STUDIA MATHEMATICA 188 (1) (2008)

On the perturbation functions and similarity orbits

by

HAÏKEL SKHIRI (Monastir)

Abstract. We show that the essential spectral radius $\varrho_e(T)$ of $T \in B(H)$ can be calculated by the formula $\varrho_e(T) = \inf\{\mathcal{F}_{\sharp,\sharp}(XTX^{-1}) : X \text{ an invertible operator}\}$, where $\mathcal{F}_{\sharp,\sharp}(T)$ is a Φ_1 -perturbation function introduced by Mbekhta [J. Operator Theory 51 (2004)]. Also, we show that if $\mathcal{G}_{\sharp,\sharp}(T)$ is a Φ_2 -perturbation function [loc. cit.] and if T is a Fredholm operator, then dist $(0, \sigma_e(T)) = \sup\{\mathcal{G}_{\sharp,\sharp}(XTX^{-1}) : X \text{ an invertible operator}\}$.

1. Terminology and introduction. Let $(H, \|\cdot\|)$ be a complex, infinite-dimensional Hilbert space and let \mathcal{N} denote the set of all norms $\sharp \cdot \sharp$ on H that are equivalent to $\|\cdot\|$, and derived from an inner product $\prec \cdot, \cdot \succ$ on H, that is, $\sharp x \sharp = \sqrt{\neg x, x \succ}$ for all $x \in H$ (¹).

Let B(H) be the Banach algebra of all bounded linear operators on Hand let K(H) be its ideal of compact operators. If $T \in B(H)$ and $\sharp \cdot \sharp \in \mathcal{N}$, we will denote by $\sharp T \sharp$ the operator-norm of T relative to $\sharp \cdot \sharp$.

We denote by N(T) the kernel and by R(T) the range of $T \in B(H)$. The spectrum of T is denoted by $\sigma(T)$, and the adjoint by T^* . An operator $T \in B(H)$ is called *Fredholm* (resp. *semi-Fredholm*) if R(T) is closed and $\max\{\dim N(T), \operatorname{codim} R(T)\} < \infty$ (resp. $\min\{\dim N(T), \operatorname{codim} R(T)\} < \infty$). We denote by $\Phi(H)$ (resp. $\Phi_{\pm}(H)$) the set of all Fredholm (resp. semi-Fredholm) operators. Set C(H) = B(H)/K(H), the *Calkin algebra* (see [3, 4]); it is well known that C(H) is a C^* -algebra.

The essential spectrum of T is $\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin \Phi(H)\}$, and the semi-Fredholm spectrum of T is $\sigma_{\pm}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin \Phi_{\pm}(H)\}$. Recall that the essential spectral radius of T is $\varrho_e(T) = \sup\{|\lambda| : \lambda \in \sigma_e(T)\}$.

If T a semi-Fredholm operator, then the *index* of T is defined as

$$\operatorname{ind}(T) = \dim N(T) - \operatorname{codim} R(T).$$

(¹) From the polar identity, it follows that the inner product is unique:

 $4 \prec x, y \succ = \sharp x + y \sharp^2 - \sharp x - y \sharp^2 + i \sharp x + i y \sharp^2 - i \sharp x - i y \sharp^2.$

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A53; Secondary 47A30.

Key words and phrases: Fredholm operator, essential spectrum, essential spectral radius, Calkin algebra, similarity orbit.

Let Φ^n_{\pm} denote the set of semi-Fredholm operators with $\operatorname{ind}(T) = n \in \mathbb{Z} \cup \{+\infty, -\infty\}$. Finally, let G(H) be the group of all invertible elements in B(H).

The rest of this paper is organized as follows. In the next section we shall show that for a Φ_1 -perturbation function $\mathcal{F}_{\sharp,\sharp}$, the infimum of $\{\mathcal{F}_{\sharp,\sharp}(XTX^{-1}) : X \in G(H)\}$ is equal to $\varrho_e(T)$. In Section 3 we prove that if T is a Fredholm operator and if $\mathcal{G}_{\sharp,\sharp}(T)$ is a Φ_2 -perturbation function, then the supremum of $\{\mathcal{G}_{\sharp,\sharp}(XTX^{-1}) : X \in G(H)\}$ is equal to dist $(0, \sigma_e(T))$.

2. Similarity orbits and Φ_1 -perturbation functions. Recently, Mbekhta [8] has introduced the following definition.

DEFINITION 2.1 ([8, Definition 2.1]). Let $\sharp \cdot \sharp \in \mathcal{N}$. A Φ_1 -perturbation function on B(H) is a function $\mathcal{F}_{\sharp,\sharp}$ which associates to each $T \in B(H)$ a real number $\mathcal{F}_{\sharp,\sharp}(T) \geq 0$ such that:

- (a) $\mathcal{F}_{\sharp:\sharp}(T+K) = \mathcal{F}_{\sharp:\sharp}(T)$ for all $K \in K(H)$;
- (b) $\mathcal{F}_{\sharp \cdot \sharp}(I) = 1;$
- (c) $\min\{\mathcal{F}_{\sharp,\sharp}(ST), \mathcal{F}_{\sharp,\sharp}(TS)\} \leq \sharp S \sharp \mathcal{F}_{\sharp,\sharp}(T) \text{ for all } T, S \in B(H);$
- (d) if $|\lambda| > \mathcal{F}_{\sharp,\sharp}(T)$ then $T \lambda I$ is Fredholm.

REMARK. The definition given by Galaz-Fontes [5] for a perturbation function is a particular case of the above definition.

From now on, we shall denote by $\mathcal{F}_{\sharp,\sharp}$ a Φ_1 -perturbation function with $\sharp \cdot \sharp \in \mathcal{N}$.

In the proof of the following lemma, we use a method introduced by Mbekhta [7].

LEMMA 2.2. Let $T \in B(H)$ and $\varepsilon > 0$. Then there exists $W_{\varepsilon} \in B(H)$ such that

$$\mathcal{F}_{\sharp \cdot \sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) \leq \varrho_e(T) + \varepsilon.$$

Proof. By [10, Lemma 6], there exists a finite rank operator K_{ε} such that

$$\varrho(T+K_{\varepsilon}) \le \varrho_e(T) + \varepsilon/2.$$

Since $\rho\left(\frac{T+K_{\varepsilon}}{\rho_{e}(T)+\varepsilon}\right) < 1$, it follows from the Rota theorem [12, Theorem 2] that there exists $X_{\varepsilon} \in B(H)$ invertible such that

(*)
$$\# X_{\varepsilon}(T+K_{\varepsilon})X_{\varepsilon}^{-1} \# \leq \varrho_e(T) + \varepsilon$$

Let $X_{\varepsilon} = UP_{\varepsilon}$ be the polar decomposition of X_{ε} with $P_{\varepsilon} = (X_{\varepsilon}^*X_{\varepsilon})^{1/2}$. Recall that U is unitary, and P_{ε} is positive and invertible. Since $\sigma(P_{\varepsilon}) \subseteq [0, +\infty[$, log is a continuous real function on $\sigma(P_{\varepsilon})$. It follows from the symbolic calculus that there is a self-adjoint $W_{\varepsilon} \in B(H)$ such that $P_{\varepsilon} = e^{W_{\varepsilon}}$. Thus $P_{\varepsilon}^{-1} = e^{-W_{\varepsilon}}$. Since U is unitary, we see that $\sharp X_{\varepsilon}(T + K_{\varepsilon})X_{\varepsilon}^{-1}\sharp =$ $\sharp e^{W_{\varepsilon}}(T+K_{\varepsilon})e^{-W_{\varepsilon}} \sharp.$ By property (a) of Definition 2.1, it follows that $\mathcal{F}_{\sharp:\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) = \mathcal{F}_{\sharp:\sharp}(e^{W_{\varepsilon}}(T+K_{\varepsilon})e^{-W_{\varepsilon}}).$

Using properties (b) and (c) of Definition 2.1, we deduce that

$$\mathcal{F}_{\sharp:\sharp}(e^{W_{\varepsilon}}(T+K_{\varepsilon})e^{-W_{\varepsilon}}) \leq \sharp e^{W_{\varepsilon}}(T+K_{\varepsilon})e^{-W_{\varepsilon}}\sharp \leq \sharp X_{\varepsilon}(T+K_{\varepsilon})X_{\varepsilon}^{-1}\sharp \leq \varrho_{e}(T) + \varepsilon.$$

Therefore, $\mathcal{F}_{\sharp,\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) \leq \varrho_e(T) + \varepsilon.$

REMARK. In the above proof, we used the notion of adjoint operator, which depends on the scalar product associated to the norm $\sharp \cdot \sharp$.

THEOREM 2.3. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H) \}.$$

Proof. First, by the property (d) of $\mathcal{F}_{\sharp,\sharp}(T)$ (see Definition 2.1), for all invertible operators X we have

$$\varrho_e(XTX^{-1}) \le \mathcal{F}_{\sharp \cdot \sharp}(XTX^{-1}).$$

Since $\rho_e(XTX^{-1}) = \rho_e(T)$, we obtain

$$\varrho_e(T) \le \inf \{ \mathcal{F}_{\sharp,\sharp}(XTX^{-1}) : X \in G(H) \}.$$

Conversely, given $\varepsilon > 0$, by Lemma 2.2 there exists $W_{\varepsilon} \in B(H)$ such that

$$\mathcal{F}_{\sharp:\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) \leq \varrho_e(T) + \varepsilon.$$

Since $e^{W_{\varepsilon}}$ is invertible, we deduce that

$$\inf\{\mathcal{F}_{\sharp\sharp}(XTX^{-1}): X \in G(H)\} \le \inf\{\varrho_e(T) + \varepsilon : \varepsilon > 0\} = \varrho_e(T). \blacksquare$$

REMARK. If $\mathcal{F}_{\sharp,\sharp}(\cdot) = \sharp \cdot \sharp_e$, the result we obtain is the same as in [11], when the C^* -algebra is B(H) and I = K(H).

From the first part of the above proof and Lemma 2.2, we obtain the following theorem.

THEOREM 2.4. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(e^X T e^{-X}) : X \in B(H) \}.$$

REMARK. If $\mathcal{F}_{\sharp,\sharp}(\cdot) = \sharp \cdot \sharp_e$, we obtain the result of [9] in the particular case when the C^* -algebra is C(H) = B(H)/K(H).

Theorems 2.3 and 2.4 have the following consequence.

COROLLARY 2.5. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H), \, \sharp \cdot \sharp \in \mathcal{N} \}$$

= $\inf \{ \mathcal{F}_{\sharp:\sharp}(e^X T e^{-X}) : X \in B(H), \, \sharp \cdot \sharp \in \mathcal{N} \}.$

Consider the natural map $\pi : B(H) \to C(H) = B(H)/K(H)$. Let $X \in \Phi(H)$. We say that $X_{\pi} \in B(H)$ is a π -inverse of X if $\pi(X_{\pi})$ is the inverse of $\pi(T)$ in C(H), i.e.

(2.1)
$$\pi(X)\pi(X_{\pi}) = \pi(X_{\pi})\pi(X) = \pi(I).$$

From (2.1), it is easily seen that

(2.2)
$$\sigma_e(T) = \sigma_e(XTX_{\pi}) = \sigma_e(X_{\pi}TX),$$

(2.3)
$$\varrho_e(T) = \varrho_e(XTX_\pi) = \varrho_e(X_\pi TX).$$

COROLLARY 2.6. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX_\pi) : X \in \Phi(H) \}.$$

Proof. Since $G(H) \subseteq \Phi(H)$, it follows from Theorem 2.3 that

$$\varrho_e(T) = \inf\{\mathcal{F}_{\sharp,\sharp}(XTX^{-1}) : X \in G(H)\} \ge \inf\{\mathcal{F}_{\sharp,\sharp}(XTX_{\pi}) : X \in \Phi(H)\}.$$

Conversely, by the property (d) of $\mathcal{F}_{\sharp:\sharp}$ (see Definition 2.1), for all $X \in \Phi(H)$ we have

(2.4)
$$\varrho_e(XTX_{\pi}) \le \mathcal{F}_{\sharp:\sharp}(XTX_{\pi}).$$

The result follows from (2.4) and (2.3).

COROLLARY 2.7. Let $T \in B(H)$. Then

 $\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp \cdot \sharp}(XTX_{\pi}) : X \in \Phi(H), \, \sharp \cdot \sharp \in \mathcal{N} \}.$

We will show similar results for left and right invertible operators. First we need some notation. Let $G_l(H)$ denote the set of all left invertible operators:

$$G_l(H) = \{ X \in B(H) : \exists L \in B(H) \text{ such that } LX = I \},\$$

and $G_r(H)$ the set of all right invertible operators:

 $G_r(H) = \{ X \in B(H) : \exists R \in B(H) \text{ such that } XR = I \}.$

We shall denote by X^l (resp. X^r) a left (resp. right) inverse of $X \in G_l(H)$ (resp. $X \in G_r(H)$).

COROLLARY 2.8. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX^l) : X \in G_l(H), \, \mathrm{ind}(X) \in \mathbb{Z}_- \}.$$

Proof. Since $G(H) \subseteq \{X \in G_l(H) : \operatorname{ind}(X) \in \mathbb{Z}_-\} \subseteq \Phi(H)$, it follows from Theorem 2.3 and Corollary 2.6 that

$$\begin{aligned} \varrho_e(T) &= \inf \{ \mathcal{F}_{\sharp \cdot \sharp}(XTX^{-1}) : X \in G(H) \} \\ &\geq \{ \mathcal{F}_{\sharp \cdot \sharp}(XTX^l) : X \in G_l(H), \operatorname{ind}(X) \in \mathbb{Z}_- \} \\ &\geq \inf \{ \mathcal{F}_{\sharp \cdot \sharp}(XTX_\pi) : X \in \Phi(H) \} = \varrho_e(T). \end{aligned}$$

COROLLARY 2.9. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX^l) : X \in G_l(H), \, \mathrm{ind}(X) \in \mathbb{Z}_-, \, \sharp \cdot \sharp \in \mathcal{N} \}.$$

For right invertible operators we have the following corollaries.

COROLLARY 2.10. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX^r) : X \in G_r(H), \, \mathrm{ind}(X) \in \mathbb{N} \}.$$

COROLLARY 2.11. Let $T \in B(H)$. Then

 $\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp,\sharp}(XTX^r) : X \in G_r(H), \operatorname{ind}(X) \in \mathbb{N}, \, \sharp \cdot \sharp \in \mathcal{N} \}.$

We denote by $G_{\pm}(H) = G_l(H) \cup G_r(H)$ the set of all *semi-invertible* operators. When $X \in G_{\pm}(H)$, we simply write X^{\pm} for a left inverse or a right inverse of X.

The proof of the following is exactly the same as the proof of Corollary 2.8.

COROLLARY 2.12. Let $T \in B(H)$. Then

$$\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX^{\pm}) : X \in G_{\pm}(H), \, \mathrm{ind}(X) \in \mathbb{Z} \}.$$

COROLLARY 2.13. Let $T \in B(H)$. Then

 $\varrho_e(T) = \inf \{ \mathcal{F}_{\sharp:\sharp}(XTX^{\pm}) : X \in G_{\pm}(H), \operatorname{ind}(X) \in \mathbb{Z}, \, \sharp \cdot \sharp \in \mathcal{N} \}.$

3. Similarity orbits and Φ_2 -perturbation functions. We denote by $\sigma_l(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin G_l(H)\}$ the *left spectrum* and by $\sigma_r(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin G_r(H)\}$ the *right spectrum*. Moreover, $\Phi^n_{\pm}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin \Phi^n_{\pm}\}$, with $n \in \mathbb{Z} \cup \{+\infty, -\infty\}$.

The following definition was introduced by Mbekhta [8].

DEFINITION 3.1 ([8, Definition 3.4]). Let $\sharp \cdot \sharp \in \mathcal{N}$. A Φ_2 -perturbation function on B(H) is a function $\mathcal{G}_{\sharp,\sharp}$ which associates to each $T \in B(H)$ a real number $\mathcal{G}_{\sharp,\sharp}(T) \geq 0$ such that:

- (a) $\mathcal{G}_{\sharp,\sharp}(T+K) = \mathcal{G}_{\sharp,\sharp}(T)$ for all $K \in K(H)$;
- (b) $\mathcal{G}_{\sharp \cdot \sharp}(I) = 1;$
- (c) $\min\{\mathcal{G}_{\sharp,\sharp}(ST), \mathcal{G}_{\sharp,\sharp}(TS)\} \leq \sharp S \sharp \mathcal{G}_{\sharp,\sharp}(T) \text{ for all } T, S \in B(H);$
- (d) if $T \in \Phi(H)$ and $|\lambda| < \mathcal{G}_{\sharp;\sharp}(T)$, then $T \lambda I \in \Phi(H)$.

We shall denote by $\mathcal{G}_{\sharp,\sharp}$ a Φ_2 -perturbation function with $\sharp \cdot \sharp \in \mathcal{N}$. The following theorem is the main result of this section.

THEOREM 3.2. Let $T \in \Phi(H)$. Then

$$\operatorname{dist}(0, \sigma_e(T)) = \sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H)\}.$$

For the proof we need some lemmas.

LEMMA 3.3. Let $S \in B(H)$. If $\lambda_0 \in \sigma_e(S)^c \cap \partial[\sigma_l(S)]$, then λ_0 is an isolated point of $\sigma_l(S)$.

Proof. The result follows from [3, Theorem 3.2.10] (see also [6, Theorem V.1.6 and Corollary V.1.7]). \blacksquare

LEMMA 3.4. Let $T \in \Phi(H)$ and let K be a compact operator such that $\sigma_e(T) = [\sigma_l(T+K) \cap \sigma_r(T+K)] \cup \Phi_+^{+\infty}(T) \cup \Phi_+^{-\infty}(T).$

Then $\partial(\sigma_l(T+K)) \cap [\sigma_e(T)]^c = \emptyset$.

Proof. Suppose there exists $\lambda_0 \in \partial(\sigma_l(T+K)) \cap [\sigma_e(T)]^c$. Lemma 3.3 asserts that λ_0 is an isolated point of $\sigma_l(T+K)$. This proves that $T+K-\lambda_0$ is a right invertible operator, because otherwise $\lambda_0 \in \sigma_l(T+K) \cap \sigma_r(T+K) \subseteq \sigma_e(T)$, which is a contradiction. Now, since $T+K-\lambda_0$ is right invertible, we see that $\operatorname{ind}(T+K-\lambda_0I) \geq 0$. But $\lambda_0 \in \partial(\sigma_l(T+K))$, which implies that $\operatorname{ind}(T+K-\lambda_0I) < 0$, a contradiction.

LEMMA 3.5. Let $T \in \Phi(H)$ and let K be a compact operator as in Lemma 3.4. If $0 \notin \sigma_l(T+K)$, then $\operatorname{dist}(0, \sigma_e(T)) = \operatorname{dist}(0, \sigma_l(T+K))$.

Proof. First, it is easy to see that $\partial[\sigma_e(T)] \subseteq \sigma_l(T+K) \cap \sigma_r(T+K)$. Therefore,

$$\operatorname{dist}(0, \sigma_e(T)) = \operatorname{dist}(0, \sigma_l(T+K) \cap \sigma_r(T+K)).$$

We consider the case where $0 \notin \sigma_r(T+K)$. Since $\partial(\sigma_r(T+K)) \subseteq \sigma_l(T+K)$ and $\partial(\sigma_l(T+K)) \subseteq \sigma_r(T+K)$, we obtain

$$dist(0, \sigma_e(T)) = dist(0, \sigma_l(T+K)) \cap \sigma_r(T+K))$$
$$= dist(0, \sigma_l(T+K)) = dist(0, \sigma_r(T+K)).$$

On the other hand, if $0 \in \sigma_r(T+K)$, it was shown in Lemma 3.4 that $\partial(\sigma_l(T+K)) \cap \sigma_e(T)^c = \emptyset$. Thus, $\partial(\sigma_l(T+K)) \subseteq \sigma_e(T)$. Therefore,

$$dist(0, \sigma_e(T)) \leq dist(0, \partial(\sigma_l(T+K))) \leq dist(0, \sigma_l(T+K))$$
$$\leq dist(0, \sigma_l(T+K)) \cap \sigma_r(T+K)) \leq dist(0, \sigma_e(T)).$$

This proves the lemma. \blacksquare

Proof of Theorem 3.2. First, we show that

 $\operatorname{dist}(0, \sigma_e(T)) \ge \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H) \}.$

Let $X \in B(H)$ be an invertible operator, and let $\lambda \in \mathbb{C}$ be such that $|\lambda| < \mathcal{G}_{\sharp:\sharp}(XTX^{-1})$. Since $X(T-\lambda)X^{-1} = XTX^{-1} - \lambda \in \Phi(H)$, we see that $T - \lambda$ is Fredholm. Therefore,

$$\operatorname{dist}(0, \sigma_e(T)) \ge \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H) \}.$$

Conversely, Theorem 4.5 of [1] asserts that there is $K \in K(H)$ such that $\sigma_{\pm}(T) = \sigma_l(T+K) \cap \sigma_r(T+K)$. But

$$\sigma_e(T) = \sigma_{\pm}(T) \cup \Phi_{\pm}^{+\infty}(T) \cup \Phi_{\pm}^{-\infty}(T),$$

 \mathbf{SO}

$$\sigma_e(T) = [\sigma_l(T+K) \cap \sigma_r(T+K)] \cup \Phi_{\pm}^{+\infty}(T) \cup \Phi_{\pm}^{-\infty}(T)$$

Since $0 \notin \sigma_e(T)$, we obtain $0 \notin \sigma_l(T+K)$ or $0 \notin \sigma_r(T+K)$. We will suppose that $0 \notin \sigma_l(T+K)$; the other case is similar. It was shown in Lemma 3.5 that $\operatorname{dist}(0, \sigma_e(T)) = \operatorname{dist}(0, \sigma_l(T+K))$. Corollary 2.6 of [2] implies that

(*) dist
$$(0, \sigma_e(T))$$
 = dist $(0, \sigma_l(T+K))$ = sup $\{1/\varrho(S) : S(T+K) = I\}$.

On the other hand, let $S \in B(H)$ be a left inverse of T + K and let $\varepsilon > 0$. Since $\rho(\frac{S}{\rho(S)+\varepsilon}) < 1$, it follows from the Rota theorem [12, Theorem 2] that there exists an invertible operator Z_{ε} such that

(**)
$$\sharp Z_{\varepsilon} S Z_{\varepsilon}^{-1} \sharp \leq \varrho(S) + \varepsilon.$$

Consider the polar decomposition $Z_{\varepsilon} = UP_{\varepsilon}$, where $P_{\varepsilon} = (Z_{\varepsilon}^*Z_{\varepsilon})^{1/2}$ and U is the partial isometry with $N(U) = N(Z_{\varepsilon})$ and $R(U) = R(Z_{\varepsilon})$. This implies that U is unitary. Recall that P_{ε} is positive and invertible. Since $\sigma(P_{\varepsilon}) \subseteq [0, +\infty[$, log is a continuous real function on $\sigma(P_{\varepsilon})$. It follows from the symbolic calculus that there is a self-adjoint $W_{\varepsilon} \in B(H)$ such that $P_{\varepsilon} = e^{W_{\varepsilon}}$. Thus $P_{\varepsilon}^{-1} = e^{-W_{\varepsilon}}$. It is obvious that

$$[e^{W_{\varepsilon}}(T+K)e^{-W_{\varepsilon}}][e^{W_{\varepsilon}}Se^{-W_{\varepsilon}}][e^{W_{\varepsilon}}(T+K)e^{-W_{\varepsilon}}] = e^{W_{\varepsilon}}(T+K)e^{-W_{\varepsilon}}.$$

It follows from [8, Lemme 3.18] that

$$\mathcal{G}_{\sharp:\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) = \mathcal{G}_{\sharp:\sharp}(e^{W_{\varepsilon}}(T+K)e^{-W_{\varepsilon}}) \geq \frac{1}{\sharp e^{W_{\varepsilon}}Se^{-W_{\varepsilon}}\sharp_{e}}$$

But $\sharp e^{W_{\varepsilon}} S e^{-W_{\varepsilon}} \sharp \geq \sharp e^{W_{\varepsilon}} S e^{-W_{\varepsilon}} \sharp_e$, so

$$\mathcal{G}_{\sharp,\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) \geq \frac{1}{\sharp e^{W_{\varepsilon}}Se^{-W_{\varepsilon}}\sharp}$$

Since $Z_{\varepsilon} = UP_{\varepsilon} = Ue^{W_{\varepsilon}}$ and U is a unitary operator, we deduce that

$$\mathcal{G}_{\sharp:\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) \geq \frac{1}{\sharp Z_{\varepsilon}SZ_{\varepsilon}^{-1}\sharp}.$$

It follows from (**) that

$$\sup_{\varepsilon>0} \{ \mathcal{G}_{\sharp:\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}}) \} \ge \sup_{\varepsilon>0} \left\{ \frac{1}{\sharp Z_{\varepsilon}SZ_{\varepsilon}^{-1}\sharp} \right\} \ge \frac{1}{\varrho(S)}.$$

But

$$\sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}): X \in G(H)\} \ge \sup_{\varepsilon > 0}\{\mathcal{G}_{\sharp:\sharp}(e^{W_{\varepsilon}}Te^{-W_{\varepsilon}})\}.$$

We deduce that

(***)
$$\sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}): X \in G(H)\} \ge 1/\varrho(S).$$

Since (***) holds for all left inverses of T + K, we obtain

 $\sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}):X\in G(H)\}\geq \sup\{1/\varrho(S):S(T+K)=I\}.$ It follows from (*) that

 $\sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}): X \in G(H)\} \ge \operatorname{dist}(0, \sigma_e(T)). \blacksquare$

It is easy to see that the above proof yields the following result.

THEOREM 3.6. Let $T \in \Phi(H)$. Then

$$\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp;\sharp}(e^X T e^{-X}) : X \in B(H) \}.$$

COROLLARY 3.7. Let $T \in \Phi(H)$. Then

$$dist(0, \sigma_e(T)) = \sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H), \ \sharp \cdot \sharp \in \mathcal{N}\} \\ = \sup\{\mathcal{G}_{\sharp:\sharp}(e^XTe^{-X}) : X \in B(H), \ \sharp \cdot \sharp \in \mathcal{N}\}.$$

COROLLARY 3.8. Let $T \in \Phi(H)$. Then

$$\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX_{\pi}) : X \in \Phi(H) \}$$

Proof. Let $X \in \Phi(H)$ and let $\lambda \in \mathbb{C}$ be such that

 $|\lambda| < \mathcal{G}_{\sharp \cdot \sharp}(XTX_{\pi}).$

It follows from the fact that $X(T - \lambda)X_{\pi} = XTX_{\pi} - \lambda XX_{\pi} \in \Phi(H)$ and the relation (2.2) that $T - \lambda \in \Phi(H)$. Then by Theorem 3.2,

$$dist(0, \sigma_e(T)) \ge \sup\{\mathcal{G}_{\sharp:\sharp}(XTX_{\pi}) : X \in \Phi(H)\} \\ \ge \sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H)\} \ge dist(0, \sigma_e(T)). \bullet$$

COROLLARY 3.9. Let $T \in \Phi(H)$. Then

$$\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX_{\pi}) : X \in \Phi(H), \, \sharp \cdot \sharp \in \mathcal{N} \}.$$

COROLLARY 3.10. Let $T \in \Phi(H)$. Then

$$\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^l) : X \in G_l(H), \operatorname{ind}(X) \in \mathbb{Z}_- \}.$$

Proof. We deduce from Corollary 3.8 that

$$dist(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX_{\pi}) : X \in \varPhi(H) \}$$

$$\geq \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^l) : X \in G_l(H), \operatorname{ind}(X) \in \mathbb{Z}_- \}.$$

By Theorem 3.2, we conclude that

$$dist(0, \sigma_e(T)) = \sup\{\mathcal{G}_{\sharp:\sharp}(XTX^{-1}) : X \in G(H)\}$$

$$\leq \sup\{\mathcal{G}_{\sharp:\sharp}(XTX^l) : X \in G_l(H), \operatorname{ind}(X) \in \mathbb{Z}_-\}. \blacksquare$$

We also have the following corollary.

COROLLARY 3.11. Let $T \in \Phi(H)$. Then

 $\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^l) : X \in G_l(H), \operatorname{ind}(X) \in \mathbb{Z}_-, \, \sharp \cdot \sharp \in \mathcal{N} \}.$

For right invertible operators we have the following corollaries.

COROLLARY 3.12. Let $T \in \Phi(H)$. Then

$$\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^r) : X \in G_r(H), \operatorname{ind}(X) \in \mathbb{N} \}.$$

COROLLARY 3.13. Let $T \in \Phi(H)$. Then

 $\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^r) : X \in G_r(H), \operatorname{ind}(X) \in \mathbb{N}, \, \sharp \cdot \sharp \in \mathcal{N} \}.$

The proof of the following corollary is exactly the same as the proof of Corollary 3.10.

COROLLARY 3.14. Let $T \in \Phi(H)$. Then

$$\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp:\sharp}(XTX^{\pm}) : X \in G_{\pm}(H), \operatorname{ind}(X) \in \mathbb{Z} \}.$$

We easily obtain the following.

COROLLARY 3.15. Let $T \in \Phi(H)$. Then

 $\operatorname{dist}(0, \sigma_e(T)) = \sup \{ \mathcal{G}_{\sharp,\sharp}(XTX^{\pm}) : X \in G_{\pm}(H), \operatorname{ind}(X) \in \mathbb{Z}, \, \sharp \cdot \sharp \in \mathcal{N} \}.$

Acknowledgements. I am grateful to Professor M. Mbekhta for helpful conversations and I thank the referee for valuable remarks which improved the first draft of this paper.

References

- C. Apostol, The correction by compact perturbation of the singular behavior of operators, Rev. Roumaine Math. Pures Appl. 21 (1976), 155–175.
- C. Badea and M. Mbekhta, Compressions of resolvents and maximal radius of regularity, Trans. Amer. Math. Soc. 351 (1999), 2949–2960.
- [3] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, 1974.
- [4] R. G. Douglas, Banach Algebra Technique in Operator Theory, Academic Press, New York, 1972.
- [5] F. Galaz-Fontes, Measures of noncompactness and upper semi-Fredholm perturbation theorems, Proc. Amer. Math. Soc. 118 (1993), 891–897.
- [6] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
- M. Mbekhta, Formules de distance au spectre généralisé et au spectre semi-Fredholm, J. Funct. Anal. 194 (2002), 231–247.
- [8] —, Fonctions perturbation et formules du rayon spectral essentiel et de distance au spectre essentiel, J. Operator Theory 51 (2004), 3–18.
- [9] G. J. Murphy and T. T. West, Spectral radius formulae, Proc. Edinburgh Math. Soc. (2) 22 (1979), 271–275.
- [10] R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473–478.

H. Skhiri

- [11] V. Rakočević, Spectral radius formulae in quotient C^{*}-algebras, Proc. Amer. Math. Soc. 113 (1991), 1039–1040.
- [12] G. C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469–472.

Département de Mathématiques Faculté des Sciences de Monastir Avenue de l'environnement 5019 Monastir, Tunisie E-mail: haikel.skhiri@gmail.com, haikel.skhiri@fsm.rnu.tn

> Received May 6, 2007 Revised version April 15, 2008 (6155)

66