpo-
tent elements. The ascent and essential ascent of an element x ∈ A are
respectively defined by a(x) = a(Lx) and ae(x) = ae(Lx). The associated
spectra, σasc(x) = σasc(Lx) and σe

asc(x) = σe
asc(Lx), are called the ascent

spectrum and essential ascent spectrum of x, respectively. For the Banach
algebra L (X), Proposition 2.12 ensures that the ascent of T as an operator
coincides with the ascent (even with the essential ascent) of T as an element
of the algebra L (X). Nevertheless, the essential ascent of T as an operator
is not equal to the essential ascent of T as an element of the algebra L (X).
Indeed, by Proposition 2.12, it suffices to consider an operator T with finite
essential ascent and infinite ascent.

Having in mind Theorem 2.7 and [3, Theorem 5.4.2], the equivalence of
the following conditions follows easily (cf. [8, Theorem 2.2]):
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(i) dim(A /Rad(A )) is finite and Rad(A ) ⊆ N (A ),
(ii) σasc(x) = ∅ for all x ∈ A ,

(iii) σe
asc(x) = ∅ for all x ∈ A ,

(iv) σasc(x) = ∅ for all x in a non-empty open subset of A ,
(v) σe

asc(x) = ∅ for all x in a non-empty open subset of A ,
(vi) A is algebraic.

3. Ascent, essential ascent and perturbation. In [13, Theorem 2.2],
Kaashoek and Lay established that if F is a bounded operator for which
there exists some positive integer n such that Fn ∈ F (X), then for every
T ∈ L (X) commuting with F , T has finite ascent if and only if T + F
does. We generalize this result to the essential ascent, and characterize those
operators having some finite rank power as the class of operators that leave
invariant the ascent spectrum and essential ascent spectrum of the operators
in their commutants.

Proposition 3.1. Let F ∈ L (X) with Fn ∈ F (X) for some n ∈
N. If T ∈ L (X) commutes with F , then ae(T ) is finite if and only if
ae(T + F ) is finite. If this is the case, then R(T ae(T )+1) is closed if and only if
R((T + F )ae(T )+1) is closed.

Proof. Clearly it suffices to prove only one direction. Assume that ae(T )
is finite and set p = p(T ). Given k ≥ n + p, as Tn+k maps N(T + F )k into
R(Fn), it is clear that

dim N(T + F )k/(N(T + F )k ∩N(Tn+k)) <∞.
Moreover, since dim N(Tn+k)/N(T p) < ∞, it follows that dim N(T + F )k/
(N(T + F )k ∩ N(T p)) < ∞. Furthermore, N(Fn) ∩ N(T p) ⊆ N(T + F )k ∩
N(T p) ⊆ N(T p) and as Fn ∈ F (X), dim N(T p)/(N(Fn) ∩ N(T p)) < ∞.
Therefore, we obtain

dim N(T + F )k/(N(Fn) ∩N(T p)) <∞,
which implies that ae(T + F ) ≤ n+ p.

Now, suppose that ae(T ) is finite and that R(T ae(T )+1) is closed. By (2.2)
we only have to see that R(T +F )k) is closed for some k > n+p. Denote by
T̃ and F̃ the operators induced by T and F on X/N(T p), respectively. By
Lemma 2.1, T̃ is upper semi-Fredholm. As F̃ is Riesz and commutes with
T̃ , T̃ + F̃ is upper semi-Fredholm [22]. This shows that R(T + F )k + N(T p)
is closed. By [20, Lemma 20.3], in order to conclude the proof, it suffices to
prove that R(T + F )k ∩N(T p) is closed. To this end, note that as (T + F )k

maps N(T p) into R(Fn), dim N(T p)/(N(T + F )k ∩N(T p)) is finite. Hence,

dim (R(T + F )k ∩N(T p))/(R(T + F )k ∩N(T + F )k ∩N(T p)) <∞.
Moreover, since ae(T +F ) is finite, we know that dim R(T +F )k∩N(T +F )k
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is finite. We conclude that R(T + F )k ∩N(T p) has finite dimension, and in
particular, it is closed.

We mention that the conclusion of the previous proposition remains true
for all finite rank operators F not necessarily commuting with T (see [17]).

Theorem 3.2. Let F ∈ L (X). The following conditions are equivalent :

(i) there exists a positive integer n such that Fn has finite rank ,
(ii) σe

asc(T + F ) = σe
asc(T ) for all T ∈ L (X) commuting with F ,

(iii) σasc(T + F ) = σasc(T ) for all T ∈ L (X) commuting with F .

Proof. The implication (i)⇒(ii) follows from the preceding proposition,
and (i)⇒(iii) is a consequence of the preceding proposition and [13, The-
orem 2.2]. For the reverse implications let Γ denote the ascent spectrum
or essential ascent spectrum. By considering T = 0 and Proposition 2.7,
it is clear that F is an algebraic operator. The same argument used in [8,
Theorem 3.1(i)⇒(ii)] allows us to conclude that F has some power of finite
rank.

4. Quasi-nilpotent part, analytic core and the SVEP. Recall that
the algebraic core, Co(T ), of T ∈ L (X) is the largest subspace M of X such
that T (M) = M . It is clear that Co(T ) ⊆ R∞(T ). This inclusion becomes an
equality when the decreasing sequence {N(T ) ∩R(Tn))}n is stationary (see
[14]). So in particular, if T has finite essential ascent, Co(T ) = R∞(T ). Let
us also recall the definition and the main properties of the analytic core and
quasi-nilpotent part of T ∈ L (X). These subspaces have been introduced
in [14] and deeply studied by Mbekhta in [14], [18] and [19].

The analytic core of T is the set K(T ) given by

K(T ) = {x ∈ X : ∃{xn}n≥0 ⊆ X and ∃c > 0 such that x = x0,

Txn+1 = xn and ‖xn‖ ≤ cn‖x‖ for every n ∈ N}.
It is well known that T (K(T )) = K(T ) ⊆ Co(T ) and that neither K(T ) nor
Co(T ) has to be closed. If Co(T ) is closed, then K(T ) = Co(T ).

The quasi-nilpotent part of T is defined as

Ho(T ) = {x ∈ X : lim
n→∞

‖Tnx‖1/n = 0}.

Notice that N ∞(T ) ⊆ Ho(T ) and that x ∈ Ho(T ) if and only if Tx ∈ Ho(T ).
In general, Ho(T ) is not closed. In fact, if Ho(T ) is closed then T |Ho(T ) is
quasi-nilpotent (see [19]). Moreover, it is easy to verify that N ∞(T ) ⊆
K(T − λ) and N(T − λ) ∩Ho(T ) = {0} for all λ ∈ C \ {0}.

In [19], it was shown that for a semiregular operator T ∈ L (X), K(T ) =
Co(T ) = R∞(T ) is closed, T (Ho(T )) = Ho(T ) and Ho(T ) = N ∞(T ) ⊆
R∞(T ). Moreover, by [15], if T is semiregular, then Ho(T ) is closed if and
only if Ho(T ) = {0}. In the next proposition we focus our attention on the



68 O. Bel Hadj Fredj et al.

analytic core and the quasi-nilpotent part of those T ∈ L (X) such that
0 /∈ σe

asc(T ).

Proposition 4.1. Let T ∈ L (X) be such that ae(T ) is finite and
R(T ae(T )+1) is closed. The following conditions hold :

(i) Ho(T ) = N ∞(T ),
(ii) K(T ) = R∞(T ) is closed ,

(iii) N ∞(T ) ⊆ R∞(T ) + N(T p(T )),
(iv) Ho(T ) is closed if and only if Ho(T ) = N(T p(T ))
(v) Ho(T ) = T (Ho(T )) + N(T p(T )).

Proof. Let p = p(T ) and T̃ be the semiregular operator induced by T
on X/N(T p). All the assertions can be easily deduced from the preceding
comments just by proving that

Ho(T̃ ) = Ho(T )/N(T p),(4.1)

K(T̃ ) = (K(T ) + N(T p))/N(T p).(4.2)

Indeed, letπ :X→X/N(T p) the canonical surjection. It is clear that π(Ho(T ))
⊆ Ho(T̃ ). For the other inclusion, let π(x) be such that lim ‖T̃n(π(x))‖1/n
= 0. There exists a sequence {un} ⊆ N(T p) with lim ‖Tn(x) + un‖1/n = 0.
Thus

‖T p+n(x)‖1/n ≤ ‖T p‖1/n‖Tn(x) + un‖1/n,
and so T p(x) ∈ Ho(T ). Hence x ∈ Ho(T ). This shows (4.1).

Now, take π(x) ∈ K(T̃ ). There exists a sequence {yn} ⊆ X such that
π(x) = T̃n(π(yn)) for every n ∈ N. It follows that T p(x) = Tn+p(yn) and
T p(x) ∈ R(Tn) for all n ∈ N. Consequently, T p(x) ∈ K(T ), which implies
that x ∈ K(T ) + N(T p). We have proved that K(T̃ ) ⊆ π(K(T )). For the
other inclusion, note that

π(K(T )) = [K(T ) + N(T p)]/N(T p) ⊆ [R∞(T ) + N(T p)]/N(T p)

⊆
⋂
n

[R(Tn) + N(T p)]/N(T p) = K(T̃ ),

proving (4.2).

The following result illustrates the continuity of Ho(T ) and K(T ) for
operators T such that 0 /∈ σe

asc(T ).

Proposition 4.2. Let T ∈ L (X) be such that ae(T ) is finite and
R(T ae(T )+1) is closed. There exists δ > 0 such that for all λ with 0 < |λ| < δ,
we have:

(i) Ho(T − λ) + N(T p(T )) = Ho(T ),
(ii) K(T − λ) = K(T ) + N(T p(T )).
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Proof. Let T̃ , p and π be as in the proof of the previous proposition. By
[19, Lemme 1.3] there is δ > 0 such that T̃ − λ is semiregular, Ho(T̃ − λ) =
Ho(T̃ ) and K(T̃ −λ) = K(T̃ ) for any λ with |λ| < δ. Therefore we need only
show that for 0 < |λ| < δ,

Ho(T̃ − λ) = (Ho(T − λ) + N(T p))/N(T p),(4.3)

K(T̃ − λ) = K(T − λ)/N(T p).(4.4)

Obviously, π(Ho(T − λ)) ⊆ Ho(T̃ − λ). For the reverse inclusion, we have

Ho(T̃ − λ) = N ∞(T̃ − λ) =
(⋃

n

N((T − λ)nT p)
)
/N(T p)

=
⋃
n

(N(T − λ)n ⊕N(T p))/N(T p) = N ∞(T − λ)⊕N(T p)/N(T p)

⊆ Ho(T − λ) + N(T p)/N(T p).

Finally, for (4.4), observe that

K(T̃ − λ) = R∞(T̃ − λ) = R∞(T − λ)/N(T p) = K(T − λ)/N(T p).

Now let us recall an important property from local spectral theory. An
operator T ∈ L (X) is said to have the single-valued extension property,
SVEP for short, at λ ∈ C, if for every open disc U centred at λ, the only
analytic solution f : U → X of the equation (T − µ)f(µ) = 0 is the zero
function. It is straightforward to see that if λ is an isolated point of σap(T )
(respectively of σsu(T )), then T (respectively T ∗) has the SVEP at λ. The
converse does not hold in general. Note that ∂σ(T ) is contained in σap(T )
as well as in σsu(T ). So T and T ∗ have the SVEP at every point of ∂σ(T ).
Also, the following implications hold (see [2]):

Ho(T−λ) is closed ⇒ Ho(T−λ)∩K(T−λ) = {0} ⇒ T has the SVEP at λ,
X = Ho(T − λ) + K(T − λ) ⇒ T ∗ has the SVEP at λ.

The finiteness of the ascent and descent of an operator also has significant
effects on the SVEP. More precisely,

a(T − λ) <∞ ⇒ T has the SVEP at λ,
d(T − λ) <∞ ⇒ T ∗ has the SVEP at λ.

Moreover, from [2], if T is either semiregular or semi-Fredholm, then these
implications are actually equivalences. In the next propositions we generalize
this fact to operators T with 0 /∈ σe

asc(T ).

Proposition 4.3. Let T ∈ L (X) be such that ae(T ) is finite and
R(T ae(T )+1) is closed. The following conditions are equivalent :

(1) T has the SVEP at 0,
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(2) 0 is not an accumulation point of σap(T ),
(3) T has finite ascent ,
(4) Ho(T ) is closed ,
(5) Ho(T ) ∩K(T ) = {0}.
Proof. (1)⇒(2). The restriction of T to the closed subspace K(T ) satisfies

the SVEP at 0 and it is surjective, hence T |K(T ) is invertible. Consequently,
by Theorem 2.3, for λ 6= 0 small enough, N(T − λ) = N(T − λ) ∩ K(T ) =
N(T|K(T ) − λ) = {0}, and R(T − λ) is closed. This shows that zero is an
isolated point of σap(T ).

The implication (2)⇒(3) follows directly from Theorem 2.3.
(3)⇒(4). If T has finite ascent d, then N ∞(T ) = N(T d) and so by

Proposition 4.1, Ho(T ) = N(T d) is closed.
Finally, as mentioned above, the implications (4)⇒(5)⇒(1) hold without

any restriction on T .

Remark 4.4. Notice that Proposition 4.3 may fail to hold if R(T ae(T )+1)
is not assumed to be closed. Indeed, consider the shift operator T on `2(N)
given by

T (x1, x2, x3, . . .) = (x2/2, x3/3, x4/4, . . .).

It is straightforward to see that T is quasi-nilpotent and dim N(T k)=k for all
k∈N. Hence T has the SVEP at zero and ae(T ) is finite, while a(T ) is infinite.

Dually we have the following result.

Proposition 4.5. Let T ∈ L (X) be such that ae(T ) is finite and
R(T ae(T )+1) is closed. The following are equivalent :

(1) T ∗ has the SVEP at 0,
(2) 0 is not an accumulation point of σsu(T ),
(3) T has finite descent ,
(4) X = K(T ) + Ho(T ).

Proof. (1)⇒(2). Let p = p(T ) and S be the restriction of T ∗ to the
closed subspace R(T ∗p). Since

dim R(T ∗p)/R(T ∗(p+1)) = codim(R(T ∗) + N(T ∗p)) = dim N(T ) ∩ R(T p)

is finite, S is semi-Fredholm, and hence K(S) = R∞(S) = R∞(T ∗) ⊆
K(T ∗). This shows that K(T ∗) = R∞(T ∗) is closed. Now T ∗|K(T ∗) is sur-
jective and has the SVEP at 0, which implies that it is injective. Con-
sequently, by Theorem 2.3, for small non-zero λ we have N(T ∗ − λ) =
N(T ∗ − λ) ∩K(T ∗) = {0} and T − λ is semi-Fredholm. Therefore, T − λ is
surjective.

The implication (2)⇒(3) follows from Theorem 2.3, and (3) ⇒ (4) is a
consequence of (1.1) and Proposition 4.1. Finally, (4)⇒(1) holds without
any restriction on T .
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We mention that the equivalence between (2) and (4) has recently been
established in [10] without any restriction on T .

The next corollary follows immediately from Propositions 4.1, 4.3 and 4.5.

Corollary 4.6. Let T ∈L (X) be such that ae(T ) is finite and R(T ae(T )+1)
is closed. The following assertions are equivalent :

(i) T and T ∗ has the SVEP at 0,
(ii) X = Ho(T )⊕K(T ),

(iii) 0 is a pole of the resolvent of T .

For a bounded operator T on X, we denote by S (T ) the open set of
complex numbers λ for which T fails to have the SVEP. It is easy to check
that S (T ) is a closed subset of σ(T ). The operator T is said to satisfy the
SVEP if S (T ) is empty. Clearly, if a(T − λ) is finite for every λ ∈ C, then
T has the SVEP. The following example reveals that this does not hold for
the essential ascent.

Example 4.7. Let T be the standard shift operator on `2(N) given by
T (x1, x2, x3, . . .) = (x2, x3, x4, . . .). Since T is surjective and non-invertible,
T does not have the SVEP. However, ae(T−λ) is finite for all λ ∈ C, because
dim N(T − λ) = 1 for |λ| < 1, and N(T − λ) = {0} for |λ| ≥ 1.

Corollary 4.8. Every operator T ∈ L (X) satisfies

σasc(T ) = σe
asc(T ) ∪S (T ).

If T has the SVEP , then σasc(T ) = σe
asc(T ) ⊆ σe

asc(T
∗).

Proof. It is clear that σe
asc(T ) ∪S (T ) ⊆ σasc(T ), and the reciprocal in-

clusion follows from the last proposition. Thus, if T has the SVEP, σasc(T ) =
σe

asc(T ). Let λ /∈ σe
asc(T

∗) and p = p(T ∗−λ). It follows by Theorem 2.3 that
for µ in a small punctured neighbourhood of λ, T ∗ − µ and hence T − µ is
semi-Fredholm with

dim N(T − µ) = codim R(T ∗ − µ) = dim R(T ∗ − λ)p/R(T ∗ − λ)p+1

= dim N(T − λ) ∩ R(T − λ)p = dim N(T − λ)p+1/N(T − λ)p.

Moreover, as T has the SVEP, [21, Proposition 2.2] implies that ind(T − µ)
≤ 0, and therefore dim N(T − µ) = dim N(T − λ)p+1/N(T − λ)p is finite, as
desired.

Remark 4.9. Notice that dual results for the descent and essential de-
scent are formulated in [6] and [7]. While this paper was in the refereeing
process, Aiena in [1] has shown that Propositions 4.3, 4.5 and Corollary 4.6
hold for quasi-Fredholm operators by using different arguments. This is why
we have kept the proofs here.
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Université de Lille 1
59655 Villeneuve d’Ascq, France
E-mail: Olfa.Bel-Hadj-Fredj@math.univ-lille1.fr
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