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Hausdorff dimension of sums of sets with themselves

by

T. W. Körner (Cambridge)

Abstract. There is no non-trivial constraint on the Hausdorff dimension of sums of
a set with itself.

1. Introduction. Throughout this paper we work on the circle T = R/Z
but similar results hold on Tn and Rn. All measures will be Borel measures
and |I| denotes the length of an interval I. If E ⊆ T we write

E[n] = E + · · ·+ E︸ ︷︷ ︸
n

=
{ n∑
j=1

ej : ej ∈ E
}
.

Readers unused to the convention should also note that, if E ⊆ T and δ > 0,
we write

E + [−δ, δ] = {e+ t : e ∈ E, |t| ≤ δ}.
Definition 1.1. The Hausdorff dimension of an E ⊆ T is the infimum

of the set consisting of 0 and all those α ≥ 0 having the following property:
Given any ε > 0, we can find a collection I of closed intervals such that⋃

I∈I
I ⊇ E and

∑
I∈I
|I|α ≤ ε.

Hausdorff dimension is translation invariant and so the Hausdorff dimen-
sion of E[n+1] must be at least as large as the Hausdorff dimension of E[n].

The object of this paper is to prove the following theorem.

Theorem 1.2. Given a sequence αj with 0 ≤ αj ≤ αj+1 < 1, we can
find a closed set E such that E[j] has Hausdorff dimension αj for each j ≥ 1.

Our argument can be easily adapted to prove the following variation.

Theorem 1.3. Given a sequence αj with 0 ≤ αj ≤ αj+1 ≤ 1, we can find
a closed set E such that E[j] has Hausdorff dimension αj for each j ≥ 1.
If αk+1 = 1 we can choose E so that , in addition, E[k+1] = T but E[k]
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has Lebesgue measure zero. Alternatively , we can choose E so that E[j] has
Lebesgue measure zero for all j.

2. Preliminaries. It is often relatively easy to prove upper bounds for
the Hausdorff dimension of a set by providing a suitable cover of intervals,
but relatively hard to prove lower bounds. We obtain lower bounds by using
the following well known result (see Section 6.2 of Falconer’s elegant text [1]).

Theorem 2.1. Let E be a bounded closed set and 1 > α ≥ 0. If we can
find a probability measure µ with support contained in E such that

� �

T2

dµ(x) dµ(y)
|x− y|α

<∞,

then the Hausdorff dimension of E is at least α.

We shall use an elementary observation.

Lemma 2.2. Let 1 > β > α ≥ 0. Let g be a piecewise continuous positive
function. If we define gn, for n1−1/β ≥ 2, by the conditions

gn(x) =
{
ar,n if |x− rn−1| ≤ n−1/β, r ∈ Z,
0 otherwise,

where

ar,n =
(r+1/2)/n�

(r−1/2)/n

g(x) dx,

then � �

T2

gn(x)gn(y)
|x− y|α

dx dy →
� �

T2

g(x)g(y)
|x− y|α

dx dy

as n→∞.

Proof. We show that, in fact,
�

T

gn(x)
|x− y|α

dx→
�

T

g(x)
|x− y|α

dx

uniformly in y. To this end, observe that, if 10−1 > δ > 0, then
�

|x−y|≥δ

gn(x)
|x− y|α

dx→
�

|x−y|≥δ

g(x)
|x− y|α

dx

uniformly as n→∞. Next note that
�

|x−y|≤δ

g(x)
|x− y|α

dx ≤ ‖g‖∞
�

|x|≤δ

|x|α dx =
2‖g‖∞
1− α

δ1−α → 0
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as δ → 0. Finally observe that simple estimates give |ar,n| ≤ 2n1/β−1‖g‖∞
and

�

|x−y|≥δ

gn(x)
|x− y|α

dx ≤ 2‖g‖∞n1/β−1
�

|x|≤8n−1/β

1
|x|α

dx+ 2‖g‖∞
∑

1≤r≤nδ

nα

|r|α

≤ 2‖g‖∞n1/β−1 81−α

1− α
n−(1−α)/β +

4‖g‖∞
1− α

δ1−α

≤ 16‖g‖∞
1− α

nα/β−1 +
4‖g‖∞
1− α

δ1−α → 0

as δ → 0 and n→∞.

We shall prove Theorem 1.2 by a Baire category argument. We use the
Hausdorff metric dF defined in the next lemma.

Definition 2.3. Consider the space F of non-empty closed subsets of T.
We set

dF (E,F ) = sup
e∈E

inf
f∈F
|e− f |+ sup

f∈F
inf
e∈E
|e− f |.

It is well known that (F , dF ) is a complete metric space. (See, for ex-
ample, [2, Chapter II, §21, VII and Chapter III, §33, IV].) We need the
following observation.

Lemma 2.4. Let j be a strictly positive integer and let K > 0. Sup-
pose that E(n) is a closed subset of T such that there exists a probability
measure µn with

suppµn ⊆ E(n)[j] and
� �

T2

dµn(x) dµn(y)
|x− y|α

≤ K.

Then, if E ∈ F and dF (E(n), E) → 0 as n → ∞, there exists a probability
measure µ with

suppµ ⊆ E[j] and
� �

T2

dµ(x) dµ(y)
|x− y|α

≤ K.

Proof. Since the set of probability measures is weak-star compact, we
may suppose, by extracting a subsequence, that µn → µ weak-star. Since
dF (E(n), E)→ 0 we have dF (E(n)[j], E[j])→ 0 and suppµ ⊆ E[j]. Since

� �

T2

dµ(x) dµ(y)
|x− y|α

≤ lim inf
n→∞

� �

T2

dµn(x) dµn(y)
|x− y|α

≤ K

we are done.

Lemma 2.5. Let 0 ≤ αj ≤ αj+1 < 1 and Kj > 0. Let G be the collec-
tion of closed sets E such that , for each j ≥ 1, there exists a probability
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measure µj with

suppµj ⊆ E[j] and
� �

T2

dµj(x) dµj(y)
|x− y|αj

≤ Kj .

Then G is a closed subset of (F , dF ).

Proof. Immediate from Lemma 2.4.

As matters stand, G could be empty. However, if E is the union of a
finite collection of closed intervals (for example if E = T), then, if we take
τ to be the uniform probability measure on E and set

Kj = 1 +
� �

T2

dτ(x) dτ(y)
|x− y|αj

,

we will have E ∈ G.
From now on, the αj will form a fixed sequence satisfying the conditions

of Lemma 2.5 and the Kj will be a fixed sequence chosen so that

Kj >
� �

T2

1
|x− y|αj

dx dy.

If dG is the restriction of the metric dF to the space G, we now know that
(G, dG) is complete and non-empty. Theorem 1.2 thus follows from its Baire
category version.

Theorem 2.6. The set of E ∈ G such that E[j] has Hausdorff dimension
αj for all j ≥ 1 is of second category in (G, dG).

We can now reduce the proof of Theorem 2.6 to the following lemma.

Lemma 2.7. Let η > 0 and n ≥ 1. Then the set E of E ∈ G such that
there exist a finite collection I of closed intervals with⋃

I∈I
I ⊇ E[n] and

∑
I∈I
|I|αn+η < η

is dense in (G, dG).

We supplement Lemma 2.7 with a simple observation.

Lemma 2.8. Let η > 0 and n ≥ 1. Then the set E of E ∈ G such that
there exist a finite collection I of closed intervals with⋃

I∈I
I ⊇ E[n] and

∑
I∈I
|I|αn+η < η

is open in (G, dG).

Proof. Observe that if⋃
I∈I

I ⊇ E[n] and
∑
I∈I
|I|αn+η < η,
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then, if θ > 0 is small enough,∑
I∈I

∣∣(I + [−θ, θ])
∣∣αn+η

< η and
⋃
I∈I

(I + [−θ, θ]) ⊇ F[n]

whenever d(F,E) < θ/n. Thus E is open.

Proof of Theorem 2.6 from Lemma 2.7. Let us write E(j,m) for the set
of E ∈ G such that there exist a finite collection I(j,m) of closed intervals
with

(F)
⋃

I∈I(j,m)

I ⊇ E[j] and
∑

I∈I(j,m)

|I|αj+1/m < 1/m.

By Lemmas 2.7 and 2.8, I(j,m) is open and dense, so

H =
∞⋂
j=1

∞⋂
m=1

E(j,m)

is of second category in (G, dG).
If E ∈ H and j ≥ 1 then the definition of G together with Theorem 2.1

tells us that E[j] has Hausdorff dimension at least αj . However, E[j] also
obeys the conditions given in (F), so E[j] has Hausdorff dimension at most
αj and we are done.

3. Proof of the main lemma. Up to now, the use of Baire category
has allowed the argument to flow smoothly. We get our hands dirty in the
statement and proof of Lemma 2.7, which forms the central step of our
argument.

As often happens with complicated constructions, the reader may find it
easiest first to get a rough idea of how Lemma 3.2 follows from Lemma 3.1
and Lemma 2.7 from Lemma 3.2. It may also be helpful to run through the
proof of Lemma 3.1 with m = 0 and then look at how much of the proof of
Lemma 2.7 goes through with m = 0.

Lemma 3.1. Let δ, η > 0, and n,m ≥ 1. Write

Λ = {r : n+m ≥ r ≥ 1}
Suppose E1, . . . , En+m are each the finite union of non-trivial closed inter-
vals such that whenever L ⊆ Λ, and L contains j elements with n ≥ j ≥ 1,
there exists a piecewise continuous positive gL : T→ R with

supp gL ⊆
( ⋃
r∈L

Er

)
[j]
,

�

T
gL(x) dx = 1,

� �

T2

gL(x)gL(y)
|x− y|αj

dx dy < Kj .

Then, given any subset P of Λ containing exactly n members, we can find
Ẽ1, . . . , Ẽn+m, each the finite union of non-trivial closed intervals, together
with piecewise continuous positive functions g̃L : T → R corresponding to
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every L ⊆ Λ containing at least one and at most n elements, having the
following properties:

(i) dF (Er, Ẽr) < δ for all 1 ≤ r ≤ n+m.
(ii)

∑
r∈Q Ẽr ⊇

∑
r∈QEr whenever Q ⊆ Λ contains at least n+ 1 mem-

bers.
(iii) We can find a finite collection I(P ) of intervals such that⋃

I∈I(P )

I ⊇
( ⋃
r∈P

Ẽr

)
[n]

and
∑

I∈I(P )

|I|αn+η < η

(
n+m

n

)−1

.

(iv) If L ⊆ Λ contains j points with n ≥ j ≥ 1, then

supp g̃L⊆
( ⋃
r∈L

Ẽr

)
[j]
,

�

T
g̃L(x) dx= 1,

� �

T2

g̃L(x)g̃L(y)
|x− y|αj

dx dy<Kj .

Proof. Let d(x,E) = infe∈E |x− e|. We set βn = αn + η/2, take

Ẽr =

{
Er + [−δ/2, δ/2] if r /∈ P ,⋃
d(q/N,Er)≤δ/2[q/N −N−1/βn , q/N +N−1/βn ] if r ∈ P,

and define g̃L by the conditions

g̃L(x) =
{
aL,q,N if |x− q/N | ≤ N−1/βn ,
0 otherwise,

where

aL,q,N =
(q+1/2)/N�

(q−1/2)/N

gL(x) dx.

Provided the integer N is large enough, conclusions (i) and (ii) hold
automatically whilst (iv) follows from Lemma 2.2. Finally, we observe that

N⋃
q=1

[q/N − nN−1/βn , q/N + nN−1/βn ] ⊇
( ⋃
r 6=p

Ẽr

)
[n]

and
N∑
q=1

∣∣[q/N − nN−1/βn , q/N + nN−1/βn ]
∣∣αn+η

= N · (2nN−1/βn)αn = (2n)αn+ηN−η/(2βn) < η

provided that N is large enough.

It is easy to deduce a very slightly stronger result.

Lemma 3.2. Let δ, η > 0, and n,m ≥ 1. Write

Λ = {r : n+m ≥ r ≥ 1}
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Suppose E1, . . . , En+m are each the finite union of non-trivial closed inter-
vals such that whenever L ⊆ Λ, and L contains j elements with n ≥ j ≥ 1,
there exists a piecewise continuous positive gL : T→ R with

supp gL ⊆
( ⋃
r∈L

Er

)
[j]
,

�

T
gL(x) dx = 1,

� �

T2

gL(x)gL(y)
|x− y|αj

dx dy < Kj .

Then we can find Ẽ1, . . . , Ẽn+m, each the finite union of non-trivial closed
intervals, together with piecewise continuous positive functions g̃L : T →
R corresponding to every L ⊆ Λ containing at least one and at most n
elements, having the following properties:

(i) dF (Er, Ẽr) < δ for all 1 ≤ r ≤ n+m.
(ii)

∑
r∈Q Ẽr ⊇

∑
r∈QEr whenever Q ⊆ Λ contains at least n+ 1 mem-

bers.
(iii) Whenever P ⊆ Λ contains exactly n members there exists a finite

collection I(P ) of intervals such that⋃
I∈I(P )

I ⊇
( ⋃
r∈P

Ẽr

)
[n]

and
∑

I∈I(P )

|I|αn+η < δ

(
n+m

m

)−1

.

(iv) If L ⊆ Λ contains j points with n ≥ j ≥ 1, then

supp g̃L⊆
(⋃
r∈L

Ẽr

)
[j]
,

�

T
g̃L(x) dx= 1,

� �

T2

g̃L(x)g̃L(y)
|x− y|αj

dx dy<Kj .

Proof. Apply Lemma 3.1 repeatedly with P every possible subset of Λ
with n elements.

We need one further remark.

Lemma 3.3. Suppose 1 > δ > 0 and E ∈ G. Then we can find F ∈ G with
dG(E,F ) < δ such that F is the finite union of non-trivial closed intervals
and there exist piecewise continuous positive gj : T→ R such that

�

T
gj(x) dx = 1, supp gj ⊆ E[j],

� �

T2

gj(x)gj(y)
|x− y|αj

dx dy < Kj

for all j ≥ 1.

Proof. Let
∆(x) = max(0, 2δ−1(1− 2δ−1|x|)).

We know that there exist probability measures µj with

suppµj ⊆ E[j] and
� �

T2

dµj(x) dµj(y)
|x− y|αj

≤ Kj ,
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and we have chosen
Kj >

� �

T2

1
|x− y|αj

dx dy.

Thus, if we set F = E + [δ/2,−δ/2] and gj = ∆ ∗ µj , we have the required
result.

Proof of Lemma 2.7. By Lemma 3.3 it suffices to show that given n ≥ 1,
δ, η > 0 and E satisfying the conclusion of Lemma 3.3, we can find an F ∈ E
with d(F,E) < δ.

Since E contains non-trivial intervals, we can find an m ≥ 1 such that
E[n+m] = T. Write Er = E for 1 ≤ r ≤ n+m,

Λ = {r : n+m ≥ r ≥ 1}
and, if L ⊆ Λ contains j elements with n ≥ j ≥ 1, set gL = gj .

Now choose Ẽr and g̃L so that the conclusions of Lemma 3.2 hold. We
set F =

⋃n+m
r=1 Ẽr. By Lemma 3.2(i),

dF (E, Ẽr) < δ

for all r and so dF (E,F ) < δ. If we write Γ for the collection of subsets of Λ
with exactly n elements then⋃

P∈Γ

( ⋃
r∈P

Ẽr

)
[n]

=
( n+m⋃
r=1

Ẽr

)
[n]

= F

so, by Lemma 3.2(iii),⋃
P∈Γ

⋃
I∈I(P )

I ⊇ F and
∑
P∈Γ

∑
I∈I(P )

|I|αn+η < δ.

Thus, if F ∈ G, then F ∈ E .
In order to show that F ∈ G, we shall find piecewise continuous positive

functions fj : T→ R such that
�

T
fj(x) dx = 1, supp fj ⊆ F[j],

� �

T2

fj(x)fj(y)
|x− y|αj

dx dy < Kj

for all j ≥ 1. We split our task into three parts.
If 1 ≤ j ≤ n, we set fj = g̃{1,...,j} and use Lemma 3.2(iv), together with

the observation that ( j⋃
r=1

Ẽr

)
[j]
⊆
( j⋃
r=1

F
)

[j]
= F[j].

If n+ 1 ≤ j ≤ n+m, we set fj = gj and use Lemma 3.2(ii) to show that

supp fj = supp gj ⊆ E[j] =
j∑
r=1

E =
j∑
r=1

Er ⊆
j∑
r=1

Ẽr ⊆ F[j].
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If j ≥ n+m+ 1, we observe that the same calculation shows that

T = E[n+m] ⊆ F[n+m],

so F[n+m] = T and F[j] = T. We set fj = 1.

I should like to thank the referee for several improvements to the pre-
sentation.
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