STUDIA MATHEMATICA 189 (1) (2008)

Non-separable Banach spaces with non-meager Hamel basis

by

TARAS BANAKH (Kielce and Lviv), MIRNA DŽAMONJA (Norwich) and LORENZ HALBEISEN (Bern)

Abstract. We show that an infinite-dimensional complete linear space X has:

- a dense hereditarily Baire Hamel basis if $|X| \leq \mathfrak{c}^+$;
- a dense non-meager Hamel basis if $|X| = \kappa^{\omega} = 2^{\kappa}$ for some cardinal κ .

According to Corollary 3.4 of [BDHMP] each infinite-dimensional separable Banach space X has a non-meager Hamel basis. This is a special case of Theorem 3.3 of [BDHMP], asserting that an infinite-dimensional Banach space X has a non-meager Hamel basis provided $2^{d(X)} = d(X)^{\omega}$, where d(X) is the density of X. Having in mind those results the authors of [BDHMP] asked if each infinite-dimensional Banach space has a non-meager Hamel basis. In this paper we shall give two partial answers to this question generalizing the abovementioned Corollary 3.4 and Theorem 3.3 of [BDHMP] in two directions.

THEOREM 1. Each infinite-dimensional linear complete metric space X of size $|X| \leq \mathfrak{c}^+$ has a dense hereditarily Baire Hamel basis.

We recall that a topological space X is *hereditarily Baire* if each closed subspace F of X is *Baire* (in the sense that the intersection of a countable family of open dense subsets of F is dense in F).

Our next result treats Banach spaces of even larger size. We define a subset A of a topological space X to be κ -perfect for some cardinal κ if each non-empty open set U of A has size $|U| \geq \kappa$. Note that a Hausdorff space X is ω -perfect if and only if it has no isolated points (so is perfect in the standard sense).

It is well-known (see [BDHMP, 2.8]) that each Banach space X has size $|X| = d(X)^{\omega}$. Our second principal result generalizes Theorem 3.3 of [BDHMP].

[27]

²⁰⁰⁰ Mathematics Subject Classification: 46B15, 03E75.

Key words and phrases: Hamel basis, Banach space, Baire space.

Mirna Džamonja thanks EPSRC for support through an Advanced Research Fellowship.

THEOREM 2. If an infinite-dimensional linear complete linear space X has size $|X| = \kappa^{\omega} = 2^{\kappa}$ for some cardinal κ , then X has a non-meager Hamel basis $H \subset X$ such that for any closed |X|-perfect subset $C \subset X$ the space $C \cap H$ is Baire.

Let us observe that there are many cardinals κ with $\kappa^{\omega} = 2^{\kappa}$.

PROPOSITION 1. For any sequence of cardinals $(\kappa_i)_{i\in\omega}$ with $\kappa_{i+1} \geq 2^{\kappa_i}$, $i \in \omega$, the cardinal $\kappa = \sup_{i\in\omega} \kappa_i$ has the property $2^{\kappa} = \kappa^{\omega}$.

Proof. Since $\kappa^{\omega} \leq 2^{\kappa}$ always holds, it suffices to prove that $\kappa^{\omega} \geq 2^{\kappa}$. For this take a sequence $(X_i)_{i\in\omega}$ of pairwise disjoint sets of size $|X_i| = \kappa_i$ and let $X = \bigcup_{i\in\omega} X_i$. It is clear that $|X| = \kappa$ and the power set $\mathcal{P}(X)$ of X has size $|\mathcal{P}(X)| = 2^{\kappa}$. Since each subset $A = \bigcup_{i\in\omega} A \cap X_i$ of X can be uniquely identified with the sequence $(A \cap X_i)_{i\in\omega}$, we get

$$2^{\kappa} = |\mathcal{P}(X)| = \left|\prod_{i \in \omega} \mathcal{P}(X_i)\right| = \prod_{i \in \omega} 2^{\kappa_i} \le \prod_{i \in \omega} \kappa_{i+1} \le \kappa^{\omega}. \bullet$$

In fact, one can make an easy observation about κ^{ω} which is helpful in calculating this value, and in particular implies Proposition 1. We use $cof(\kappa)$ to denote the cofinality of κ .

PROPOSITION 2. Suppose that $\operatorname{cof}(\kappa) = \aleph_0$. Then $2^{\kappa} = (\sup\{2^{\lambda} : \lambda < \kappa\})^{\omega}$. If $\operatorname{cof}(\kappa) > \aleph_0$ then $\kappa^{\omega} = \kappa \cdot \sup\{\lambda^{\omega} : \lambda < \kappa\}$.

Proof. If $\kappa = \aleph_0$ then the proposed equality easily holds. Suppose that $\kappa > \aleph_0$. Then clearly $2^{\kappa} = (2^{\kappa})^{\omega} \ge (\sup\{2^{\lambda} : \lambda < \kappa\})^{\omega}$. Let $(\lambda_i)_{i \in \omega}$ be a sequence of regular cardinals increasing to κ , with $\lambda_0 = 0$, and let $\theta = \sup\{2^{\lambda} : \lambda < \kappa\}$. Every subset A of κ can be identified with the sequence $(A \cap [\lambda_{i+1} \setminus \lambda_i))_{i \in \omega}$, therefore $2^{\kappa} \le |{}^{\omega}\theta| = \theta^{\omega}$.

For the second equality, observe first that the left side of the equality is always no smaller than the right side. If $\operatorname{cof}(\kappa) > \aleph_0$ and κ is a limit cardinal, then notice that every countable subset of κ is already a subset of some $\lambda < \kappa$, so $\kappa^{\omega} \leq \sup\{\lambda^{\omega} : \lambda < \kappa\}$, which does not exceed the quantity on the right side of the equation. Finally, if $\kappa = \lambda^+$ for some λ then $\kappa^{\omega} = \bigcup_{\alpha \in [\lambda, \kappa)} \alpha^{\omega}$, and the latter set has size $\leq \kappa \cdot \lambda^{\omega} \leq 2^{\lambda}$, which is exactly the quantity on the right side of the equation.

COROLLARY 1. Suppose that a complete metric space X satisfies $d(X) \in [\kappa, 2^{\kappa}]$ for some κ with $\kappa^{\omega} = 2^{\kappa}$. Then X contains a non-meager Hamel basis.

Under the Generalized Continuum Hypothesis GCH, each cardinal κ of countable cofinality satisfies $\kappa^{\omega} = \kappa^+$. Consequently, each complete metric space X with density $d(X) \in {\kappa, \kappa^+}$ contains a non-meager Hamel basis.

Proof. Suppose that $d(X) = \lambda \in [\kappa, \kappa^{\omega}]$. Then $|X| = \lambda^{\omega} = \kappa^{\omega} = 2^{\kappa}$, so X contains a non-meager Hamel basis by Theorem 2. For the conclusion

under GCH notice that by König's lemma we have $\kappa^{\omega} > \kappa$, and since $\kappa^{\omega} \le 2^{\kappa}$ we may conclude that $\kappa^{\omega} = \kappa^+$.

We comment that Corollary 1 shows that our Theorem 2 is more general then Theorem 3.3 of [BDHMP], since by assuming GCH and taking for example X to be an infinite-dimensional Banach space of density $\lambda = \aleph_{\omega+1}$ (such as $l_{\infty}(\aleph_{\omega})$), we find that X has a non-meager Hamel basis by Corollary 1, while $\lambda^{\omega} = \lambda < 2^{\lambda}$ so Theorem 3.3 of [BDHMP] does not apply.

1. Proof of Theorem 1. The proof of Theorem 1 is divided into three lemmas. The first of them supplies us with many linearly independent Cantor sets.

A topological space X is called a *Cantor set* if it is homeomorphic to the Cantor cube $\{0,1\}^{\omega}$. This happens if and only if X is compact, metrizable, zero-dimensional and has no isolated points (see [Ke, 7.4]).

By the algebraic dimension of a subset A of a linear space L we understand the algebraic dimension (= the cardinality of a Hamel basis) of the linear hull Lin(A) of A in L.

LEMMA 1. Let L be a linear metric space and L_{∞} a linear subspace which can be written as the countable union $L_{\infty} = \bigcup_{n \in \omega} L_n$ of a non-decreasing sequence $(L_n)_{n \in \omega}$ of closed linear subspaces of L. Denote by $\pi : L \to L/L_{\infty}$ the quotient operator. Let $X \subset L$ be a completely metrizable subspace of L such that for every non-empty open set $U \subset X$ the projection $\pi(U)$ has infinite algebraic dimension in L/L_{∞} . Then X contains a Cantor set $C \subset X$ whose projection is linearly independent in L/L_{∞} and has size \mathfrak{c} .

Proof. Fix a complete metric ρ on X. Let $2 = \{0, 1\}$ and let $2^{<\omega} = \bigcup_{n \in \omega} 2^n$ denote the set of finite binary sequences. For a binary sequence $s = (s_1, \ldots, s_l) \in 2^{<\omega}$ and $i \in \{0, 1\}$, we denote by $\hat{s_i} = (s_1, \ldots, s_n, i)$ the concatenation of s and i.

By induction, to each sequence $s \in 2^{<\omega}$ we shall assign a non-empty open set $U_s \subset X$ so that the following conditions are satisfied for every $n \in \omega$ and $s \in 2^n$:

- (1) diam $(U_s) \leq 2^{-n};$
- (2) $U_{s^{0}} \cup U_{s^{1}} \subset U_{s};$
- (3) $\overline{U}_{s\hat{0}} \cap \overline{U}_{s\hat{1}} = \emptyset;$
- (4) for any points $x_t \in U_t$, $t \in 2^n$, and real numbers λ_t , $t \in 2^n$, the inclusion $\sum_{t \in 2^n} \lambda_t x_t \in L_n$ is possible only if all $\lambda_t = 0$.

We put $U_{\emptyset} = X \setminus L_0$. Assume that for some *n* the sets U_s , $s \in 2^n$, have been constructed. The projection $\pi(U)$ of each open set $U \subset X$ has infinite algebraic dimension. Consequently, for every finite-dimensional linear subspace *F* of *L* the intersection $(F + L_n) \cap U$ is nowhere dense in *U*. Using this fact, by finite induction of length 2^{n+1} in each set U_s , $s \in 2^n$, we can select two distinct points $x_{s0}, x_{s1} \in U_s$ so that the indexed set $\{x_t + L_n : t \in 2^{n+1}\}$ is linearly independent in L/L_n . Next we can select open neighborhoods U_t of the points x_t to satisfy the conditions (1)–(4). This finishes the inductive construction.

Now it is easy to see that the intersection $C = \bigcap_{n \in \omega} \bigcup_{s \in 2^n} \overline{U}_s$ is a Cantor set in X. It follows from (4) that the image $\pi(C)$ in L/L_{∞} is linearly independent and has size \mathfrak{c} .

LEMMA 2. Let L be a complete linear metric space of size $|L| \leq \mathfrak{c}$ and $(L_n)_{n \in \omega}$ be a non-decreasing sequence of closed linear subspaces of L with infinite-dimensional quotient space L/L_{∞} where $L_{\infty} = \bigcup_{n \in \omega} L_n$. Let H_{∞} be a Hamel basis for L_{∞} such that for every $n \in \omega$ the intersection $H_{\infty} \cap L_n$ is a hereditarily Baire Hamel basis in L_n . Then H_{∞} can be enlarged to a dense hereditarily Baire Hamel basis H for L.

Proof. Let $\pi : L \to L/L_{\infty}$ denote the quotient homomorphism and let \mathcal{C} be the family of Cantor sets $C \subset L$ whose projection $\pi(C)$ on L/L_{∞} has algebraic dimension \mathfrak{c} . The family \mathcal{C} has size $|\mathcal{C}| \leq |L|^{\omega} \leq \mathfrak{c}$ because each Cantor set $C \in \mathcal{C}$ is a continuous image of the Cantor cube 2^{ω} and each continuous map $f : 2^{\omega} \to L$ is uniquely determined by values of f on a countable dense subset of 2^{ω} . Let $\mathcal{C} = \{C_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of the family \mathcal{C} by ordinals $< \mathfrak{c}$.

By transfinite induction we can construct a transfinite sequence of points $\{x_{\alpha} : \alpha < \mathfrak{c}\} \subset L$ so that $x_{\alpha} \in C_{\alpha} \setminus (L_{\infty} + \operatorname{Lin}\{x_{\beta} : \beta < \alpha\})$. At each step α the choice of the point x_{α} is possible because each set $\pi(C_{\alpha})$ has algebraic dimension \mathfrak{c} .

After completing the inductive construction we will get a set $E = \{x_{\alpha} : \alpha < \mathfrak{c}\}$ whose projection onto L/L_{∞} is injective and has linearly independent image in L/L_{∞} . Then the union $H_{\infty} \cup E$ is a linearly independent subset of L and can be enlarged to a Hamel basis H for L. Since H_{∞} is a Hamel basis for L_{∞} , we have $H \cap L_{\infty} = H_{\infty}$. We claim that the space H is hereditarily Baire and dense in L.

To prove the density of H, take any non-empty open subset $U \subset L$. By Lemma 1, the set U contains a Cantor set $C \subset U$ belonging to the family C. By the inductive construction, $E \cap C \neq \emptyset$ and hence $H \cap U \neq \emptyset$ too.

Next we show that H is hereditarily Baire. Assuming the converse and applying [De], we can find a closed countable subset $C \subset H$ without isolated points. Then the closure \overline{C} of C in X is a Polish space without isolated points and so is the complement $\overline{C} \setminus C$. We claim that for each open set $U \subset \overline{C}$ the set $W = U \setminus H$ has an infinite-dimensional image $\pi(W)$ in L/L_{∞} . The density of $\overline{C} \setminus H$ in \overline{C} implies that $U \subset \overline{W}$. Assuming that $\pi(W)$ is finite-dimensional, we would find that $W \subset U \subset \overline{W} \subset L_{\infty} + F = \bigcup_{n \in \omega} (L_n + F)$ for some finite-dimensional linear subspace $F \subset L$ with $F \cap L_{\infty} = \{0\}$. The Baire theorem guarantees that some non-empty open subset of U lies in $L_n + F$. Replacing U by this open set we can assume that $U \subset L_n + F$. Since $H_n = H \cap L_n = H_{\infty} \cap L_n$ is a Hamel basis for L_n , we have $H \cap (L_n + F) = H_n \cup B$ for some finite set B disjoint from L_{∞} . Then $U \cap H = U \cap (L_n + F) \cap H = U \cap (H_n \cup B) \subset U \cap L_n \cup (U \cap B)$. We claim that $U \cap B = \emptyset$. Assuming the converse, we would infer that $U \cap B$ is a non-empty closed subset of $U \cap H$, which is not possible because $U \cap H = U \cap C$ has no isolated points. Thus $U \cap H = U \cap H_n \subset L_n$ is a countable set without isolated points in H_n , which contradicts the fact that $H_n = H \cap L_n$ is a hereditarily Baire Hamel basis for L_n .

Applying Lemma 2 to the sequence (L_n) of trivial linear spaces $L_n = \{0\}$ we obtain a part of Theorem 1.

LEMMA 3. Each infinite-dimensional linear complete metric space X with $|X| \leq \mathfrak{c}$ contains a dense hereditarily Baire Hamel basis.

The remaining part of Theorem 1 is proved in

LEMMA 4. Each complete metric linear space X of size $|X| = \mathfrak{c}^+$ contains a dense hereditarily Baire Hamel basis.

Proof. Given a complete linear metric space X of size $|X| = \mathfrak{c}^+$, write X as the union $X = \bigcup_{\alpha < \mathfrak{c}^+} X_{\alpha}$ of an increasing transfinite sequence $(X_{\alpha})_{\alpha < \mathfrak{c}^+}$ of closed linear subspaces of size $|X_{\alpha}| = \mathfrak{c}$ such that, for every $\alpha < \mathfrak{c}^+$,

- the quotient $X_{\alpha+1}/X_{\alpha}$ is infinite-dimensional;
- $X_{\alpha} = X_{<\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$ if α has uncountable cofinality;
- $X_{\alpha}/\overline{X}_{<\alpha}$ is infinite-dimensional if α has countable infinite cofinality.

It is convenient to assume that $X_{-1} = \{0\}$. By transfinite induction, for every $\alpha < \mathfrak{c}^+$ we shall construct a dense hereditarily Baire Hamel basis H_{α} in X_{α} so that $H_{\alpha} \supset \bigcup_{\beta < \alpha} H_{\beta}$. To start the inductive construction let $H_0 = \emptyset$.

Assume that for some ordinal α , dense hereditarily Baire Hamel bases H_{β} have been constructed in each space X_{β} for $\beta < \alpha$. Now consider three cases:

1) $\alpha = \beta + 1$ is a successor ordinal. In this case apply Lemma 2 with $L = X_{\alpha}$ and $L_n = X_{\beta}$, $n \in \omega$, to enlarge the Hamel basis H_{β} to a dense hereditarily Baire Hamel basis H_{α} for the space X_{α} .

2) α is a limit ordinal with countable cofinality. In this case we can find an increasing sequence of ordinals $(\alpha_n)_{n\in\omega}$ with $\alpha = \sup_n \alpha_n$ and apply Lemma 2 with $L = X_{\alpha}$, $L_n = X_{\alpha_n}$ and $H_{\infty} = \bigcup_{n\in\omega} H_{\alpha_n}$ to enlarge the Hamel basis H_{∞} to a dense hereditarily Baire Hamel basis H_{α} for X_{α} .

3) α is of uncountable cofinality. In this case $X_{<\alpha} = \bigcup_{\beta} X_{\beta}$ and we can put $H_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$. The density of the Hamel bases in X_{β} implies the den-

sity of H_{α} in X_{α} . Let us show that the Hamel basis H_{α} is hereditarily Baire. Assuming the converse, and applying [De], we can find a closed countable subset $C \subset H_{\alpha}$ without isolated points. Since α has uncountable cofinality, $C \subset H_{\beta}$ for some $\beta < \alpha$. Then H_{β} contains a closed meager subspace C and thus is not hereditarily Baire, which is a contradiction.

2. Proof of Theorem 2. Given an infinite cardinal κ , we denote by $\sqrt[\infty]{\kappa}$ the smallest infinite cardinal λ with $\lambda^{\omega} \geq \kappa$. The proof of Theorem 2 is similar to that of Theorem 1 and relies on

LEMMA 5. For every κ -perfect complete metric space X and a comeager subspace $G \subset X$ there is a subspace $\Pi \subset G$ homeomorphic to the countable product λ^{ω} , where the cardinal $\lambda = \sqrt[\infty]{\kappa}$ is endowed with the discrete topology.

Proof. The complement $X \setminus G$, being meager in X, lies in the countable union $\bigcup_{n \in \omega} Z_n$ of closed nowhere dense subsets Z_n in X. Since X is κ -perfect, each non-empty open subset $U \subset X$ has size $|U| \geq \kappa$ and density $d(U) \geq \sqrt[\infty]{\kappa} = \lambda$. By the Erdős–Tarski theorem [ET] (see also [En, 4.1.H]), the metrizable space $X \setminus Z_0$ contains a family \mathcal{U}_0 consisting of λ many open subsets of $X \setminus Z_0$ of diameter $< 1/2^0$ such that the family $\overline{\mathcal{U}}_0 = \{\overline{U} : U \in \mathcal{U}_0\}$ is disjoint. Repeating this argument, inductively construct a sequence $(\mathcal{U}_n)_{n \in \omega}$ of families of non-empty open sets of $X \setminus Z_n$ having diameter $< 1/2^n$ so that $\overline{\mathcal{U}} = \{\overline{U} : U \in \mathcal{U}_n\}$ is disjoint, $\bigcup \overline{\mathcal{U}}_{n+1} \subset \bigcup \mathcal{U}_n$ and for every $U \in \mathcal{U}_n$ the family $\mathcal{U}_{n+1}(U) = \{W \in \mathcal{U}_{n+1} : \overline{W} \subset U\}$ has size λ . It is easy to see that the space $F = \bigcap_{n \in \omega} \bigcup \overline{\mathcal{U}}_n \subset X \setminus \bigcup_{n \in \omega} Z_n \subset G$ is homeomorphic to the product $\prod_{n \in \omega} \mathcal{U}_n$ where each \mathcal{U}_n is endowed with the discrete topology, and the latter product is homeomorphic to λ^{ω} .

With Lemma 5 in hand, we are now able to present

Proof of Theorem 2. Let X be an infinite-dimensional linear complete metric space of size $|X| = 2^{\kappa} = \kappa^{\omega}$ for some cardinal κ . Without loss of generality, κ is the smallest infinite cardinal with that property. If $|X| \leq \mathfrak{c}$, then X has a hereditarily Baire Hamel basis by Theorem 1 and we are done. So asume that $|X| > \mathfrak{c}$ and hence $\kappa > \omega$.

Let \mathcal{K} denote the family of all subspaces $K \subset X$ that are homeomorphic to the countable product κ^{ω} where κ is endowed with the discrete topology. Observe that each embedding $f : \kappa^{\omega} \to X$ is uniquely determined by the values of f on a dense subset of κ^{ω} . Since κ^{ω} has density κ , the family \mathcal{K} has size $|\mathcal{K}| \leq |X|^{\kappa} = (2^{\kappa})^{\kappa} = 2^{\kappa} = |X|$ and hence can be enumerated as $\mathcal{K} = \{K_{\alpha} : \alpha < |X|\}$. Observe that each space $K \in \mathcal{K}$ has size $|K| = \kappa^{\omega} > \mathfrak{c}$ and algebraic dimension κ^{ω} .

By transfinite induction we can construct a transfinite sequence of points $\{x_{\alpha} : \alpha < \mathfrak{c}\} \subset X$ so that $x_{\alpha} \in K_{\alpha} \setminus \operatorname{Lin}\{x_{\beta} : \beta < \alpha\}$. At each step α the

choice of the point x_{α} is possible because each set K_{α} has algebraic dimension $\kappa^{\omega} > \alpha$.

After completing the inductive construction we will get a linearly independent set $E = \{x_{\alpha} : \alpha < \mathfrak{c}\}$ that meets each set $K \in \mathcal{K}$. Complete E to a Hamel basis $H \supset E$.

We claim that for each closed |X|-perfect subset $F \subset X$ the intersection $F \cap H$ is non-meager. Assuming the converse, we can apply Lemma 5 to find a topological copy $K \subset F \setminus H$ of κ^{ω} . It follows from the construction of H that $K \cap H \neq \emptyset$, which contradicts the inclusion $K \subset F \setminus H$.

3. Some remarks and open problems. Our Theorem 2 generalizes Corollary 3.4 of [BDHMP] supplying a non-meager Hamel basis in each Banach space X whose density d(X) satisfies the equality $2^{d(X)} = d(X)^{\omega}$. In its turn, this corollary was derived from Theorem 3.3 of [BDHMP] guaranteeing the existence of a non-meager Hamel basis in each Banach space X satisfying $cof(\mathcal{M}_X) \leq |X|$, where $cof(\mathcal{M}_X)$ stands for the cofinality of the ideal of meager sets in X. Having this result in mind, the authors of [BDHMP] asked in [BDHMP, Question 2] if the inequality $cof(\mathcal{M}_X) > |X|$ holds for a suitable Banach space X. This is indeed so if d(X) = |X|. We shall prove a somewhat more general result giving lower and upper bounds for the cardinal $cof(\mathcal{M}_X)$ via the weight w(X) and the cellularity c(X) of a linear topological space X.

PROPOSITION 3. Let X be a Baire topological space without isolated points. Then

(1) $\operatorname{cof}(\mathcal{M}_X) \le w(X)^{c(X)};$

(2) $\operatorname{cof}(\mathcal{M}_X) > |\mathcal{U}|$ for any disjoint family \mathcal{U} of open sets in X.

Proof. (1) Fix a base \mathcal{B} of the topology of X of size $|\mathcal{B}| = w(X)$. Let $\mathcal{N} = \{X \setminus \bigcup \mathcal{U} : \mathcal{U} \subset \mathcal{B}, |\mathcal{U}| \leq c(X)\}$. It is clear that $|\mathcal{N}| \leq w(X)^{c(X)}$. We claim that each nowhere dense subset $Z \subset X$ lies in some set $N \in \mathcal{N}$. Indeed, take a maximal disjoint subfamily $\mathcal{U} \subset \mathcal{B}$ with $\bigcup \mathcal{U} \subset X \setminus Z$ and note that $|\mathcal{U}| \leq c(X)$. Then $Z \subset X \setminus \bigcup \mathcal{U} \in \mathcal{N}$. It follows that the family $\mathcal{N}_{\infty} = \{\bigcup \mathcal{C} : \mathcal{C} \text{ is a countable subfamily of } \mathcal{N}\}$ is cofinal in \mathcal{M}_X and has size $|\mathcal{N}_{\infty}| \leq |\mathcal{N}|^{\omega} \leq (w(X)^{c(X)})^{\omega} = w(X)^{c(X)}$. Then $\operatorname{cof}(\mathcal{M}_X) \leq |\mathcal{N}_{\infty}| \leq w(X)^{c(X)}$.

(2) Assume conversely that $\operatorname{cof}(\mathcal{M}_X) \leq |\mathcal{U}|$ for some disjoint family \mathcal{U} of non-empty open sets in X. Pick a cofinal family \mathcal{M} in \mathcal{M}_X of size $|\mathcal{M}| \leq |\mathcal{U}|$ and enumerate $\mathcal{M} = \{M_U : U \in \mathcal{U}\}$ by elements of the family \mathcal{U} . Each open set $U \in \mathcal{U}$ is not meager because X is Baire. Consequently, $U \not\subset M_U$ and we can pick a point $x_U \in U \setminus M_U$. Then the set $A = \{x_U : U \in \mathcal{U}\}$, being discrete, is nowhere dense in X. On the other hand, A lies in no set $M \in \mathcal{M}$, which means that \mathcal{M} is not cofinal in the ideal \mathcal{M}_X . Since each metrizable space X contains a disjont family \mathcal{U} of open sets of size $|\mathcal{U}| = d(X)$ (see [ET] or [En, 4.1.H]), Proposition 3 implies the following corollary answering Question 2 of [BDHMP].

COROLLARY 2. For any metrizable Baire space X without isolated points we get $d(X) < cof(\mathcal{M}_X) \leq 2^{d(X)}$.

A typical linear topological space with countable cellularity is the Tikhonov product \mathbb{R}^{κ} of κ many lines. Then repeating the argument of the proof of Theorem 3.3 [BDHMP] we can prove

PROPOSITION 4. For any infinite cardinal κ the linear topological space $X = \mathbb{R}^{\kappa}$ has a non-meager Hamel basis and satisfies $\operatorname{cof}(\mathcal{M}_X) \leq \kappa^{\omega} \leq 2^{\kappa} = |X|$.

In spite of (partial) results proven in this paper we still do not know the complete answer to the basic

PROBLEM 1. Let X be an infinite-dimensional Banach space.

(1) Does X have a non-meager Hamel basis?

25-406 Kielce, Poland

1 Universytetska St.

79000 Lviv, Ukraine

Department of Mathematics

E-mail: tbanakh@yahoo.com

Ivan Franko National University of Lviv

and

- (2) Does X have a non-meager Hamel basis if $|X| = \mathfrak{c}^{++}$?
- (3) Does X have a Hamel basis containing no uncountable compact subset?

References

[BDHMP]	T. Bartoszyński, M. Džamonja, L.	Halbeisen, E. Murtinová and A. Plichko,
	On bases in Banach spaces, Studia	Math. 170 (2005), 147–171.
[De]	G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.	
[En]	R. Engelking, General Topology, PWN, Warszawa, 1977.	
[ET]	T] P. Erdős and A. Tarski, On families of mutually exclusive sets, A	
	44 (1943), 315-329.	
[Ke]	A. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.	
Instytut M	atematyki	Department of Mathematics
Uniwersytet Humanistyczno-Przyrodniczy		University of East Anglia
im. Jana Kochanowskiego w Kielcach		Norwich, NR4 7TJ, United Kingdom
Świętokrzyska 15		E-mail: M.Dzamonja@uea.ac.uk

Theoretische Informatik und Logik Universität Bern Neubrückstr. 10 3012 Bern, Switzerland E-mail: halbeis@iam.unibe.ch

Received July 14, 2006 Revised version June 29, 2008

(5965)