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The maximal theorem for weighted grand Lebesgue spaces
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Abstract. We study the Hardy inequality and derive the maximal theorem of Hardy
and Littlewood in the context of grand Lebesgue spaces, considered when the underlying
measure space is the interval (0, 1) ⊂ R, and the maximal function is localized in (0, 1).
Moreover, we prove that the inequality ‖Mf‖p),w ≤ c‖f‖p),w holds with some c inde-
pendent of f iff w belongs to the well known Muckenhoupt class Ap, and therefore iff
‖Mf‖p,w ≤ c‖f‖p,w for some c independent of f .

Some results of similar type are discussed for the case of small Lebesgue spaces.

1. Introduction and preliminary results. The classical, celebrated
Hardy inequality (see e.g. [8], [14], [16]) states that

Theorem 1.1. Let p > 1 and let f be a measurable, nonnegative func-
tion in (0, 1). Then

(1.1)
( 1�

0

(x�
0

f dt
)p
dx
)1/p

≤ p

p− 1

( 1�

0

fp dx
)1/p

.

In this paper we first prove (see Theorem 2.1) the Hardy inequality in
the context of the grand Lebesgue spaces Lp)(0, 1), introduced by Iwaniec
and Sbordone in [10] (for properties and applications of these spaces see
e.g. [7], [9], [2] and references therein), which are rearrangement-invariant
Banach function spaces (see e.g. [1]) defined by the norm

‖f‖p) = sup
0<ε<p−1

(
ε

1�

0

|f |p−ε dt
) 1
p−ε

, 1 < p <∞.

We will state and use the properties of these spaces when they are needed;
for brevity, we will write Lp) instead of Lp)(0, 1) and in general, when the
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underlying measure space does not appear, we mean that it is the interval
(0, 1) of the real line.

Here we just recall the continuous embeddings

Lp ⊂ Lp) ⊂ Lp−ε, 0 < ε ≤ p− 1,

and in the framework of Orlicz spaces, the continuous embeddings

Lp log−1 L ⊂ Lp) ⊂
⋂
α<−1

Lp logα L.

The inequality (1.1) is a tool for the proof of the boundedness of the
Hardy–Littlewood maximal operator, defined by

Mf(x) = sup
(0,1)⊃I3x

1
|I|

�

I

|f | dt, x ∈ (0, 1),

where the supremum extends over all nondegenerate intervals, contained in
(0, 1) and containing x, and |I| denotes the Lebesgue measure of I. Such
boundedness can be obtained (see e.g. [1, Thm. 3.10, p. 125]) through the
notion of decreasing rearrangement of f , defined as

f∗(t) = sup
|E|=t

inf
E
f, t ∈ (0, 1),

where the supremum extends over all measurable sets E ⊂ (0, 1). An im-
portant relation between rearrangements and the maximal operator is given
by the following well-known Herz theorem (see e.g. [1, Thm. 3.8, p. 122]),
which establishes the equivalence of the functions (Mf)∗ and the averaged
rearrangement of f (see [1, Def. 3.1, p. 52]) defined by

f∗∗(t) =
1
t

t�

0

f∗(s) ds, t ∈ (0, 1).

Theorem 1.2. There are absolute constants c and c′ such that for all
f ∈ L1(0, 1),

c(Mf)∗(t) ≤ f∗∗(t) ≤ c′(Mf)∗(t), t ∈ (0, 1).

Remark 1.3. The Herz theorem holds for functions defined on Rn,
n ≥ 1, and in this case the constants c and c′ depend on the dimension
n only. A study of the constants c and c′ appears in Walker [20].

As a consequence of the Hardy inequality, we will show (see Corollary 2.3)
that the classical maximal theorem of Hardy and Littlewood,

(1.2) ‖Mf‖p ≤ c‖f‖p,
holds also when the norm ‖ · ‖p in the Lebesgue space Lp is replaced by the
corresponding one in the grand Lebesgue space Lp), 1 < p < ∞. In (1.2)
and in the sequel, c denotes a generic constant independent of the functions
involved, and may change at each appearance.
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In Section 3, we introduce the weighted grand Lebesgue spaces Lp)w (0, 1)
with norm ‖ · ‖p),w, and in Section 4, we characterize the weights for which

(1.3) ‖Mf‖p),w ≤ c‖f‖p),w.
Namely, we prove that (1.3) holds iff w belongs to the standard Muckenhoupt
class Ap, defined in [15] (see also e.g. [19], [11], [4], [18], [12] for systematic
treatments) through (1 < p <∞)

sup
I

(
1
|I|

�

I

w dt

)(
1
|I|

�

I

w
− 1
p−1 dt

)p−1

=: Ap(w) <∞,

where the supremum extends over all intervals I ⊂ (0, 1). This class has
been characterized as the class of weights such that

(1.4) ‖Mf‖p,w ≤ c‖f‖p,w,
where ‖ · ‖p,w denotes the norm in the space Lpw, given by

‖f‖p,w :=
( 1�

0

|f |pw dt
)1/p

.

In other terms, we show that the class of weights which naturally could
be named Ap) coincides in fact with Ap, i.e. the classes of weights for which
the inequalities (1.4) and (1.3) are true are the same.

Remark 1.4. The use of Ap weights in connection with the Herz the-
orem appeared several years ago in a paper devoted to the study of the
so-called reverse inequalities (see Sbordone [17]).

2. Hardy’s inequality and maximal theorem for grand Lebesgue
spaces (unweighted case). In this section we prove that the inequality
(1.1) can be generalized to grand Lebesgue spaces.

Theorem 2.1. Let 1 < p < ∞. There exists a constant c(p) > 1 such
that

(2.1)
∥∥∥ x�

0

f dt
∥∥∥
p)
≤ c(p)‖f‖p)

for all nonnegative measurable functions f in [0, 1].

Proof. Let 0 < σ < p− 1. We have∥∥∥ x�
0

f dt
∥∥∥
p)

= max
{

sup
0<ε<σ

(
ε

1�

0

( x�
0
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)p−ε
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) 1
p−ε
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(
ε

1�

0

( x�
0
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) 1
p−ε
}
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≤ max
{

sup
0<ε<σ

(
ε

1�

0

( x�
0

f dt
)p−ε

dx
) 1
p−ε

,

(
sup

σ≤ε<p−1
ε

1
p−ε
)
σ
− 1
p−σ σ

1
p−σ
( 1�

0

( x�
0

f dt
)p−σ

dx
) 1
p−σ
}

≤ (p− 1)σ−
1

p−σ sup
0<ε≤σ

(
ε

1�

0

( x�
0

f dt
)p−ε

dx
) 1
p−ε

.

Now take 0 < ε ≤ σ, so that p − ε > 1. Applying the Hardy inequality
(1.1) with the exponent p replaced by p− ε, and multiplying both sides by
ε

1
p−ε , we get(

ε

1�

0

( x�
0

f dt
)p−ε

dx
) 1
p−ε ≤ p− ε

p− ε− 1

(
ε

1�

0

fp−ε dx
) 1
p−ε

.

If we pass to the sup over 0 < ε ≤ σ on both sides, the previous inequality
becomes

sup
0<ε≤σ

(
ε

1�

0

( x�
0

f dt
)p−ε

dx
) 1
p−ε ≤ p− σ

p− σ − 1
sup

0<ε≤σ

(
ε

1�

0

fp−ε dx
) 1
p−ε

and therefore∥∥∥ x�
0

f dt
∥∥∥
p)
≤ (p− 1)σ−

1
p−σ

p− σ
p− σ − 1

sup
0<ε<p−1

(
ε

1�

0

fp−ε dx
) 1
p−ε

.

Setting

c(p) := inf
0<σ<p−1

(p− 1)σ−
1

p−σ
p− σ

p− σ − 1
> 1,

we get the desired inequality (2.1).

Remark 2.2. We wish to mention the important paper [13], where a
condition on the upper Boyd index of a general rearrangement invariant
space is given for the validity of the Hardy inequality. However, the proof
of (2.1) would then be much less direct, and it would need the computation
of the index (which is actually an open problem of independent interest).

We can now state the following corollary, whose proof is inspired by
[1, Thm. 3.10, p. 125]. We remark that the general result by Lorentz and
Shimogaki on the characterization of the rearrangement-invariant spaces
on which the Hardy–Littlewood maximal operator is bounded (see e.g. [1,
Thm. 5.17, p. 154]) cannot be applied, due to the fact that the underlying
measure space is finite.
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Corollary 2.3. Let 1 < p <∞. There exists a constant c(p) > 1 such
that

(2.2) ‖Mf‖p) ≤ c(p)‖f‖p)
for all f ∈ L1(0, 1).

Proof. Since (see e.g. [1, Prop. 1.8, p. 43])

‖f‖p = ‖f∗‖p,
from Theorem 1.2 and from Theorem 2.1 applied to f∗ we get

‖Mf‖p) = ‖(Mf)∗‖p) ≤ c‖f∗∗‖p) ≤ c‖f∗‖p) = c‖f‖p),
from which the assertion follows.

In the next section we will deal with the weighted case. We conclude
this section by mentioning that together with the grand Lebesgue spaces
the small Lebesgue spaces L(p(0, 1) with norm ‖ · ‖(p are often considered,
as associate spaces (see [1] for the definition of associate spaces, [5] for
the definition of small Lebesgue spaces, and [2] and [3] for properties and
references about small Lebesgue spaces). The Hardy inequality for small
Lebesgue spaces is established in

Proposition 2.4. Let 1 < p < ∞. There exists a constant C(p) > 1
such that

(2.3)
∥∥∥ x�

0

f dt
∥∥∥

(p
≤ C(p)‖f‖(p

for all nonnegative measurable functions f in [0, 1].

Proof. The inequality (2.3) can be easily deduced from the expression of
the norm given in [6], using the rearrangement-invariance and the standard
Hardy inequality:∥∥∥ x�

0

f dt
∥∥∥

(p
≤ c(p)

1�

0

(1− log t)−1/p
( t�

0

( x�
0

f ds
)p
dx
)1/p

dt/t

≤ c(p)p
p− 1

‖f‖(p.

3. Weighted grand Lebesgue spaces. Let w be a weight on (0, 1),
i.e. an a.e. positive, integrable function on (0, 1), and 1 < p < ∞ be fixed.
For all measurable, nonnegative, a.e. finite functions f set

%(f) := sup
0<ε<p−1

ε
1
p−ε ‖f‖p−ε,w = sup

0<ε<p−1

(
ε

1�

0

fp−εw dt
) 1
p−ε

It is straightforward to check the following:
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Proposition 3.1. The functional % is a (Banach) function norm, i.e.
the following properties hold for all measurable, nonnegative, a.e. finite func-
tions f , g, g(n) (n ∈ N), for all constants λ ≥ 0, and for all measurable
subsets E ⊂ (0, 1):

• %(g) ≥ 0.
• %(g) = 0 iff g = 0 a.e. in (0, 1).
• %(λg) = λ%(g).
• %(f + g) ≤ %(f) + %(g).
• If 0 ≤ g(n) ↑ g a.e. in (0, 1), then %(g(n)) ↑ %(g).
• If g ≤ f a.e. in (0, 1), then %(g) ≤ %(f).
• %(χE) <∞.
•
	
E gw dx ≤ C(p)%(g) for some constant C(p), 0 < C(p) < ∞, inde-

pendent of g.

As a consequence, the space defined by the norm

‖f‖p),w := sup
0<ε<p−1

(
ε

1�

0

|f |p−εw dt
) 1
p−ε

is a Banach function space (see e.g. [1]), which we call the weighted grand
Lebesgue space Lp)w (0, 1). Except for the trivial case of w constant, the space
L
p)
w (0, 1) is not rearrangement-invariant.

Remark 3.2. We observe that the extension of grand Lebesgue spaces to
the weighted case has a relevant difference from the case of Lebesgue spaces.
In the latter case, for a weight w, we have f ∈ Lpw (weighted Lebesgue space)
if and only if fw1/p ∈ Lp (unweighted Lebesgue space). This equivalence,
however, is not true in grand Lebesgue spaces as can be seen from the
following example.

Example 3.3. Let α > 0, and choose a weight w(x) = xα. Set f(x)
= xβ, β > −α− 1. It is straightforward to check that f ∈ Lp)w (0, 1). On the
other hand, for any choice of ε, 0 < ε < p− 1,

(fw1/p)p−ε = x(β+α/p)(p−ε),

so that if we choose β < −1−α/p, then the exponent on the RHS becomes
smaller than −1. Therefore (fw1/p)p−ε is not integrable in (0, 1) and so
fw1/p 6∈ Lp)(0, 1).

The above example motivates us to define the space Lp)w (0, 1), related to
the weighted grand Lebesgue space Lp)w (0, 1), as

Lp)w (0, 1) = {f : ‖ |f |w1/p‖p) <∞}.
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Remark 3.4. It can be checked that Lp)w (0, 1) is also a Banach function
space, and Example 3.3 shows that, in general, the spaces Lp)w (0, 1) and
Lp)w (0, 1) are different.

4. The main result. In this section we study the weighted version of
(2.2), i.e.,

(4.1) ‖Mf‖p),w ≤ c‖f‖p),w.

In the framework of the standard Lebesgue spaces, it is well known that

‖Mf‖p,w ≤ c‖f‖p,w
if and only if w satisfies the Ap condition of Muckenhoupt ([15], [19]):

(4.2) sup
I⊂(0,1)

w(I)
|I|

(
1
|I|

�

I

w
− 1
p−1

)p−1

<∞,

where w(I) stands for
	
I w dx. The following result shows that condition

(4.2) is necessary and sufficient for the validity of inequality (4.1) too.

Theorem 4.1. Let 1 < p < ∞ and w be a weight on (0, 1). Then,
in order that the inequality (4.1) be true with c independent of integrable
functions f on (0, 1), it is necessary and sufficient that (4.2) holds, i.e.,
w ∈ Ap.

The proof of Theorem 4.1 uses the following well known lemma, proved
in [15, Lemma 5, p. 214].

Lemma 4.2. If 1 < p < ∞ and w ∈ Ap on (0, 1) with constant Ap(w)
= K, then there exist constants σ > 0 and L > 0 such that w ∈ Ap−ε on
(0, 1) with constant Ap−ε(w) ≤ L, for all 0 < ε < σ.

Proof of Theorem 4.1. Let us first assume that the inequality (4.1) holds.
We prove (4.2).

Fix an interval I ⊂ (0, 1). By the definition of maximal operator we have

(4.3)
�

I

|f | dx ≤M(fχI)(x), x ∈ I.

On the other hand, by our assumption (4.1),

(4.4) ‖M(fχI)‖p),w ≤ c‖fχI‖p),w.

By (4.3) and (4.4),( �
I

|f | dx
)
‖χI‖p),w =

∥∥∥ �
I

|f | dxχI
∥∥∥
p),w
≤ ‖M(fχI)‖p),w ≤ c‖fχI‖p),w
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= c sup
ε

(
ε
�

I

fp−εw dx
) 1
p−ε = c sup

ε

(
ε
�

I

fp−εw
p−ε
p w

ε
p dx

) 1
p−ε

≤ c sup
ε
ε

1
p−ε
( �
I

(fp−εw
p−ε
p )

p
p−ε dx

)1/p( �
I

(w
ε
p )

p
ε dx

) ε
p(p−ε)

= c sup
ε
ε

1
p−ε
( �
I

fpw dx
)1/p( �

I

w dx
) ε
p(p−ε)

= c
( �
I

fpw dx
)1/p

sup
ε
ε

1
p−εw(I)

ε
p(p−ε)

= c
( �
I

fpw dx
)1/p

sup
ε
ε

1
p−εw(I)

1
p−εw(I)−1/p

= cw(I)−1/p
( �
I

fpw dx
)1/p

sup
ε
ε

1
p−εw(I)

1
p−ε

= cw(I)−1/p
( �
I

fpw dx
)1/p
‖χI‖p),w,

i.e., �

I

|f | dx ≤ cw(I)−1/p
( �
I

fpw dx
)1/p

.

Choosing now in the inequality above f = w
− 1
p−1 we have fpw = w

− 1
p−1

and therefore
�

I

w
− 1
p−1 dx ≤ cw(I)−1/p

( �
I

w
− 1
p−1 dx

)1/p

or

w(I)1/p|I|−1
( �
I

w
− 1
p−1 dx

) p−1
p ≤ c,

from which, raising to the power p, we get (4.2).
To prove the converse, we begin by observing that by Lemma 4.2 there

exists 0 < σ < p− 1 such that

‖Mf‖p−ε,w ≤ c‖f‖p−ε,w, ε ∈ (0, σ],

for some constant c independent of f and ε.
As a first step, consider ε greater than σ, namely, fix ε ∈ (σ, p − 1), so

that (p − σ)/(p − ε) > 1. Applying the Hölder inequality with exponents
(p− σ)/(p− ε) and (

p− σ
p− ε

)′
=
p− σ
ε− σ
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and taking into account that(
1− p− ε

p− σ

)
p− σ
ε− σ

= 1

we have

‖Mf‖p−ε,w =
[ 1�

0

(Mf)p−εw dx
] 1
p−ε

=
[ 1�

0

(Mf)p−εw
p−ε
p−σw

1− p−ε
p−σ dx

] 1
p−ε

≤
{ 1�

0

[(Mf)p−εw
p−ε
p−σ ]

p−σ
p−ε dx

} 1
p−σ
[ 1�

0

(w1− p−ε
p−σ )

p−σ
ε−σ dx

] ε−σ
(p−σ)(p−ε)

=
[ 1�

0

(Mf)p−σw dx
] 1
p−σ
( 1�

0

w dx
) ε−σ

(p−σ)(p−ε)
.

Now, taking into account that

ε ∈ (σ, p− 1) ⇒ 0 <
ε− σ

(p− σ)(p− ε)
<
p− 1− σ
p− σ

and that
σ < p− 1 ⇒ (p− 1)σ−

1
p−σ > 1

we have

‖Mf‖p),w = max
{

sup
0<ε≤σ

ε
1
p−ε ‖Mf‖p−ε,w, sup

σ<ε<p−1
ε

1
p−ε ‖Mf‖p−ε,w

}
≤ max

{
sup

0<ε≤σ
ε

1
p−ε ‖Mf‖p−ε,w,

sup
σ<ε<p−1

ε
1
p−ε
[ 1�

0

(Mf)p−σw dx
] 1
p−σ
( 1�

0

w dx
) ε−σ

(p−σ)(p−ε)
}

≤ max
{

1, sup
σ<ε<p−1

ε
1
p−εσ

− 1
p−σ
( 1�

0

w dx
) ε−σ

(p−σ)(p−ε)
}

sup
0<ε≤σ

ε
1
p−ε ‖Mf‖p−ε,w

≤ cmax
{

1, (p− 1)σ−
1

p−σ
(

1 +
1�

0

w dx
) p−1−σ

p−σ
}

sup
0<ε≤σ

ε
1
p−ε ‖f‖p−ε,w

≤ c(p− 1)σ−
1

p−σ
(

1 +
1�

0

w dx
) p−1−σ

p−σ ‖f‖p),w,

and we are done.
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