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On the reduction of pairs of bounded closed convex sets

by

J. Grzybowski (Poznań), D. Pallaschke (Karlsruhe) and
R. Urbański (Poznań)

Abstract. Let X be a Hausdorff topological vector space. For nonempty bounded
closed convex sets A, B, C, D ⊂ X we denote by A u B the closure of the algebraic sum
A + B, and call the pairs (A, B) and (C, D) equivalent if A u D = B u C. We prove
two main theorems on reduction of equivalent pairs. The first theorem implies that, in
a finite-dimensional space, a pair of nonempty compact convex sets with a piecewise
smooth boundary and parallel tangent spaces at some boundary points is not minimal.
The second theorem generalizes and unifies two main techniques of reduction of pairs of
compact convex sets.

1. Introduction. Let X be a locally convex vector space and denote
by B(X) the set of all nonempty bounded closed convex subsets of X.
L. Hörmander [7] and H. R̊adström [15] investigated the space B2(X)/∼,
where B2(X) = B(X)×B(X) and the equivalence relation is defined by

(A,B) ∼ (C,D) ⇔ AuD = B u C,
where

AuB = cl({x = a+ b | a ∈ A and b ∈ B})
is the Minkowski sum, which is the closure of the algebraic sum ofA andB.The
quotient space B2(X)/∼ is a linear space, called the Hörmander–R̊adström
lattice. The element of B2(X)/∼ which contains the pair (A,B) is denoted
by [A,B].

There exists an interesting application of the Hörmander–R̊adström lat-
tice in the quasidifferentiable calculus of V. F. Demyanov and A. M. Rubinov
(see [1], [2] and [9]). For a large class of nonsmooth functions, at any point of
the domain of the function one defines a set of generalized gradients which
is an element of the Hörmander–R̊adström lattice.

This application gave rise to the investigation of inclusion minimal repre-
sentatives for elements of the R̊adström–Hörmander lattice. Let us introduce
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the following order:

(A,B) ≤ (C,D) ⇔ A ⊂ C and B ⊂ D.
Then (A0, B0) ∈ [A,B] is an inclusion minimal representative of [A,B] if it
is a minimal element in [A,B]. We also call (A0, B0) a minimal pair.

A key to the investigation of inclusion minimal representatives is the
order cancellation law, first proved by H. R̊adström [15] for nonempty com-
pact convex sets, and by R. Urbański [18] for all nonempty bounded closed
convex sets. Because of its frequent use in this paper, we recall it here:

Theorem 1.1 (Order cancellation law). Let X be a topological vector
space. Then for A,B,C ∈ B(X) we have the implication

AuB ⊂ C uB ⇒ A ⊂ C.
A set A ∈ B(X) is called a summand of B ∈ B(X) if there exists

C ∈ B(X) such that A u C = B. Obviously the following characterization
of inclusion minimal representatives follows from the order cancellation law:

The pair (A0, B0) ∈ [A,B] is an inclusion minimal representative if and
only if there exists no proper bounded closed convex subset K ⊂ A0 u B0

such that A0 and B0 are summands of K.

Minimal pairs have many interesting properties which have been studied
in a series of papers (see [3]–[6], [10]–[13] and [17]). For instance in the
2-dimensional case, equivalent minimal pairs of compact convex sets are
uniquely determined up to translations (see [4], [17]), which is no longer
true in the 3-dimensional case. A continuous family of equivalent minimal
pairs of compact convex sets which are not related by a translation is given
in [11]. J. Grzybowski and R. Urbański [6] showed, under the assumption of
the continuum hypothesis, that if there exist two equivalent minimal pairs
of compact convex sets which are not related by a translation, then there
exists a continuous family of equivalent minimal pairs which are also not
related by translations. A B

A+B
Fig. 1.1
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An interesting example is the pair (A,B) of two orthogonal lenses in R2.
It is known (see [13]) that their Minkowski sum is the unit disk and that
there exists no proper convex subset K of the unit disk such that both A
and B are summands of K.

Hence the pair (A,B) is minimal. It follows from a more sophisticated
argument (see [13, Chapter 4]) that the pair (A,C), where C arises by
turning B through π

4 , is not minimal.A BC
K = A+B = A�B

Fig. 1.2

This is proved by the reduction method for pairs of compact convex sets
(see [13, Theorem 4.7.3]), according to which all parts of these two sets
which can be translated onto each other can be cut off (see Figure 1.3).

A
BCy + C

K = A+B = A�B
Fig. 1.3

The main topic of this paper is the investigation of pairs of convex sets
with smooth touching boundaries.

2. Notations and properties of convex sets. For a topological vec-
tor space X let us denote by K(X) ⊂ B(X) the set of all nonempty compact
convex subsets of X. For A ∈ B(X) and λ ∈ R we put λA = {x = λa |
a ∈ A}. Moreover for A,B ∈ B(X) we define A∨B = cl conv(A∪B), where
“cl conv” denotes the closed convex hull. It is easy to see that A ∨B is the



4 J. Grzybowski et al.

supremum of A,B ∈ B(X) with respect to the order given by inclusion.
Moreover, for a subset A ⊂ X, we denote by ∂A the boundary of A.

Observe that for compact convex sets, the Minkowski sum coincides with
the algebraic sum, i.e., for A,B ∈ K(X) we have AuB = A+B.

We will use the abbreviation AuB ∨C for Au (B ∨C), and C + d for
C + {d}, for any A,B,C ∈ B(X) and d ∈ X. For a, b ∈ X the interval with
end points a and b will be denoted by [a, b] = {a} ∨ {b}.

A convex subset B of a convex set A ⊂ X is called an extreme subset if
for any x, y ∈ A the condition tx+ (1− t)y ∈ B for some t ∈ (0, 1) implies
that x, y ∈ B. An extreme subset which consists of a single point is called
an extreme point, and E(A) denotes the set of extreme points of A.

A convex set which is the convex hull of finitely many points is called a
polytope. The set of all polytopes of a vector space X is denoted by P(X).
An extreme subset of a polytope is called a face.

If X is a topological vector space and X∗ its dual, then for A ∈ K(X)
and f ∈ X∗ we denote by

Hf (A) = {z ∈ A | f(z) = max
y∈A

f(y)}
the (maximal) face of A with respect to f.

We will now state some further fundamental properties of convex sets.
We begin with the Pinsker formula (see [14], [13]), which states the distribu-
tivity between the supremum operation and the Minkowski sum.

Theorem 2.1 (Pinsker formula). Let X be a topological vector space.
Then for all A,B,C ∈ B(X),

(Au C) ∨ (B u C) = C u (A ∨B).

From the order cancellation law and the Pinsker formula it follows that
(B(X),u,≤) is an ordered commutative semigroup with respect to the Min-
kowski sum and the order induced by inclusion, which satisfies the order
cancellation law. An abstract characterization of such semigroups is given
in [8] and [16].

Let us now formulate the separation law. Let A,B, S ∈ B(X). The set S
is said to separate A and B if [a, b]∩S 6= ∅ for all a ∈ A and b ∈ B. This is a
natural generalization of the separation of two disjoint sets by a hyperplane.
Note that A and B may intersect. If S separates A and B, then A∩B ⊂ S.
The definition is illustrated in Figure 2.1.

Theorem 2.2. Let X be a topological vector space and A,B ∈ B(X).
Then the following statements are equivalent :

(i) A ∪B is convex.
(ii) A ∩B separates A and B.
(iii) AuB = A ∨B uA ∩B and A ∩B 6= ∅.
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A BS
a

bx
Fig. 2.1

Theorem 2.2 plays a central role in further investigations because it is
an algebraic characterization of the geometric situation when the union of
two bounded closed convex subsets is again convex, or equivalently, when
their intersection separates both sets.

Theorem 2.3 (Separation law). Let A,B be nonempty subsets of a
topological vector space X and assume that A ∨ B ∈ B(X). Moreover , let
S ∈ B(X). Then S separates A and B if and only if

A+B ⊂ A ∨B u S.

It is proved in [12] (see also [13]) that the separation law is equivalent
to the order cancellation law.

We now state another two useful properties. The first is the formula for
maximal faces of the Minkowski sum (see [20], [13]):

Proposition 2.4. Let X be a topological vector space, f ∈ X∗ and
A,B ∈ K(X). Then

Hf (A+B) = Hf (A) +Hf (B).

The other is the additivity of convex hull (see [13]):

Proposition 2.5. Let X be a vector space and A,B ⊂ X. Then

convA+ convB = conv(A+B).

3. Pairs with locally smooth boundaries. First we discuss an ex-
tension property for equivalent pairs of bounded closed convex sets. Given
two equivalent pairs (A1, B1) and (A′1, B′1) of nonempty bounded closed
convex sets. Then any two bounded closed convex sets A2 and B2 for which
(A1 ∪A2, B1 ∪B2) and (A′1 ∪A2, B

′
1 ∪B2) are also pairs of bounded closed

convex sets must satisfy condition (ii) of Theorem 2.2. If the separating inter-
sections are equal, as in Figure 3.1, then the extended pairs (A1∪A2, B1∪B2)
and (A′1 ∪A2, B

′
1 ∪B2) are also equivalent.

Proposition 3.1. Let X be a topological vector space and let A,A1, A2,
A′, A′1, B,B1, B2, B

′, B′1 ∈ B(X) be such that A = A2 ∪ A1, A′ = A2 ∪ A′1,
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A1 A′
1

A2

A1 ∩ A2
A

B1 B′
1

B2

B1 ∩B2
B

Fig. 3.1

B = B2 ∪B1 and B′ = B2 ∪B′1. Moreover , assume that A2 ∩A1 = A2 ∩A′1
and B2 ∩B1 = B2 ∩B′1. If (A1, B1) ∼ (A′1, B′1), then (A,B) ∼ (A′, B′).

Proof. By Theorem 2.2 we have

AuB′ uA2 ∩A1 uB uB2 ∩B1 = A2 ∪A1 uA2 ∩A1 uB2 ∪B′1 uB2 ∩B′1
= A2 uA1 uB2 uB′1 = A2 uA′1 uB2 uB1

= A2 ∪A′1 uA2 ∩A′1 uB2 ∪B1 uB2 ∩B1

= A′ uB uA2 ∩A1 uB2 ∩B1.

Applying the cancellation law we obtain AuB′ = A′ uB.

The situation of the next proposition is illustrated in Figure 3.2.

C + K

Kǫ

C + Kǫ

K

H−

Fig. 3.2

Proposition 3.2. Let C ∈ K(Rn) and K = B(0, r) ⊂ Rn be the closed
Euclidean ball with center 0 and radius r > 0. Moreover , let f ∈ (Rn)∗ with
‖f‖ = 1 and max f(C+K) > 0. Put H− = f−1((−∞, 0]). Then there exists
an ε > 0 such that (C +K) ∩H− ⊂ C +Kε, where Kε = {x ∈ K | f(x) ≤
r − ε}.

Proof. First we will prove that there exists an ε > 0 with ∂(C + K) ∩
H− ⊂ C +Kε.

Suppose that this is not true. Then for every k ∈ N there exists a point
xk ∈ ∂(C + K) ∩H− which does not belong to C + K1/k. Moreover, there
exists fk ∈ (Rn)∗ such that xk ∈ Hfk

(C + K). By Proposition 2.4 we have
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Hfk
(C+K) = Hfk

(C)+Hfk
(K), where Hfk

(K) is a singleton {yk}, because
the unit ball is strictly convex. Since yk /∈ K1/k it follows that yk tends to y
with {y} = Hf (K). From the strict convexity of the unit ball it also follows
that f̄k = 〈yk/r, ·〉 tends to f̄ = 〈y/r, ·〉.

Since ∂(C+K)∩H− is compact, there exists a sequence (km) such that
xkm tends to some x ∈ ∂(C +K) ∩H−. Note that fkm = max fkm(C +K)
tends to both f(x) and max f(C + K). Hence f(x) > 0, which contradicts
the fact that x ∈ H−.

Now let x ∈ (C+K)∩H− and put Hx = f−1(f(x)). Then A = (C +K)
∩ Hx is a nonempty compact convex subset of the affine hyperplane Hx.
Since A is equal to the convex hull of ∂A, and ∂A ⊂ ∂(C + K) ∩ H−, it
follows that x ∈ conv(∂(C+K)∩H−). Therefore, (C+K)∩H− ⊂ C+Kε.

Theorem 3.3. Let A,A1, B,B1, C,D ∈ K(Rn), K = B(0, r) and let
f ∈ (Rn)∗ with ‖f‖ = 1, max f(A) > 0 and max f(B) > 0. Put H− =
f−1((−∞, 0]). Assume that A1 = A∩H−, B1 = B ∩H−, A = A1 ∪ (C+K)
and B = B1 ∪ (D +K). Then the pair (A,B) is not minimal.

Proof. Applying Proposition 3.2 we obtain (C+K)∩H− ⊂ C+Kε and
(D+K)∩H− ⊂ D+Kε for some ε > 0, with Kε = {x ∈ K | f(x) ≤ r− ε}.
Now put A2 = C +K, A′2 = C +Kε, B2 = D+K and B′2 = D+Kε. Then
A1 ∩ A2 = A1 ∩ A′2, B1 ∩ B2 = B1 ∩ B′2 and (A2, B2) ∼ (C,D) ∼ (A′2, B′2).
Applying Proposition 3.1 we obtain (A,B) ∼ (A′, B′). Since A′ ⊂ A and

max f(A′) = max f(C) + max f(Kε) < max f(C) + max f(K) = f(A),

it follows that A′ 6= A and so the pair (A,B) is not minimal.

The geometric meaning of Theorem 3.3 is shown in Figure 3.3.

C + K

B1

D + K

A1

A B

H−

Fig. 3.3

Definition 3.4. A set A ∈ K(Rn) is called locally ε-smooth at x0 ∈ ∂A
if there exists a neighborhood U of x0 such that for every x ∈ A ∩ U there
exists y ∈ Rn with x ∈ y + εBn ⊂ A, where Bn = B(0, 1) ⊂ Rn.

From Theorem 3.3 we deduce the first main result:
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Theorem 3.5. Let A,B ∈ K(Rn) and let A be locally ε-smooth at x0 ∈
∂A and B be locally ε-smooth at y0 ∈ ∂B. If there exists an f ∈ (Rn)∗ with
Hf (A) = {x0} and Hf (B) = {y0}, then the pair (A,B) is not minimal.

Proof. Assume that f(x0) = f(y0) = 0. Let ε > 0 and choose neigh-
borhoods U and V of x0, y0 such that for all x ∈ U ∩ ∂A we have x ∈
z(x)+εBn ⊂ A and for all y ∈ V ∩∂B we have x ∈ w(y)+εBn ⊂ B, for some
z(x), w(y) ∈ Rn. There exists δ > 0 such that ∂A ∩ f−1([−δ, 0]) ⊂ U and
∂B ∩ f−1([−δ, 0]) ⊂ V. Now, let H− = f−1((−∞,−δ]), C = cl conv{z(x) |
x ∈ ∂A ∩ U} and D = cl conv{w(y) | y ∈ ∂B ∩ V }. Then

A = (A ∩H−) ∪ (C + εBn) and B = (B ∩H−) ∪ (D + εBn),

and it follows from Theorem 3.3 that the pair (A,B) is not minimal.

Theorem 3.5 implies that the pair (A,C) shown in Figure 1.2 is not
minimal. In the following example we consider pairs of rotated lenses.

Example 3.6. For x ∈ Rn, n ≥ 2, with ‖x‖ = 1/
√

2 we define the
(n− 2)-dimensional sphere

S(x) = {y ∈ Rn | ‖y − x‖ = ‖y + x‖ = 1}
= {y ∈ Rn | 〈x, y〉 = 0 and ‖y‖ = 1/

√
2}.

The sphere S(x) has center 0 and radius 1/
√

2 and is contained in the
hyperplane perpendicular to x. Define a cigar to be

C(x) =
⋂
{y + Bn | y ∈ S(x)}

and a flying saucer to be

F (x) = (x+ Bn) ∩ (−x+ Bn).

Notice that C(−x) = C(x) and F (−x) = F (x). The perpendicular pro-
jection of the pair (F (x), C(x)) onto any two-dimensional subspace of Rn

containing x is a pair of lenses illustrated in Figure 1.1. Since any such
projection is a minimal pair, the pair (F (x), C(x)) itself is minimal.

-

6 r

r

r rx0 y0
x

−x

F (x)
-

6

r

r

y

−y

C(x)

Fig. 3.4
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Now we prove that for y 6= ±x the pair (F (x), C(y)) is not minimal.
Since ‖x‖ = ‖y‖ = 1/

√
2 the vectors (x+ y)/‖x+ y‖ and (x− y)/‖x− y‖

are orthogonal and of unit length. Hence the vector

z =
1√
2

(
x+ y

‖x+ y‖ +
x− y
‖x− y‖

)
is also of unit length. Put f = 〈 · , z〉. Let β = ∠(x, x + y). Notice that
β ∈ (0, π/2). Then ∠(x, x− y) = π/2− β. Hence ∠(x, z) < π/4. Therefore,
x0 = Hf (F (x)) = Hf (−x + Bn) = −x + z /∈ S(x). Since for each u ∈
∂F (x) \S(x) and ε > 0 the set F (x) is locally ε-smooth at u, it follows that
F (x) is ε-smooth at x0.

Set

w =
2〈x, y〉y − x√

2‖2〈x, y〉y − x‖ .

Notice that w ⊥ y and ‖w‖ = 1/
√

2. We have β = ∠(y, x + y) and
∠(y, x− y) = π/2 + β. Then ∠(y, z) = β + π/4 ∈ (π/4, 3π/4). There-
fore, y0 = Hf (C(y)) = Hf (w + Bn) = w + z 6= ±y. Since for each u ∈
∂C(y) \ {y,−y} and ε > 0 the set C(y) is locally ε-smooth at u, we see
that C(y) is ε-smooth at y0. It now follows from Theorem 3.5 that the pair
(F (x), C(y)) is not minimal.

4. Reduction by subtraction. Let X be a topological vector space
and A,B,C ∈ B(X). Then (AuC,BuC) ∼ (A,B), which means that a pair
can be reduced by subtracting common summands. If X is locally convex
there exists another reduction technique by cutting off by a hyperplane the
common parts of A and B which can be translated onto each other by a
vector (see [13, Theorem 4.7.3]). In this section we unify both reduction
techniques.

Theorem 4.1. Let A,A1, A2, B,B1, B2, C,D, F,G ∈ B(X) with:

(i) A = A1 ∪A2, B = B1 ∪B2, where Ai, Bi ∈ B(X),
(ii) A1 = C u F , B1 = D u F ,

(iii) A1 ∩A2 ⊂ C uG, B1 ∩B2 ⊂ D uG, where G ⊂ F.
Then (A,B) ∼ (A2 ∪ (C uG), B2 ∪ (D uG)).

Remark 4.2. The decomposition of the sets A and B in Theorem 4.1
is illustrated in Figure 4.1.

Proof. Notice that A1 ∩A2 ⊂ (C uG) ∩A2 ⊂ (C u F ) ∩A2 = A1 ∩A2.
Since C u G ⊂ A1, the set A1 ∩ A2 separates C u G and A2, and since
A1 ∩ A2 = (C uG) ∩ A2, this implies that C uG and A2 are separated by
(C uG) ∩ A2. Hence Theorem 2.2(ii) implies that (C uG) ∪ A2 is convex.
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A2

A1 = C + F

C + G

A

B2

D + G
B1 = D + F

B

Fig. 4.1

Applying now Theorem 2.2(iii) to A1 ∪A2 and (C uG) ∪A2 we obtain

F u (C uG) ∪A2 uA1 ∩A2 = F u C uGuA2

= GuA1 uA2 = GuA1 ∪A2 uA1 ∩A2

= GuAuA1 ∩A2.

Now it follows from the cancellation law that F u (C u G) ∪ A2 = G u A.
By a similar argument, F u (D uG) ∪B2 = GuB. Therefore,

((C uG) ∪A2, A) ∼ (G,F ) ∼ ((D uG) ∪B2, B),

and consequently (A,B) ∼ (A2 ∪ (C uG), B2 ∪ (D uG)).

Theorem 4.3. Let X be a locally convex vector space, A,B,C,D, F ∈
B(X) and f ∈ X∗ \ {0} with 0 ∈ f(A) ∩ f(B). Put H+ = f−1([0,∞)). If

F u C = A ∩H+ and F uD = B ∩H+,

then (A,B) ∼ (A ∩H− ∪ (C uH−f (F )), B ∩H− ∪ (D uH−f (F )).

Proof. Put A1 = A ∩H−, A2 = A ∩H+, B1 = B ∩H−, B2 = B ∩H+

and G = H−f (F ). Then

A1 ∩A2 = H−f (A2) = H−f (F u C) = H−f (F ) uH−f (C) ⊂ Gu C

and hence A1∩A2 ⊂ GuC. In a similar way we deduce that B1∩B2 ⊂ GuD.
Now the assertion follows from Theorem 4.1.

Remark 4.4. Theorem 4.3 provides a combined reduction technique by
subtracting the same summand and removing the common part of both sets
which can be cut off by a hyperplane. It is the second main result of this
paper and unifies and generalizes the two main known reduction techniques
for pairs of bounded closed convex sets (see [13]).

Example 4.5. Let T be a triangle in R2 × {0} with center (0, 0, 0),
S = −T, a = (0, 0, 1), b = (0, 0,−1) ∈ R3, and H+ = R2 × [0,∞). Define
A = b ∨ 3T ∨ (2a+ T ) and B = b ∨ (2T + S) ∨ (2a+ S).

Note that A ∩H+ = F + T and B ∩H+ = F + S, where F = 2T ∨ 2a.
Then the pair (A,B) is equivalent to (A ∩H−, B ∩H−).
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q q
B

A

Fig. 4.2

rF

Fig. 4.3

q q
B ∩H−

A ∩H−

Fig. 4.4
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