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Fréchet algebras, formal power series, and
automatic continuity

by

S. R. Patel (Kanpur)

Abstract. We describe all those commutative Fréchet algebras which may be contin-
uously embedded in the algebra C[[X]] in such a way that they contain the polynomials.
It is shown that these algebras (except C[[X]] itself) always satisfy a certain equicontinu-
ity condition due to Loy. Using this result, some applications to the theory of automatic
continuity are given; in particular, the uniqueness of the Fréchet algebra topology for such
algebras is established.

1. Introduction. Throughout the paper, “algebra” will mean a non-
zero, complex commutative algebra with identity unless otherwise specified.
A Fréchet algebra is a complete, metrizable locally convex algebra A whose
topology τ may be defined by a sequence (pk)k≥1 (assumed increasing with-
out loss of generality) of submultiplicative seminorms. We may refer to τ as
“the Fréchet topology of A” in the following. The basic theory of Fréchet al-
gebras was introduced in [4] and [16]. The principal tool for studying Fréchet
algebras is the Arens–Michael representation, in which A is given by an in-
verse limit of Banach algebras Ak. We shall briefly describe this in the next
section, in order to establish notation that will be used throughout the paper.

We write F for the algebra C[[X]] of all formal power series in an in-
determinate X, with complex coefficients. The algebra F is a Fréchet al-
gebra when endowed with the weak topology defined by the projections
πm : F → C, m ∈ Z+, where πm(

∑∞
n=0 λnX

n) = λm. A defining sequence
of seminorms for F is (p′k), where p′k(

∑∞
n=0 λnX

n) =
∑k

n=0 |λn| (k ∈ N).
A Fréchet algebra of power series is a subalgebra A of F such that A is a
Fréchet algebra containing the indeterminate X and such that the inclu-
sion map A ↪→ F is continuous. Though Fréchet algebras of power series
have been considered earlier by Loy [12] and [14], recently these algebras—
and more generally, the power series ideas in general Fréchet algebras—have
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acquired significance in understanding the structure of Fréchet algebras ([2],
[5], [6]). Thus, it is of interest to investigate the following:

(1) whether one can describe all those commutative Fréchet algebras
which may be continuously embedded in F in such a way that they
contain the polynomials,

(2) whether such algebras have a unique Fréchet topology.

In this paper we shall be concerned with the solution to the above
problems. We shall show that if A is a commutative, unital Fréchet al-
gebra containing a non-nilpotent, closed maximal ideal M such that: (i)⋂

n≥1M
n = {0}, and (ii) dim(M/M2) = 1, then A is a Fréchet algebra of

power series; the converse holds if the polynomials are dense in A. (See The-
orem 3.1 below.) The solution to the second problem, presented in Section 4,
is broken up into several results of independent interest. Precisely, we shall
show that every Fréchet algebra of power series A ( 6= F) necessarily satisfies
an equicontinuity condition: there is a sequence (γn) of positive reals such
that (γ−1

n πn) is equicontinuous [14]. (See Theorem 3.6 below.)
We remark that the uniqueness of the Fréchet topology of F was proved

in [1]. This was a side result on the way to proving the surprising result that
this algebra is normable. In 1971, Loy proved in [14] the uniqueness of the
Fréchet space topology of certain topological algebras of formal power series.
(The result in the Banach algebra case was also proved by Loy [13].) As a
special case of that result, Bhatt and the author proved the uniqueness of the
Fréchet topology of the Beurling–Fréchet algebras `1(Z+,ω) ([5, Corollary
3.4]). Thus, it is natural to suspect that a Fréchet algebra of power series
has a unique Fréchet topology. Here [7] and [8] are good references: Dales
proved the uniqueness of the Fréchet topology of Fn for each n ∈ N, and
posed this problem for a more general case in [7]; but he has not mentioned
any result even for the single indeterminate case in [8]. As far as we know,
the problem has been unsolved since 1971.

2. Fréchet algebras. Let A be a Fréchet algebra, with its topology
defined by an increasing sequence (pk)k≥1 of submultiplicative seminorms.
For each k, let qk : A → A/ker pk be the quotient map. Then A/ker pk is
naturally a normed algebra, normed by setting ‖x+ker pk‖k = pk(x) (x ∈ A).
We let (Ak; ‖·‖k) be the completion of A/ker pk. Then dk(x+ker pk+1) = x+
ker pk (x ∈ A) extends to a norm-decreasing homomorphism dk : Ak+1 → Ak

such that
A1

d1←− A2
d2←− A3 ← · · · ← Ak

dk←− Ak+1 ← · · ·

is an inverse limit sequence of Banach algebras; and bicontinuously A =
lim←−(Ak; dk). This is called an Arens–Michael representation of A.
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Let M be a closed ideal of a Fréchet algebra A. Then Mn for each n ≥ 1
and

⋂
n≥1M

n are also closed ideals of A. Here, for each n ≥ 1, Mn is the
ideal generated by products of n elements in M . We have the Arens–Michael
representations of M , Mn and

⋂
n≥1M

n as follows:

Lemma 2.1. Let M be a closed ideal of A. Then the Arens–Michael
isomorphism A ∼= lim←−(Ak; dk) induces isomorphisms:

(i) M ∼= lim←−(Mk; dk);
(ii) Mn ∼= lim←−(Mn

k ; dk) (n ≥ 1);
(iii)

⋂
n≥1M

n ∼= lim←−(
⋂

n≥1M
n
k ; dk).

(Here dk = dk|Ik+1
: Ik+1 → Ik, where Ik = qk(I) (closure in Ak),

whenever I is a closed ideal in A.)

Proof. (i) is clear from [3, Lemma 1].
(ii) For a fixed n ≥ 1, we have Mn ∼= lim←−(qk(Mn); dk) by [3, Lemma 1].

Fix k ∈ N. Since qk(Mn) = qk(M)n, we have qk(Mn) = (qk(M))n = Mn
k .

(iii) For each m ≥ 1, we have
⋂

n≥1M
n
k ⊂ Mm

k . So lim←−(
⋂

n≥1M
n
k ; dk) ⊆

lim←−(Mm
k ; dk), where the latter space is isomorphic to Mm, by (ii). Thus

lim←−(
⋂

n≥1M
n
k ; dk) ⊆Mm. This is true for each m, so that lim←−(

⋂
n≥1M

n
k ; dk)

⊆
⋂

n≥1M
n.

On the other hand, for each k ∈ N, qk(
⋂

n≥1M
n) ⊆

⋂
n≥1 qk(Mn) ⊆⋂

n≥1M
n
k since qk is a continuous algebra homomorphism. Therefore we

have lim←−(qk(
⋂

n≥1M
n); dk) ⊆ lim←−(

⋂
n≥1M

n
k ; dk), where the former space is

isomorphic to
⋂

n≥1M
n.

Next, we shall consider the quotient Fréchet algebras A/Mn for each
n ≥ 1 and A/

⋂
n≥1M

n. Let d̃k : Ak+1/M
n
k+1 → Ak/M

n
k be the homomor-

phism induced by dk. Then we have the following lemma from [3, Theorem 6].

Lemma 2.2. With the above notation, the Arens–Michael isomorphism
A ∼= lim←−(Ak; dk) induces isomorphisms:

(i) A/Mn ∼= lim←−(Ak/M
n
k ; d̃k) (n ≥ 1);

(ii) A/
⋂

n≥1M
n ∼= lim←−(Ak/

⋂
n≥1M

n
k ; d̃k).

We conclude this section with the following special case, in order to
obtain a complete characterization of Fréchet algebras of power series.

Proposition 2.3. Let (A, (pk)) be a commutative, unital Fréchet algebra
with the Arens–Michael isomorphism A ∼= lim←−(Ak; dk), and let M be a non-
nilpotent , closed maximal ideal of A such that : (i)

⋂
n≥1M

n = {0} and
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(ii) dim(M/M2) = 1. Then there exists t ∈M such that Mn = Mn+1⊕Ctn
for each n ≥ 1. Assume further that each pk is a norm. Then, for each
sufficiently large k, Mk is a non-nilpotent maximal ideal of Ak such that :
(a)

⋂
n≥1M

n
k = {0} and (b) dim(Mk/M

2
k ) = 1.

Proof. We clearly have Mn+1 6= Mn 6= {0} for each n.
Since dim(M/M2) = 1, there exists t ∈ M such that M = M2 ⊕ Ct, so

that Mn = Mn+1+Ctn for each n ∈ N. If it were the case that tn ∈Mn+1 for
some n ∈ N, then Mm = Mn for all m ≥ n, and so Mn =

⋂
m≥1M

m = {0},
a contradiction of the fact that M is non-nilpotent. Thus Mn = Mn+1⊕Ctn
for each n ∈ N.

Assume further that each pk is a norm. Then it is clear that Mk is not
nilpotent for each k since M is not nilpotent, and so, by Lemma 2.1(ii),
we have qk(M)n = Mn

k 6= {0} for all n, k. Also, since
⋂

n≥1M
n = {0},

we have
⋂

n≥1M
n
k = {0} for each k, by Lemma 2.1(iii) and [8, Corollary

A.1.25]. Since M is a closed maximal ideal of A, we have A = M + C. Thus
qk(M) + C = M + C is dense in Ak, and so also is Mk + C. Since Mk is
closed in Ak, we have Ak = Mk + C. As it is not true that Mk = Ak for
infinitely many k ∈ N, this proves that Mk is a maximal ideal of Ak for
each sufficiently large k. Repeating this argument and using the fact that
qk(M2) = M2

k , we obtain dim(Mk/M
2
k ) = 1 for each sufficiently large k.

3. Fréchet algebras of power series. We now turn to the problem of
describing all those commutative Fréchet algebras which may be embedded
in F in such a way that they contain the polynomials in X. This is to
generalize Theorem 2 of [15]. The solution of this problem does include the
earlier result as a special case. The method of proof of the following theorem
will be repeated in the proof of Theorem 3.6.

Theorem 3.1. Let A be a commutative, unital Fréchet algebra. Sup-
pose that A contains a non-nilpotent , closed maximal ideal M such that :
(i)
⋂

n≥1M
n = {0} and (ii) dim(M/M2) = 1. Then A is a Fréchet algebra

of power series. The converse holds if the polynomials are dense in A.

Proof. Let A satisfy the stated conditions. By Proposition 2.3, there
exists t ∈M such that Mn = Mn+1 ⊕Ctn for each n ∈ N. Let x ∈ A. Then
a simple induction on n shows that for n ≥ 1,

x =
n∑

i=0

λit
i + yn,

where yn ∈Mn+1 and the (λi) are uniquely determined. Hence the function-
als πj : x 7→ λj are uniquely defined, and linear for all j ∈ N. Let x ∈ kerπj



Fréchet algebras, and automatic continuity 129

for all j ∈ N. Then x ∈
⋂

j≥1M
j = {0}. Thus the mapping x 7→

∑∞
i=0 πi(x)ti

is an isomorphism of A onto an algebra of formal power series. If, further,
z =

∑n
i=0 µit

i + y′n, where y′n ∈ Mn+1, is in A, then πi(xz) =
∑i

k=0 λkµi−k

for x, z ∈ A. It follows that the mapping is multiplicative.
If we now carry over the topology via this isomorphism, the result will

follow once we show that the functionals πj are continuous for each j. Clearly
π0 is continuous since M = kerπ0 is a closed maximal ideal of A. Let k ∈ N,
and assume that πi is continuous for each i < k, and take (xn) in A with
xn → 0 as n→∞. Then

xn =
k∑

i=0

πi(xn)ti + yn,k

for some yn,k ∈Mk+1. It follows that πk(xn)tk + yn,k → 0, so if πk(xn) does
not converge to 0 we deduce that tk ∈Mk+1, a contradiction. Thus each πj

is continuous.
Conversely, let A be a Fréchet algebra of power series such that the

polynomials are dense in A. Clearly A is an integral domain. Set M = kerπ0.
Then M is a non-nilpotent, closed maximal ideal of A. Further, Mn ⊂
kerπn−1 for each n ≥ 1, so that

⋂
n≥1M

n = {0}. Hence Mn 6= Mn+1 6= {0}
for each n ≥ 1. We clearly have M2 ⊕ CX ⊆ M . Let M2 = {a ∈ A :
π0(a) = π1(a) = 0}. Then it is clear that M2 ⊂ M2. In fact, M2 = M2

because the polynomials are dense in A. Hence M = M2 ⊕ CX, and so
dim(M/M2) = 1.

Remarks 1. (a) The assumption that dim(M/M2) = 1 is essential
in Theorem 3.1 since there are Fréchet algebras of power series in sev-
eral indeterminates (defined analogously to the present case) containing a
non-nilpotent, closed maximal ideal M such that

⋂
n≥1M

n = {0}. Indeed,
without our assumption that Fréchet algebras of power series contain the
polynomials any finite value is possible for dim(M/M2) with subalgebras of
A(D), D the closed unit disc (similarly, with subalgebras of Hol(U), U the
open unit disc, in the Fréchet case).

(b) The author is indebted to the referee for pointing out an error in the
original proof of the converse part of Theorem 3.1; the following counter-
examples due to the referee show that the assumption that the polynomials
are dense in A cannot be dropped.

Let ω = (ωn) be an increasing sequence of positive reals such that ω0 = 1
and

ωn ≥ n
n−1∑
r=1

ωrωn−r (n ∈ N),

and let
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A :=
{
a =

∞∑
n=0

αnX
n : sup

|αn|
ωn

<∞
}
.

Clearly (A, ‖ · ‖) is a Banach space, where ‖a‖ = sup |αn|/ωn (a ∈ A). Also
the embedding A ↪→ F is continuous. Let a, b ∈ A. Then

|πn(ab)|
ωn

≤
(

2 +
n−1∑
r=1

ωrωn−r

ωn

)
‖a‖ ‖b‖ ≤ 3‖a‖ ‖b‖,

and so (A, ‖ · ‖) is a Banach algebra of power series.
Let θ be a continuous linear functional on `∞ such that θ|c0 = 0 and

θ(e) = 1, where e = (1, 1, 1 . . . ), and define Θ on A by setting Θ(a) = θ(a/ω)
(a ∈ A). It is clear that Θ is a continuous linear functional on A. Let
a, b ∈M . Then

|πn(ab)|
ωn

≤
( n−1∑

r=1

ωrωn−r

ωn

)
‖a‖ ‖b‖ ≤ 1

n
‖a‖ ‖b‖ → 0

as n→∞, and so ab/ω ∈ c0. Thus Θ(ab) = 0, and so Θ|M2 = 0. However,
the element a =

∑∞
n=0 αnX

n, where (αn) = (0, 0, ω2, ω3, ω4, . . . ), belongs to
M2, and Θ(a) = 1. This shows that M2 is properly contained in M2, and so
dim(M/M2) > 1.

In the Fréchet case, following the same arguments, one can easily check
that A =

⋂
p≥1Ap, where

Ap =
{ ∞∑

n=0

αnX
n : sup

|αn|
n1/(p+2)ωn

<∞
}
,

is a non-Banach Fréchet algebra of power series such that the polynomials
are not dense in A.

We now turn to characterizations of F . We first define a class of Fréchet
algebras as follows.

Let A be a unital Fréchet algebra, with its Fréchet topology defined by
a sequence (pk). An element x in A is a power series generator for A if
each y ∈ A is of the form y =

∑∞
n=0 λnx

n, λn complex scalars, such that∑∞
n=0 |λn|pk(xn) < ∞ for all k [5]. Thus if A is a Fréchet algebra with a

power series generator, then A is a commutative, singly generated Fréchet
algebra generated by x. Moreover, A is separable.

The following lemma, whose proof we omit, is a Fréchet-algebra-of-
power-series analogue of [5, Lemma 2.2]. Notice that

A1 :=
{
y ∈ A :

∞∑
n=0

|λn|pk(Xn) <∞ for all k
}

in the lemma.
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Lemma 3.2. Let A be a Fréchet algebra of power series. Then there exists
a Fréchet subalgebra A1 of A such that :

(1) A1 is continuously embedded in A;
(2) A1 is a Fréchet algebra having a power series generator X;
(3) A1 is a Banach algebra provided that A is a Banach algebra.

Remark 2. The subalgebra A1 need not be dense in A. For example,
if A = H∞(U), the algebra of bounded holomorphic functions on the open
unit disc U , then the polynomials are not dense in A; indeed, the closure
of the polynomials in A is precisely A(D). So A1, the subalgebra of A(D)
consisting of all functions having absolutely convergent Taylor series, is a
Banach subalgebra of A which is not dense in A; but it is dense in A(D).
Note that A and A(D) are both Banach algebras of power series under the
sup-norm and (A1, | · |) is a Banach algebra with a power series generator Z,
where |f | =

∑∞
n=0 |fn(0)|/n!.

Then we have the following elementary, but crucial, theorem, generalizing
Proposition 4 of [2] and Proposition 7.8 of [9]. By identifying the series
expansion in x with the series expansion in X, Fréchet algebras with a
cyclic basis are realized as Fréchet algebras of power series, the projections
being continuous. Note that by a proper seminorm we mean a seminorm
that is not a norm.

Theorem 3.3. Let A be a Fréchet algebra of power series. Then either
A is F or the Fréchet topology of A is defined by a sequence (pk) of norms.

Proof. If A is a Banach algebra, then certainly the topology of A is
defined by a norm (and A 6= F because F is not a Banach algebra for any
norm).

Now suppose that A is a non-Banach Fréchet algebra of power series. Let
(pk) be the increasing sequence of seminorms defining the Fréchet topology
τ of A, and set

G = {k ∈ N : pk is a proper seminorm on A}.
If G is finite the corresponding pk may be deleted and we have a new se-
quence of norms, which defines the same Fréchet topology τ of A. If G is
infinite the corresponding pk can be taken to define the Fréchet topology τ of
A. Note that these possibilities are mutually exclusive. Then, by Lemma 3.2,
there exists a Fréchet subalgebra A1 of A continuously embedded in A; A1

is a Fréchet algebra with a power series generator X. By [5, Theorem 2.1],
A1 = F . It follows that A = F topologically in view of the open mapping
theorem.

As corollaries, we have the following curious characterizations of F as a
Fréchet algebra.
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Corollary 3.4. Let A be a Fréchet algebra of power series. Then A is
equal to F if and only if the Fréchet topology of A is defined by a sequence
(pk) of proper seminorms.

The main points of Corollary 3.4 should be emphasized. It has the sur-
prising consequence that for a Fréchet algebra A of power series to have its
Fréchet topology τ defined by an increasing sequence (pk) of proper semi-
norms is, in fact, an algebraic property. Thus the topological structure of A
here determines the algebraic structure of A. This is totally in contrast
to what we would normally like to examine when and how the algebraic
structure determines the topological structure, in particular, the continu-
ity aspect in automatic continuity theory. (We shall encounter this in the
next section.) There is a further consequence, which says that F is the only
Fréchet algebra of finite type (introduced in [11, p. 218]) among Fréchet
algebras of power series since an Arens–Michael representation of F con-
tains finite-dimensional algebras, and if A 6= F , then Ak, the completion of
(A, pk), cannot be finite-dimensional for each k. In fact, we have the follow-
ing result on an Arens–Michael representation of A.

Corollary 3.5. Let A be a Fréchet algebra of power series such that
the polynomials are dense in A. Then A is not equal to F if and only if
A = lim←−Ak, where each Ak is a Banach algebra of power series.

Proof. Suppose that A 6= F . Evidently, by Corollary 3.4, we may suppose
that each pk is a norm on A. Now, by Theorem 3.1, A contains a non-
nilpotent, closed maximal ideal M = kerπ0 such that

⋂
n≥1M

n = {0}
and dim(M/M2) = 1. By Proposition 2.3, for each sufficiently large k,
Mk is a non-nilpotent maximal ideal of Ak such that

⋂
n≥1M

n
k = {0} and

dim(Mk/M
2
k ) = 1. Again, by Theorem 3.1, Ak is a Banach algebra of

power series for each sufficiently large k. Hence, by passing to a suitable
subsequence of (pk) defining the same Fréchet topology of A, we conclude
that each Ak is a Banach algebra of power series.

The converse has already been discussed above.

The immediate consequence of Corollary 3.5 is: if A (6= F) is a Fréchet
algebra of power series such that the polynomials are dense in A, then, by [5,
Corollary 3.2], A satisfies Loy’s condition (E). A somewhat more elaborate
version of the same idea enables us to drop the condition on the polynomials
in order to get a more general result, given below.

Let A be a Fréchet algebra of power series, with its Fréchet topology τ ,
and let τc denote the topology of coordinatewise convergence of F . Let p be
a seminorm on A. We say that p is of type (E) if for each m ∈ Z+ there exists
cm > 0 such that |πm(f)| ≤ cmp(f) for all f ∈ A (see [5]). A seminorm of
type (E) is a norm. If the Fréchet topology τ of A is given by a sequence (pk),
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then each pk is of type (E) if and only if A satisfies Loy’s condition (E) [5,
p. 144]. Also, by [14, Theorem 2], A satisfies Loy’s condition (E) if and only
if A admits a growth sequence, i.e., there is a sequence (σn) of positive reals
such that σnπn(x)→ 0 for each x ∈ A.

Theorem 3.6. Let A be a Fréchet algebra of power series. Then A is
not equal to F if and only if A = lim←−Ak, where each Ak is a Banach algebra
of power series. In particular , A satisfies Loy’s condition (E).

Proof. Suppose that A 6= F . Let (pk) be the increasing sequence of
seminorms defining the Fréchet topology τ of A. Then, by Corollary 3.4, we
may suppose that each pk is a norm on A and so, for each k, (A, pk) is a
normed algebra, which is a subalgebra of F containing the polynomials. We
first show that the projections πm are continuous on (A, pk) for all k and m,
i.e., the inclusion map (A, pk) ↪→ F is continuous.

Since M = kerπ0 is a non-nilpotent, closed maximal ideal of A such
that

⋂
n≥1M

n = {0}, M is a non-nilpotent, maximal ideal of (A, pk) for
each k; also, Mn+1 6= Mn 6= {0} (closure in (A, τ)) in (A, pk) for all k
and n. In fact, we may suppose that M is also closed in (A, pk) for each k,
and hence that π0 is pk-continuous for each k. Also, by Proposition 2.3,
we may suppose that Mk is a non-nilpotent maximal ideal of Ak and that⋂

n≥1M
n
k = {0} for each k. Hence Mn

k 6= Mn+1
k 6= {0} for all k and n.

Assume inductively that πi is continuous for i < m, and take (xn) in (A, pk)
with pk(xn) → 0. Then, following the argument given in Theorem 3.1, we
deduce that Xm ∈ A∩Mm+1

k (which is, in fact, Mm+1 in (A, pk) for each k),
a contradiction of the fact that Mm

k 6= Mm+1
k .

Let k ∈ N. Next we show that if (xn) is any pk-Cauchy sequence in A
such that xn → 0 in (F , τc), then pk(xn) → 0. Clearly there exists some
x ∈ Ak such that pk(xn − x) → 0. Now, by continuity, the inclusion map
(A, pk) ↪→ F extends to a continuous homomorphism φ : Ak → F . So
xn → x in (F , τc). Hence pk(xn)→ 0.

Further, let x ∈ kerφ. Choose a sequence (xn) in A such that pk(xn−x)
→ 0. By the continuity of φ, φ(xn) = xn → φ(x) = 0 in F . Thus (xn) has the
properties mentioned in the last paragraph. So pk(xn) → 0. Hence x = 0,
and so Ak is a Banach algebra of power series for each k. In particular, A
satisfies Loy’s condition (E), by [5, p. 144].

Remarks 3. (a) We again emphasize the fact that the characterizations
of Fréchet algebras of power series and of the algebra F play an essential
role in the proof of Theorem 3.6.

(b) The fact that a Fréchet algebra of power series A satisfies Loy’s
condition (E) played an essential role in [14], and it is of interest to obtain
a simple characterization of this condition. Here it is easy to see that a
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Fréchet algebra of power series A satisfies Loy’s condition (E) if and only if
A admits a continuous norm, i.e., there exists a norm p on A such that for
some K > 0 and integer n ≥ 1, p(x) ≤ Kpn(x) (x ∈ A). In fact, Theorem 3.6
significantly generalizes Proposition 3.1 and Corollary 3.2 of [5].

(c) F itself does not satisfy Loy’s condition (E) [14, Example]. In fact,
from Theorem 3.6, it is clear that F is the only example of a Fréchet algebra
of power series which does not satisfy Loy’s condition (E).

(d) By the method of proofs, it is clear that the characterizations ob-
tained in Corollary 3.5 and Theorem 3.6 are independent of the Arens–
Michael representation chosen, in the sense that if (p′′k) is any other sequence
of norms defining the Fréchet topology of A, then the proofs are valid with
that sequence. Of course, the A′′k, obtained using the sequence (p′′k), may be
different Banach algebras of power series in an Arens–Michael representation
of A. For example, two different Arens–Michael representations of Hol(U),
U the open unit disc, Hol(C) and A∞(Γ ), Γ the unit circle, are discussed
in [5, Examples 1.4 and 1.5], containing different Banach algebras of power
series.

4. Automatic continuity and uniqueness of topology. We now
turn to the second problem stated in the introduction: to establish that ev-
ery Fréchet algebra A of power series has a unique Fréchet topology. By [15,
Theorem 10], it is clear that every Fréchet algebra A of power series satis-
fying condition (E) has a unique Fréchet topology. Since F does not satisfy
condition (E), there may be some other Fréchet algebras of power series
not satisfying this condition; but, by Remarks 3(c), we have ruled out that
possibility. Hence Theorem 3.6 gives the following result from [15].

Theorem 4.1. Let A be a Fréchet algebra of power series such that
A 6= F . Then a homomorphism φ : B → A from a Fréchet algebra B into A
is continuous provided that the range of φ is not one-dimensional.

Remark 4. From (c) of Remarks 3, it is clear that F does not admit
a growth sequence. So the result of Johnson [10, Theorem 9.1] (which was
proved for the Banach algebra case with an indication that some condition
such as the existence of a growth sequence is required in the Fréchet case) is
here established for Fréchet algebras in a more general form, provided that
A 6= F . Thus there can be no special automatic discontinuity result in this
case. We do not know whether or not every homomorphism φ : B → U from
a Fréchet algebra B into a semisimple Fréchet algebra U is continuous.

As a corollary, we have the following result in automatic continuity the-
ory. We note that the continuity of automorphisms of F was proved in [17,
§2], and the uniqueness of Fréchet topology of F was proved in [1, Corol-
lary 2].
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Corollary 4.2. Let A be a Fréchet algebra of power series. Then every
automorphism of A is continuous. In particular , A has a unique Fréchet
topology.

In relation to the still unsolved “Michael problem”, which is to deter-
mine whether every character on a (commutative) Fréchet algebra need be
continuous, the following question may have some interest in the theory of
automatic continuity.

Question. Is every (surjective) homomorphism φ : B → F from a
non-Banach Fréchet algebra B continuous?

We remark that Dales and McClure established the existence of a com-
mutative, unital Banach algebra A which has a totally discontinuous higher
point derivation of infinite order at a character, and which is the domain
of a discontinuous epimorphism onto F [8, Theorem 5.5.19]. On the other
hand, there is a discontinuous homomorphism between two commutative
unital Fréchet algebras having certain properties [2, Theorem 8]; but, in the
construction of the discontinuous homomorphism, Allan used a continuous
homomorphism from A into F .
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[11] M. K. Kopp, Fréchet algebras of finite type, Arch. Math. (Basel) 83 (2004), 217–228.
[12] R. J. Loy, Continuity of derivations on topological algebras of power series, Bull.

Austral. Math. Soc. 1 (1969), 419–424.



136 S. R. Patel

[13] R. J. Loy, Uniqueness of the complete norm topology and continuity of derivations
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[14] —, Uniqueness of the Fréchet space topology on certain topological algebras, Bull.
Austral. Math. Soc. 4 (1971), 1–7.

[15] —, Banach algebras of power series, J. Austral. Math. Soc. 17 (1974), 263–273.
[16] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer.

Math. Soc. 11 (1952).
[17] S. Scheinberg, Power series in one variable, J. Math. Anal. Appl. 31 (1970), 321–333.

Department of Mathematics and Statistics
Indian Institute of Technology
Kanpur 208 016, Uttar Pradesh, India
E-mail: srpatel@iitk.ac.in, coolpatel1@yahoo.com

Received October 19, 2006
Revised version January 16, 2008 (6024)


