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The index for Fredholm elements
in a Banach algebra via a trace

by

J. J. Grobler (Potchefstroom) and H. Raubenheimer (Johannesburg)

Abstract. We show that the existence of a trace on an ideal in a Banach algebra
provides an elegant way to develop the abstract index theory of Fredholm elements in
the algebra. We prove some results on the problem of the equality of the nonzero expo-
nential spectra of elements ab and ba and use the index theory to formulate a condition
guaranteeing this equality in a quotient algebra.

1. Introduction. The existence of a continuous trace on an operator
ideal of operators on a Banach space has long been known to provide a useful
tool for developing the Fredholm theory of operators (see for instance the
monograph of A. Pietsch [20] and the paper by the present authors [13]).
The problem of defining traces on ideals in a Banach algebra attracted the
attention of many authors (see the papers by Puhl [22] and Aupetit and
Mouton [2]). The main thrust of these papers was to show that a trace and
a Fredholm determinant exist on the socle of a semisimple Banach algebra
([2] and [22]) and on the question of extending the trace or the determinant
to larger ideals ([22] and [3]). The aim of this paper, on the other hand, is
to present an axiomatic approach by assuming a trace to exist and then to
show how useful such a trace is by applying it firstly to develop the index
theory for abstract Fredholm elements in a semisimple Banach algebra (see
the research notes of Barnes, Murphy, Smyth and West [5] and of Caradus,
Pfaffenberger and Yood [10]). Here the commutative property of the trace
provides some elegant proofs for the properties of the index. In the definitions
and proofs we avoid using results from operator theory as far as possible.

An index function in a semisimple Banach algebra was also defined by
Kraljević, Suljagić and Veselić (see [14]). We do not follow their approach,
which is to define the trace of a Fredholm element a as an element of Zn(a)
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with n(a) ∈ N, but we will show the connection of their trace with ours. Our
definition of the index function relies on the existence of the trace function
defined on an ideal containing the socle.

In the final section of our paper we give an application of the index
function in terms of the exponential spectrum of a Banach algebra element.
In this regard we refer to [19] where the exponential spectrum was studied
in terms of the index group and an abstract index function.

2. Preliminaries and notation. All algebras in this paper are complex
and unital. Denote by A−1 the group of invertible elements in a Banach
algebra A and by

σ(a,A) = {λ ∈ C | λ− a /∈ A−1}
the spectrum of a ∈ A. When no confusion can arise we write simply σ(a)
and the spectral radius of a is denoted by r(a). The connected component
of 1 ∈ A−1 will be denoted by ExpA. We recall that ExpA is a normal
open and closed subgroup of A−1 generated by the elements ea, a ∈ A. The
exponential spectrum of a ∈ A is the set

ε(a) := ε(a,A) := {λ ∈ C |λ− a /∈ ExpA}.
Let [a, b] be the commutator ab− ba of a, b ∈ A. By an ideal in A we mean
a two-sided ideal. An ideal I in A is said to be inessential [1, p. 106] if for
every element a in I its spectrum in A is either a finite set or a sequence
converging to zero.

The radical of A will be denoted by RadA, and A is said to be semisimple
if RadA = {0}. A Banach algebra A is called semiprime if 0 6= u ∈ A implies
there exists x ∈ A such that uxu 6= 0. All semisimple Banach algebras are
semiprime. An element a ∈ A is quasinilpotent if σ(a) = {0}. The set of
these elements will be denoted by QN(A). Recall that if I is a closed ideal
in A then b ∈ A is called Riesz relative to I if b + I ∈ QN(A/I) (see [5,
Section R.1]). We denote by R(A, I) the set of Riesz elements relative to
the ideal I. The set kh(I) is defined by kh(I) := {b ∈ A | b+ I ∈ Rad A/I}.
Clearly, this set is contained in R(A, I) and we have

I ⊂ kh(I) ⊂ R(A, I).

An element a 6= 0 in a semiprime Banach algebra A is called of rank one if
there exists a linear functional fa on A such that axa = fa(x)a for all x ∈ A.
For properties of these elements we refer to [22]. A minimal idempotent in
A is a nonzero idempotent p such that pAp is a division algebra. Minimal
idempotents are examples of rank one elements [6, Proposition 31.3], and
conversely, if a is a rank one element, then p = fa(1)−1a is easily seen to be
a minimal idempotent. The finite rank elements of A, denoted by F(A), is
the set of all a ∈ A of the form a =

∑n
i=1 ai with each ai a rank one element.
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In the case of a semiprime Banach algebra, F coincides with the socle of A
(denoted by SocA), which is defined to be the sum of the minimal ideals
in A. By [22, Lemma 2.7], F(A) is an ideal in A.

Another characterization of SocA can be found in [14] where the notion
of degenerate elements in a semisimple Banach algebra is defined. An element
a is called degenerate if, for every x ∈ A, d(ax) < ∞ where d(z) is defined
to be the dimension of Span{z, z2, . . .}. The set of all degenerate elements
in A is equal to SocA. In the same paper it is shown that if Γ is the set
of all similarity classes of minimal idempotents in SocA then the two-sided
ideal Aγ generated by an element pγ ∈ γ ∈ Γ is the same for any choice of
pγ ∈ γ. It is then shown that SocA =

∑
γ∈Γ Aγ .

The rank of an element in SocA is defined in [14] as the supremum of
d(ax) as x varies over A. This rank coincides with the spectral rank defined
by Aupetit and Mouton in [2] to be

rank(a) = sup
x∈A

#{σ(xa) \ {0}} ≤ ∞,

where #B denotes the number of elements in B. Aupetit and Mouton also
showed [2, Corollary 2.18] that it is the smallest integer k such that a ∈
I1 + · · ·+ Ik, with the Ij distinct minimal left ideals. Of course, the rank of
a rank one element is indeed one.

2.1. The trace. Let I be an ideal in a Banach algebra A. A function
τ : I → C is called a trace on I if:

(TN) τ(p) = 1 for every rank one idempotent p ∈ I.
(TA) τ(a+ b) = τ(a) + τ(b) for all a, b ∈ I.
(TH) τ(αa) = ατ(a) for all α ∈ C and a ∈ I.
(TC) τ(ba) = τ(ab) for all a ∈ I and b ∈ A.

We shall refer to an ideal on which a trace is defined as a trace ideal.
A trace τ on I is called nilpotent if τ(a) = 0 for all nilpotent elements

in I. We shall mainly concern ourselves with inessential ideals on which a
trace is defined.

Example 2.1. Let X be a Banach space and let T be a continuous linear
operator on X such that its range Y := R(T ) is finite-dimensional. Let
{x1, . . . , xn} be a basis for Y. Then there exist continuous linear functionals
{x′1, . . . , x′n} on X such that

Tx =
n∑
i=1

x′i(x)xi =
( n∑
i=1

x′i ⊗ xi
)

(x).

The trace τ(T ) of T is defined as

τ(T ) =
n∑
i=1

x′i(xi).
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Note that this is the trace of the matrix (x′i(xj))
n
i,j=1, which, as can easily be

checked, is the matrix representing the operator T restricted to Y. Since this
trace is independent of the choice of the basis, it is a well defined number.
From the well known properties of the matrix trace it follows that conditions
(TN), (TA), (TH) and (TC) above are satisfied for this trace on the ideal
consisting of all operators with finite-dimensional range.

An example of a trace on the ideal of finite rank elements in a Banach
algebra A was provided by J. Puhl (see [22]). Let A be a semiprime Banach
algebra and let 0 6= u ∈ A be a rank one element. J. Puhl defined a trace
tr(u) of u by

u2 = tr(u)u

(see [22, Section 2]). It follows from the definition of rank one elements
that tr(u) = fu(1), and that tr(p) = 1 for every rank one idempotent p.
If u ∈ SocA and u =

∑n
i=1 ui with all the ui rank one elements then

tr(u) :=
∑n

i=1 tr(ui) [22, Definition 4.4] is well defined [22, Section 4]. It
easily follows from the properties of a general trace τ on an inessential ideal I
that τ coincides with Puhl’s trace on I ∩ SocA. In fact, if a is a rank one
element, then, as we remarked earlier, p = fa(1)−1a is a minimal idempotent.
Consequently, 1 = τ(p) = fa(1)−1τ(a). Hence, τ(a) = fa(1) = tr(a). By the
linearity of τ it follows that τ(a) = tr(a) for all a ∈ SocA. We also recall
that Puhl showed that tr is nilpotent on SocA, and hence by what we have
shown, any trace restricted to SocA is also nilpotent.

Finally, we remark that B. Aupetit and H. du T. Mouton in [2] also
defined a trace on SocA for A a semisimple Banach algebra, by putting

Tr(a) =
∑
λ∈σ(a)

m(λ, a)λ,

where the number m(λ, a) turns out to be the algebraic multiplicity of λ
for a. This trace is of course nilpotent on SocA and it has the properties of
an abstract trace. It is therefore equal to the Puhl trace and consequently
coincides with any abstract trace defined on SocA.

As shown by the definition of Aupetit and Mouton, the trace on finite
rank elements is spectral, i.e., if λ1, . . . , λn are the eigenvalues of a each
repeated according to its algebraic multiplicity, then

τ(a) =
n∑
i=1

λi.

Since for every idempotent p ∈ SocA we have σ(p) ⊆ {0, 1} we immediately
see that τ(p) ∈ N for every such p.

The fact that any abstract trace τ defined on I corresponds to the Puhl
trace on SocA ∩ I shows that τ can be extended to all elements of SocA.
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It can thus be extended to the ideal I+SocA. For this reason we will assume
that if a trace is defined on an ideal I, then I includes SocA.

3. Fredholm elements and index theory. We start off in a very gen-
eral setting in which the assumptions on the trace are minimal (in particular,
we do not assume the trace ideal to be closed).

Let I be a proper ideal of the Banach algebra A and suppose that τ :
I → C is a trace defined on I. The following definition is a generalization of
Definitions F.2.5 and F.3.12 in [5] as stated on page 49 of [5].

Definition 3.1. We call the element a ∈ A a Fredholm element relative
to I if there exists an element a0 ∈ A such that

(i) aa0 − 1 ∈ I;
(ii) a0a− 1 ∈ I.

The set of all Fredholm elements relative to I is denoted by Φ(A, I).

Clearly, a ∈ Φ(A, I) if and only if a = a+ I is invertible in the quotient
algebra A/I. Also, A−1 ⊂ Φ(A, I) and Φ(A, I) is a multiplicative semigroup.
Note that since we do not assume I to be closed, A/I will not be a Banach
algebra in general.

Example 3.2. Let X be a Banach space. The operator T on X is called
a Fredholm operator if the null spaces N(T ) and N(T ′) of both T and its
adjoint T ′ are finite-dimensional and if the range R(T ) of T is closed (see [23,
Chapter V]). Its index ι(T ) is defined to be

ι(T ) = dim(N(T ))− dim(N(T ′)) = α− β.
For a Fredholm operator T on X there exists an operator T0 on X such that

T0T = I − F1 and TT0 = I − F2,

where F1 is the projection of X onto N(T ) and F2 the projection of X
onto a finite-dimensional subspace X0 ⊂ X satisfying X = R(T ) ⊕X0 and
dim(X0) = β ([23, Theorem V.1.4]). Since F1 has finite-dimensional range, it
is of the form

∑α
i=1 x

′
i⊗xi, and since it is a projection, x′i(xj) = δij . It follows

that its trace τ(F1) satisfies τ(F1) = α. Similarly, τ(F2) = dim(X0) = β.
Hence,

ι(T ) = α− β = τ(F1 − F2) = τ(TT0 − T0T ).

Following the example, we define an index on Φ(A, I) with the aid of the
trace as follows.

Definition 3.3. Let τ be a trace on the ideal I in A. We define the
index function ι : Φ(A, I)→ C by

ι(a) := τ(aa0 − a0a) = τ([a, a0]) for all a ∈ Φ(A, I),

where a0 ∈ A satisfies aa0 − 1 ∈ I and a0a− 1 ∈ I.
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Proposition 3.4. The index function is well defined on Φ(A, I).

Proof. We note firstly that aa0 − a0a = aa0 − 1− (a0a− 1) ∈ I, and so
τ(aa0−a0a) exists. Next, let a′0 ∈ A also satisfy aa′0−1 ∈ I and a′0a−1 ∈ I.
Then we have τ(aa′0− a′0a)− τ(aa0− a0a) = τ(a(a′0− a0)− (a′0− a0)a), and
since a′0 ≡ a0 mod I, both terms in the argument are in I. By the properties
of a trace we therefore get

τ(aa′0 − a′0a)− τ(aa0 − a0a) = τ(a(a′0 − a0))− τ((a′0 − a0)a) = 0

and so ι is well defined.

The definition of Fredholm elements is symmetric. Therefore, if a ∈
Φ(A, I) then every element a0 satisfying the definition is also in Φ(A, I)
and its index satisfies ι(a0) = −ι(a). Also, if a is invertible we can take
a0 = a−1 and we get ι(a) = 0.

Proposition 3.5. For a, b ∈ Φ(A, I) we have ι(ab) = ι(a) + ι(b).

Proof. As observed above, ab ∈ Φ(A, I) for a, b ∈ Φ(A, I). Let a0, b0 ∈ A
satisfy aa0 − 1, a0a− 1 ∈ I and bb0 − 1, b0b− 1 ∈ I. It is easily seen that

(ab)(b0a0)− 1 ∈ I, (b0a0)(ab)− 1 ∈ I, b(b0a0)a− 1 ∈ I.
Therefore,

ι(ab) = τ((ab)(b0a0)− (b0a0)(ab))
= τ((ab)(b0a0)− b(b0a0)a) + τ(b(b0a0)a− (b0a0)(ab))
= τ(a(bb0a0)− (bb0a0)a) + τ(b(b0a0a)− (b0a0a)b) = ι(a) + ι(b).

Corollary 3.6. The index function ι is a semigroup homomorphism
of Φ(A, I) into the additive group of C.

We gather some further properties of the index function.

Proposition 3.7. Let a ∈ Φ(A, I).

(i) For every q ∈ I we have ι(a+ q) = ι(a).
(ii) For every λ 6= 0 we have λa ∈ Φ(A, I) and ι(λa) = ι(a).

(iii) For every λ 6= 0 and every q ∈ I we have ι(λ− q) = 0.
(iv) The set Φ(A, I) is open in A.
(v) The index function ι is constant on every component of Φ(A, I).
(vi) The index function ι : Φ(A, I)→ C is continuous.

Proof. (i) With a0 as before and for q ∈ I we have (a + q)a0 − 1 =
(aa0 − 1) + qa0 ∈ I and likewise a0(a + q) − 1 ∈ I. Hence, a + q ∈ Φ(A, I)
and ι(a+ q) = τ((a+ q)a0−a0(a+ q)) = τ(aa0−a0a) + τ(qa0−a0q) = ι(a).

(ii) For λ 6= 0 we have (λa)(λ−1a0)− 1 ∈ I and (λ−1a0)(λa)− 1 ∈ I. It
follows immediately that ι(λa) = ι(a).

(iii) This follows immediately from (i) and (ii) since ι(1) = 0.
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(iv) Let a ∈ Φ(A, I) and let aa0 − 1 = p ∈ I and a0a − 1 = q ∈ I. Let
b ∈ A satisfy ‖a − b‖ < ‖a0‖−1. It follows from ba0 = 1 + p − (a − b)a0 =
p + (1 − (a − b)a0), and the fact that u := 1 − (a − b)a0 is invertible, that
ba0u

−1 − 1 = pu−1 ∈ I. Similarly, we get v−1a0b − 1 = v−1q ∈ I where
v := 1 − a0(a − b). By the series expansion for u−1 and v−1 we find that
a0u
−1 = v−1a0 and this shows by definition that b ∈ Φ(A, I). Hence, Φ(A, I)

is open.
(v) Using the argument and notation in (iv) we find for all b in a neigh-

bourhood of a that bb0 − 1 ∈ I and b0b− 1 ∈ I with b0 = a0u
−1. It follows

that
ι(b) = −ι(b0) = −ι(a0)− ι(u−1) = −ι(a0) = ι(a).

(vi) This follows immediately from (iv) and (v).

Corollary 3.8. Let (A/I)−1 denote the group of invertible elements of
A/I. Then ι : (A/I)−1 → C defined by ι(a+ I) = ι(a) is a group homomor-
phism.

It seems as though this is the furthest one can develop the index theory
in the general case. To proceed we need the following definition.

Definition 3.9. An idempotent p is called a left Barnes idempotent for
a ∈ A if

(3.1) aA = (1− p)A,
and a right Barnes idempotent for a ∈ A if

(3.2) Aa = A(1− q).
Also, for a ∈ A we define the right and left annihilators respectively as the
sets

Nr(a) := {x ∈ A | ax = 0}, N`(a) := {x ∈ A | xa = 0}.
As we shall see shortly, a Barnes idempotent belonging to a given element

a ∈ A is not uniquely determined. We note the following facts (see [5, F.1.9]).

Proposition 3.10. Let A be a unital Banach algebra. If p is a left
Barnes idempotent for a then Ap = N`(a), and in particular , p ∈ N`(a).
Similarly , if q is a right Barnes idempotent for a ∈ A then qA = Nr(a) and
so q ∈ Nr(a).

Proof. Let p be a left Barnes idempotent for a. By (3.1) there exists
some b ∈ A such that a = (1 − p)b. Hence, pa = p(1 − p)b = 0 and so
p ∈ N`(a). It follows that Ap ⊂ N`(a). On the other hand, again by (3.1) we
have 1−p = ab for some b ∈ A. So, if x ∈ N`(a), we have x(1−p) = xab = 0.
Thus, x = xp ∈ Ap. This establishes Ap = N`(a).

Theorem 3.11. Let A be a semisimple unital Banach algebra and let
the trace ideal I satisfy SocA ⊂ I ⊂ kh(SocA). Then:
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(i) a ∈ Φ(A, I) if and only if there exist left and right Barnes idempotents
p and q, respectively , in SocA and an element a0 ∈ A such that

(3.3) aa0 = 1− p and a0a = 1− q.
(ii) ι(a) ∈ Z.
Proof. (i) Since A is a semisimple unital Banach algebra it follows that

SocA is nontrivial. As we remarked earlier, we may assume that the trace
ideal I contains SocA. Since an element a is invertible modulo SocA if and
only it is invertible modulo kh(SocA) (see [5, Theorem BA.2.4, p. 103]), we
have Φ(A, I) = Φ(A,SocA). It then follows from [5, Theorem F.1.10] that
a ∈ Φ(A, I) if and only if there exist left and right Barnes idempotents in
the socle for a. Let p ∈ SocA ⊂ I be a left Barnes idempotent for a; then
there exists by (3.1) an element a0 ∈ A such that aa0 = 1 − p and also
an element b ∈ A such that a = (1 − p)b. The latter relation implies that
(1− p)a = a. Hence, a0a is an idempotent, because

(3.4) (a0a)2 = a0(aa0)a = a0(1− p)a = a0a.

Let q := 1−a0a; since a ∈ Φ(A, I) and the equivalence class containing a0 is
a right inverse of a modulo I = SocA, it is also a left inverse of a modulo I. It
follows that q ∈ I = SocA and aq = a(1−a0a) = a−aa0a = a−(1−p)a = 0
and so a = a(1− q). The two equalities

1− q = a0a and a = a(1− q)
together imply that Aa = A(1 − q) and so q is a right Barnes idempotent
for a. Hence, (i) holds.

(ii) This follows immediately from (3.3) because

ι(a) = τ(aa0 − a0a) = τ(1− p− (1− q)) = τ(q − p) = τ(q)− τ(p).

But, as remarked earlier, τ is a spectral trace on SocA and consequently
τ(p), τ(q) ∈ N. Thus, ι(a) ∈ Z.

Assumption. For the remainder of this section we assume that A is a
unital semisimple Banach algebra.

Definition 3.12. For a Fredholm element a we call a right and left
Barnes idempotent p and q that satisfy (3.3) associated.

Note. We may assume without loss of generality that the element a0

which satisfies (3.4) has the properties that a0(1−p) = a0 and (1−q)a0 = a0

(else we replace a0 by (1− q)a0(1− p)).
Corollary 3.13. Let a be a Fredholm element of A. Then there exist

associated Barnes idempotents p and q such that ι(a) = τ(q)− τ(p).

We now show that the traces of all left (resp. right) Barnes idempotents
belonging to an element a ∈ A are equal.
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Theorem 3.14. Let p and q be respectively left and right Barnes idem-
potents of the Fredholm element a ∈ A. Then τ(p) is equal to the cardinality
of a maximal set of orthogonal minimal idempotents in Nr(a) = Ap. Simi-
larly , τ(q) is equal to the cardinality of a maximal set of orthogonal minimal
idempotents in N`(a) = qA.

Proof. Since N` = N`(a) = Ap is a left ideal contained in the socle of A,
we deduce by [5, Lemma F.1.7] that every orthogonal subset of minimal
idempotents in N` is finite. Let {e1, . . . , ek} be a maximal subset of minimal
idempotents; then N` =

∑k
i=1Aei and we can write

p = x1e1 + · · ·+ xkek.

Again by [5, Lemma F.1.7], p = e1 + · · ·+ ek is an idempotent in N`(a) and
N`(a) = Ap. Note now that pp = p. We then have

aa0 = (1− p)aa0 = (1− p)(1− p) = 1− p− p+ pp

and it follows from the commutativity property of the trace that

τ(p) = τ(1− aa0) = τ(p+ p− pp) = τ(p) + τ(p)− τ(pp)
= τ(p) + τ(p)− τ(p) = τ(p) = τ(e1) + · · ·+ τ(ek) = k.

The proof for a right Barnes idempotent q is entirely similar.

Remark. We note two interesting facts which follow from the proof. In
the first place, since the ei are minimal idempotents, we have eixiei = λiei
for some λi ∈ C. So by the commutativity of the trace,

τ(p) =
k∑
i=1

τ(xiei) =
k∑
i=1

τ(eixiei) =
k∑
i=1

τ(λiei) =
k∑
i=1

λi.

Secondly, for every left Barnes idempotent p for a, we see that p + p − pp
(with the notation of the proof) is again a left Barnes idempotent for a.
Similarly, if q is the right Barnes idempotent for a associated with p, then
q + q − qq is again a right Barnes idempotent for a and it is associated to
p+ p− pp.

Corollary 3.15. Let a be a Fredholm element of A with left Barnes
idempotent p. Then τ(p) = rank(p). Similarly , for a right Barnes idempo-
tent q we have τ(q) = rank(q).

Proof. This follows immediately from [2, Corollary 2.18] as we already
remarked in our introduction.

The fact that for any left Barnes idempotent p for a the number τ(p) is
uniquely defined, even though the Barnes idempotent is not, enables us to
define the nullity and deficiency of an element a ∈ Φ(A, I) as follows.
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Definition 3.16. The nullity n(a) and deficiency d(a) of a ∈ Φ(A, I)
are defined as

n(a) := τ(q) and d(a) := τ(p),

where q is a right Barnes idempotent and p a left Barnes idempotent of a.

We have

Theorem 3.17. Let A be a unital Banach algebra and let the trace ideal
I satisfy SocA ⊂ I ⊂ kh(SocA). Then for every a ∈ Φ(A, I) we have

ι(a) = n(a)− d(a)

and
A−1 = {a ∈ Φ(A, I) |n(a) = d(a) = 0}.

Proof. If a ∈ A is invertible, then 0 is a left as well as right Barnes
idempotent for a and so n(a) = d(a) = 0. On the other hand, τ(p) ≥ 1
for every nonzero left Barnes idempotent of a. If, therefore, the condition
n(a) = d(a) = 0 holds, we see that a has a right and left inverse and hence
belongs to A−1.

We recall that two elements a, b ∈ A are called similar if there exists
an element u ∈ A−1 such that a = u−1bu. Let Γ be the set of similarity
classes of minimal idempotents in SocA. In [14] H. Kraljević, S. Suljagić
and K. Veselić proved that SocA =

∑
γ∈Γ Aγ , where Aγ is the two-sided

ideal generated by p ∈ γ ∈ Γ and the sum is an algebraic direct sum ([14,
Theorem 2.12]). So, for every a ∈ SocA there exists a finite set Γa ⊂ Γ such
that a =

∑
γ∈Γa

aγ . If we put aγ = 0 if γ ∈ Γ \ Γa, we have a =
∑

γ∈Γ aγ .

Let p and q be left and right Barnes idempotents respectively and sup-
pose that

p =
∑
γ∈Γ

pγ , q =
∑
γ∈Γ

qγ .

Lemma 3.18. The nonzero elements pγ and qγ are minimal idempotents,
and consequently rank one elements. Hence, τ(pγ) = rank(pγ) and τ(qγ) =
rank(qγ).

Proof. We prove this for pγ . Note firstly that if γ 6= ξ ∈ Γ, then pγpξ = 0,
because the product belongs to Aγ ∩ Aξ = {0}. Hence, ppγ = p2

γ . Suppose
now that pγ = xγeγyγ with xγ , yγ ∈ A and eγ ∈ γ. Then, since eγ is a
minimal idempotent,

p2
γ = (xγeγyγ)(xγeγyγ) = xγ(eγ(yγxγ)eγ)yγ = xγ(λγeγ)yγ = λγpγ .

It follows that

(λγ − p)pγ = λγpγ −
(∑
ξ∈Γ

pξ

)
pγ = λγpγ − p2

γ = 0
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and so λγ − p is not invertible, i.e., λγ ∈ σ(p). But since p is a projection,
σ(p) ⊆ {0, 1} and so, since A is semisimple, λγ = 1. Hence, pγ is an idempo-
tent belonging to Aγ . It then follows from ApγA ⊂ Aγ that pγ is a minimal
idempotent.

In [14] H. Kraljević, S. Suljagić and K. Veselić then defined, for a Fred-
holm element a ∈ Φ(A, SocA) with Barnes left and right Barnes idempotents
p and q respectively,

Indγ(a) = rank(qγ)− rank(pγ) = τ(qγ)− τ(pγ)

and the index of a as

Ind(a) = (Indγ(a))γ∈Γ ∈ ZΓ .
It is clear from the lemma above that we have

ι(a) = τ(q)− τ(p) =
∑
γ∈Γ

(τ(qγ)− τ(pγ)) =
∑
γ∈Γ

Indγ(a).

The advantage of the index Ind(a) ∈ ZΓ is that the next theorem can be
formulated exactly as in the operator case (see [14, Theorem 7.6]). A disad-
vantage is that the definition is not as intrinsic as our definition: one first
has to find Barnes idempotents in order to define Indγ . We formulate the
theorem in our notation and supply an easy short proof.

Theorem 3.19. Let A be a unital semisimple Banach algebra and let I
be a closed trace ideal in A such that SocA ⊂ I ⊂ kh(SocA). Let a ∈ Φ(A, I)
and let Γ be the set of similarity classes of minimal idempotents in SocA.
Let p and q be respectively left and right Barnes idempotents for a and let
p =

∑
γ pγ and q =

∑
γ qγ . Then the following are equivalent :

(i) τ(pγ) = τ(qγ) for every γ ∈ Γ, i.e., Ind(a) = 0.
(ii) There exists some u ∈ A−1 and some d ∈ SocA such that a = u+ d.

Proof. (ii)⇒(i). Let a0 be an inverse of a modulo SocA satisfying

(3.5) aa0 = 1− p and a0a = 1− q.
It follows from (ii) that v := u−1 is also an inverse of a modulo SocA and
so a0 = v + e for some e ∈ SocA. Substitution in (3.5) then yields

−p = dv + ae and −q = vd+ ea.

So, if d =
∑

γ dγ and e =
∑

γ eγ , then for every γ ∈ Γ we have

−pγ = dγv + aeγ and − qγ = vdγ + eγa

and (i) follows.
(i)⇒(ii). The assumption implies that pγ 6= 0 iff qγ 6= 0 for all γ ∈ Γ.

Let uγ ∈ A−1 be such that if pγ 6= 0 then uγpγ = qγuγ . Let u :=
∑

γ uγpγ =∑
γ qγuγ . Let v :=

∑
γ pγu

−1
γ =

∑
γ u
−1
γ qγ . Observe that every term is in

Aγ and so it follows that vu = p and uv = q. Finally observe that if a0 is
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such that (3.5) holds, then u = up = qu ∈ N`(a) ∩ Nr(a) and v = pv =
vq ∈ N`(a0)∩Nr(a0). If we write a = (a+ v)− v, then d = −v ∈ SocA and
a+ v ∈ A−1 because

(a+ v)(a0 + u) = aa0 + va0 + au+ vu = 1− p+ p = 1,
(a0 + u)(a+ v) = a0a+ ua+ a0v + uv = 1− q + q = 1.

Let X and Y be Banach spaces and let B : X → Y and A : Y → X
be bounded linear operators. There is a classical result that if I − AB is a
Fredholm operator then ι(I − AB) = ι(I − BA) (see [4, Theorem 6]). We
prove the analogue in general.

Theorem 3.20. Let A be a unital semisimple Banach algebra and let I
be a closed trace ideal in A such that SocA ⊂ I ⊂ kh(SocA). If a, b ∈ A
with 1− ab ∈ Φ(A, I) then ι(1− ab) = ι(1− ba).

Proof. Let p and q be respectively right and left Barnes idempotents of
1−ab ∈ Φ(A, I) such that ι(1−ab) = τ(q)− τ(p) (see Corollary 3.13). From
the definition of a right Barnes idempotent (Definition 3.9), there exists an
element x ∈ A such that

(3.6) (1− ab)x = 1− p and x(1− ab) = 1− q.
If x0 = bxa+ 1 then, using (3.6), we get

(3.7) (1− ba)x0 = bxa+ 1− b(abx)a− ba

= bxa+ 1− b(x− 1 + p)a− ba = 1− bpa,

(3.8) x0(1− ba) = bxa− b(xab)a+ 1− ba

= bxa− b(x− 1 + q)a+ 1− ba = 1− bqa.
This shows that 1− ba ∈ Φ(A, I) and applying Definition 3.3 to (3.7)–(3.8),
we have

ι(1− ba) = τ((1− ba)x0 − x0(1− ba)) = τ(1− bpa− (1− bqa))
= τ(bqa)− τ(bpa) by (TA).

But τ(bqa) = τ(abq) = τ(abq − q + q) = τ((ab − 1)q + q) = τ(q), since
q ∈ Nr(1−ab), and similarly, because p ∈ N`(1−ab) we have τ(bpa) = τ(p).
It follows that ι(1− ba) = τ(q)− τ(p) = ι(1− ab).

The punctured neighbourhood theorem also follows.

Theorem 3.21. Let A be a unital Banach algebra and let the trace ideal
I satisfy SocA ⊂ I ⊂ kh(SocA). Then for every a ∈ Φ(A, I) there exists
ε > 0 such that , for all λ satisfying 0 < |λ| < ε, λ− a is in Φ(A, I) and

(i) n(λ− a) is constant and n(λ− a) ≤ n(a);
(ii) d(λ− a) is constant and d(λ− a) ≤ d(a);

(iii) ι(λ− a) is constant and ι(λ− a) = ι(a).
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Proof. Since λ − a is in an ε-neighbourhood of −a for all 0 < |λ| < ε
it follows, from the fact that Φ(A, I) is open, that for ε properly chosen
λ− a ∈ Φ(A, I) and also that ι(λ− a) = ι(a).

Suppose now that a0a = 1 − q, with q a right Barnes idempotent for a
where we suppose, as we may, that qa0 = 0. If |λ| < 1/‖a0‖ then λa0 − 1
is invertible and so we deduce from a0(λ − a) = q + (λa0 − 1) that, for all
|λ| < 1/‖a0‖,
(3.9) [(λa0 − 1)−1a0](λ− a) = 1− (1− λa0)−1q.

Since qa0 = 0, we have q(1 − λa0)−1 = q
∑∞

k=0(λa0)k = q and this implies
that the element q(λ) := (1 − λa0)−1q is an idempotent. In fact, it is a
Barnes idempotent for a0(λ− a) because it follows from equation (3.9) that
q(λ) ∈ Nr(a0(λ − a)). Hence, Nr(λ − a) ⊂ Nr(a0(λ − a)) = q(λ)A implies
that

n(λ− a) ≤ n(a0(λ− a)) = τ(q(λ)) = τ(q(1− λa0)−1) = τ(q) = n(a).

In precisely the same manner it follows that d(λ− a) ≤ d(a).
To prove that the indices n and d are constant in a reduced neighbour-

hood of 0, it is only necessary to prove it for one of them. Let x ∈ Nr(λ−a);
then anx = λnx for all n ∈ N. Hence, for λ 6= 0, we have Nr(λ − a) ⊂⋂∞
n=1 a

nA. Since a ∈ Φ(A, I) we deduce from aA = (1 − p)A that aA
is a closed right ideal in A. But an ∈ Φ(A, I) and so anA is also closed
for all n ∈ N. Hence, Ã :=

⋂∞
n=1 a

nA is a closed right ideal in A. From
aA ⊃ a2A ⊃ · · · ⊃ Ã it follows that if z ∈ Ã then az ∈ anA for all n and
we have aÃ ⊂ Ã. Conversely, Ã ⊂ an+1A = a(anA) for all n, from which it
follows that

Ã ⊂
∞⋂
n=1

a(anA) = a
∞⋂
n=1

anA = aÃ.

Therefore, aÃ = Ã.
Let Taz := az for all z ∈ Ã. Then Ta : Ã → Ã is surjective. Also, since

Nr(λ − a) ⊂ Ã we have N(λ − Ta) = Nr(λ − a). Hence, Ta is a Fredholm
operator on the Banach space Ã for which n(λ−Ta) = n(λ− a). Since Ta is
surjective, d(Ta) = 0 and from d(λ−Ta) ≤ d(Ta) it follows that d(λ−Ta) = 0.
Therefore,

n(λ− a) = n(λ− Ta) = ι(λ− Ta) + d(λ− Ta) = ι(λ− Ta).
But ι(λ − Ta) is constant for all λ in a sufficiently small neighbourhood U
of 0, and so n(λ− a) is constant on U \ {0}. This completes the proof.

In the notation of the proof of the theorem, we have the following char-
acterization of Nr(λ− a):

Corollary 3.22. Nr(λ− a) = q(λ)A ∩ Ã.
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Proof. As remarked in the above proof, Nr(λ − a) ⊂ Nr(a0(λ − a)) =
q(λ)A, and Nr(λ − a) ⊂ Ã, so Nr(λ − a) is contained in the intersec-
tion. Conversely, for z ∈ q(λ)A ∩ Ã we have z ∈ Nr(a0(λ − a)) and hence
a0(λ− a)z = 0. But (λ − a)Ã ⊂ Ã and so (λ − a)z ∈ Ã ⊂ aA = (1 − p)A.
It follows that (1− p)(λ− a)z = (λ− a)z. However, a0(λ− a)z = 0 implies
0 = aa0(λ− a)z = (1− p)(λ− a)z = (λ− a)z, so z ∈ Nr(λ− a).

We remarked earlier that if I is an inessential ideal in the semisimple
Banach algebra A, then I ⊂ kh(SocA). In our present setting we assume
that I is a trace ideal contained in kh(SocA). Theorem 3.21 enables us to
give an independent proof that I is inessential, without using the proof that
kh(SocA) is inessential.

Theorem 3.23. Let A be a unital Banach algebra and let the trace ideal
I satisfy SocA ⊂ I ⊂ kh(SocA). Then I is an inessential ideal.

Proof. It will suffice if we can show for all a ∈ I that every 0 6= λ0 ∈
∂σ(a,A) is an isolated point in σ(a,A). The element λ0 − a is a Fredholm
element and so, by the above theorem, there exists an ε-neighbourhood of
λ0 such that for all µ 6= λ0 in this neighbourhood, ι(µ − a), n(µ − a) and
d(µ − a) are constant. But, since this neighbourhood contains elements of
the resolvent set %(a), all these numbers are zero. This implies that for all
µ 6= λ0 in this neighbourhood, µ− a is invertible. Thus λ0 is isolated.

4. The exponential spectrum. A useful property of the spectrum for
elements a, b ∈ A, with A a Banach algebra, is that

σ(ab) \ {0} = σ(ba) \ {0}.

Whether this is true in general for the exponential spectrum is still an open
question. Some sufficient conditions were proved by Murphy, who investi-
gated the exponential spectrum by means of the index group and an abstract
index function. He observed that:

Proposition 4.1 ([19, Proposition 4.3 and Corollary 4.4]). Let A be a
Banach algebra and a, b ∈ A. Then each of the following conditions implies
that ε(ab) \ {0} = ε(ba) \ {0}:

(1) Either a or b is a limit of invertible elements of A.
(2) A is of topological stable rank one.

Observe that if an element a is a Riesz element relative to a closed
inessential ideal then ε(ab) \ {0} = ε(ba) \ {0}. Indeed, if a is Riesz relative
to a closed inessential ideal, then by [1, Corollary 5.7.5], σ(a) is either finite
or a sequence converging to 0 and so a is a limit of invertible elements in A.
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We add to these results by considering the commutator of two elements.
For a, b ∈ A we note that

(4.1) 1− ba = 1− ab+ [a, b].

If 1−ab ∈ ExpA and [a, b] ∈ RadA, then by the remarks preceding Lemma
2.2 in [15], 1− ba ∈ ExpA. If one views the commutator as an inner deriva-
tion, then one finds in [7], [8], [9], [16] and [21] conditions ensuring that the
commutator belongs to the radical of the Banach algebra.

Note also that, since ExpA is open in A−1, it is also open in A. Hence if
1 − ab ∈ ExpA, then there exists an ε > 0 such if ‖[a, b]‖ < ε then in view
of (4.1), 1− ba ∈ ExpA.

We recall that the centre Z(A) of a Banach algebra A is the set

Z(A) := {a ∈ A |xa = ax for all x ∈ A}.
Proposition 4.2. Let A be a Banach algebra and a, b ∈ A. If [a, b] ∈

Z(A) then 1− ab ∈ ExpA if and only if 1− ba ∈ ExpA.

Proof. If [a, b]∈Z(A), then in particular a[a, b]=[a, b]a.By the Kleinecke–
Shirokov theorem [1, Theorem 5.1.3], [a, b] ∈ QN(A). This together with
our assumption implies [a, b] ∈ RadA. The conclusion now follows from the
remarks above.

Our final result is an application of the index theory developed in Sec-
tion 3. In this regard we also refer to the remarks preceding [19, Proposition
4.5] which gives the classical result that if H is a Hilbert space and A is the
Calkin algebra on H then ε(ab) \ {0} = ε(ba) \ {0} for a, b ∈ A.

In order to prove our main result in this section, we need some prepara-
tion. If I is a closed trace ideal such that SocA ⊂ I ⊂ kh(SocA) then one
can decompose the Fredholm elements relative to I into equivalence classes
in the following way:

Φ(A, I) =
∞⋃

n=−∞
ι−1(n).

In view of the index function being continuous it follows that if a ∈ A is a
limit of invertible elements then ι(a) = 0.

Proposition 4.3. Let A be a unital Banach algebra and let the trace
ideal I satisfy SocA ⊂ I ⊂ kh(SocA). If x ∈ Φ(A, I) satisfies x + I ∈
ExpA/I then ι(x) = 0.

Proof. If x + I ∈ ExpA/I then by Harte’s theorem [1, Theorem 3.3.8]
there exists y ∈ ExpA such that y + I = x + I. Hence y − x ∈ I and so in
view of Proposition 3.7(i), for all λ ∈ C,

ι(x) = ι(x+ λ(y − x)).

In particular, if λ = 1 then ι(x) = ι(y) = 0 because ExpA ⊂ A−1.
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If I is a closed ideal in a Banach algebra A denote by J : A→ A/I the
canonical homomorphism Jx = x+ I, x ∈ A.

Theorem 4.4. Let A be a semisimple Banach algebra and let I be a
closed trace ideal such that SocA ⊂ I ⊂ kh(SocA). If J−1 ExpA/I = ι−1(0)
then, for all a, b ∈ A,

ε(ab+ I, A/I) \ {0} = ε(ba+ I, A/I) \ {0}.
Proof. Note that if 1−ab+ I ∈ ExpA/I then 1− ba+ I ∈ (A/I)−1, i.e.,

1− ba ∈ Φ(A, I). In view of Proposition 4.3 and Theorem 3.20,

0 = ι(1− ab) = ι(1− ba).

This together with our assumption J−1 ExpA/I = ι−1(0) implies that 1 −
ba+ I ∈ ExpA/I.

The condition J−1 ExpA/I = ι−1(0) together with the index function
being continuous implies that ι−1(0) is a component of Φ(A, I). For instance,
this condition is satisfied in the algebra B(H) of bounded linear operators
on a Hilbert space H and A the Calkin algebra on H (see [12, Theorem
5.35]).
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