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Non-separable Banach spaces with non-meager Hamel basis

by

Taras Banakh (Kielce and Lviv), Mirna Džamonja (Norwich) and
Lorenz Halbeisen (Bern)

Abstract. We show that an infinite-dimensional complete linear space X has:

• a dense hereditarily Baire Hamel basis if |X| ≤ c+;
• a dense non-meager Hamel basis if |X| = κω = 2κ for some cardinal κ.

According to Corollary 3.4 of [BDHMP] each infinite-dimensional separ-
able Banach space X has a non-meager Hamel basis. This is a special case of
Theorem3.3 of [BDHMP], asserting that an infinite-dimensional Banach space
X has a non-meager Hamel basis provided 2d(X) = d(X)ω, where d(X) is the
density of X. Having in mind those results the authors of [BDHMP] asked if
each infinite-dimensional Banach space has a non-meager Hamel basis. In this
paper we shall give two partial answers to this question generalizing the above-
mentioned Corollary 3.4 and Theorem 3.3 of [BDHMP] in two directions.

Theorem 1. Each infinite-dimensional linear complete metric space X
of size |X| ≤ c+ has a dense hereditarily Baire Hamel basis.

We recall that a topological space X is hereditarily Baire if each closed
subspace F of X is Baire (in the sense that the intersection of a countable
family of open dense subsets of F is dense in F ).

Our next result treats Banach spaces of even larger size. We define a
subset A of a topological space X to be κ-perfect for some cardinal κ if each
non-empty open set U of A has size |U | ≥ κ. Note that a Hausdorff space
X is ω-perfect if and only if it has no isolated points (so is perfect in the
standard sense).

It is well-known (see [BDHMP, 2.8]) that each Banach space X has
size |X| = d(X)ω. Our second principal result generalizes Theorem 3.3 of
[BDHMP].
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Theorem 2. If an infinite-dimensional linear complete linear space X
has size |X| = κω = 2κ for some cardinal κ, then X has a non-meager Hamel
basis H ⊂ X such that for any closed |X|-perfect subset C ⊂ X the space
C ∩H is Baire.

Let us observe that there are many cardinals κ with κω = 2κ.

Proposition 1. For any sequence of cardinals (κi)i∈ω with κi+1 ≥ 2κi ,
i ∈ ω, the cardinal κ = supi∈ω κi has the property 2κ = κω.

Proof. Since κω ≤ 2κ always holds, it suffices to prove that κω ≥ 2κ. For
this take a sequence (Xi)i∈ω of pairwise disjoint sets of size |Xi| = κi and
let X =

⋃
i∈ωXi. It is clear that |X| = κ and the power set P(X) of X has

size |P(X)| = 2κ. Since each subset A =
⋃
i∈ω A ∩Xi of X can be uniquely

identified with the sequence (A ∩Xi)i∈ω, we get

2κ = |P(X)| =
∣∣∣∏
i∈ω
P(Xi)

∣∣∣ = ∏
i∈ω

2κi ≤
∏
i∈ω

κi+1 ≤ κω.

In fact, one can make an easy observation about κω which is helpful in
calculating this value, and in particular implies Proposition 1. We use cof(κ)
to denote the cofinality of κ.

Proposition 2. Suppose that cof(κ)=ℵ0. Then 2κ=(sup{2λ :λ<κ})ω.
If cof(κ) > ℵ0 then κω = κ · sup{λω : λ < κ}.

Proof. If κ = ℵ0 then the proposed equality easily holds. Suppose that
κ > ℵ0. Then clearly 2κ = (2κ)ω ≥ (sup{2λ : λ < κ})ω. Let (λi)i∈ω be
a sequence of regular cardinals increasing to κ, with λ0 = 0, and let θ =
sup{2λ : λ < κ}. Every subset A of κ can be identified with the sequence
(A ∩ [λi+1 \ λi))i∈ω, therefore 2κ ≤ |ωθ| = θω.

For the second equality, observe first that the left side of the equality
is always no smaller than the right side. If cof(κ) > ℵ0 and κ is a limit
cardinal, then notice that every countable subset of κ is already a subset
of some λ < κ, so κω ≤ sup{λω : λ < κ}, which does not exceed the
quantity on the right side of the equation. Finally, if κ = λ+ for some λ then
κω =

⋃
α∈[λ,κ) α

ω, and the latter set has size ≤ κ · λω ≤ 2λ, which is exactly
the quantity on the right side of the equation.

Corollary 1. Suppose that a complete metric space X satisfies d(X) ∈
[κ, 2κ] for some κ with κω = 2κ. Then X contains a non-meager Hamel basis.

Under the Generalized Continuum Hypothesis GCH , each cardinal κ of
countable cofinality satisfies κω = κ+. Consequently , each complete metric
space X with density d(X) ∈ {κ, κ+} contains a non-meager Hamel basis.

Proof. Suppose that d(X) = λ ∈ [κ, κω]. Then |X| = λω = κω = 2κ,
so X contains a non-meager Hamel basis by Theorem 2. For the conclusion
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under GCH notice that by König’s lemma we have κω > κ, and since κω ≤ 2κ

we may conclude that κω = κ+.

We comment that Corolllary 1 shows that our Theorem 2 is more general
then Theorem 3.3 of [BDHMP], since by assuming GCH and taking for exam-
ple X to be an infinite-dimensional Banach space of density λ = ℵω+1 (such
as l∞(ℵω)), we find that X has a non-meager Hamel basis by Corollary 1,
while λω = λ < 2λ so Theorem 3.3 of [BDHMP] does not apply.

1. Proof of Theorem 1. The proof of Theorem 1 is divided into three
lemmas. The first of them supplies us with many linearly independent Cantor
sets.

A topological space X is called a Cantor set if it is homeomorphic to the
Cantor cube {0, 1}ω. This happens if and only if X is compact, metrizable,
zero-dimensional and has no isolated points (see [Ke, 7.4]).

By the algebraic dimension of a subset A of a linear space L we under-
stand the algebraic dimension (= the cardinality of a Hamel basis) of the
linear hull Lin(A) of A in L.

Lemma 1. Let L be a linear metric space and L∞ a linear subspace which
can be written as the countable union L∞ =

⋃
n∈ω Ln of a non-decreasing

sequence (Ln)n∈ω of closed linear subspaces of L. Denote by π : L→ L/L∞
the quotient operator. Let X ⊂ L be a completely metrizable subspace of
L such that for every non-empty open set U ⊂ X the projection π(U) has
infinite algebraic dimension in L/L∞. Then X contains a Cantor set C ⊂ X
whose projection is linearly independent in L/L∞ and has size c.

Proof. Fix a complete metric ρ on X. Let 2 = {0, 1} and let 2<ω =⋃
n∈ω 2n denote the set of finite binary sequences. For a binary sequence

s = (s1, . . . , sl) ∈ 2<ω and i ∈ {0, 1}, we denote by ŝ i = (s1, . . . , sn, i) the
concatenation of s and i.

By induction, to each sequence s ∈ 2<ω we shall assign a non-empty open
set Us ⊂ X so that the following conditions are satisfied for every n ∈ ω and
s ∈ 2n:

(1) diam(Us) ≤ 2−n;
(2) Uŝ 0 ∪ Uŝ 1 ⊂ Us;
(3) U ŝ 0 ∩ U ŝ 1 = ∅;
(4) for any points xt ∈ Ut, t ∈ 2n, and real numbers λt, t ∈ 2n, the

inclusion
∑

t∈2n λtxt ∈ Ln is possible only if all λt = 0.

We put U∅ = X \ L0. Assume that for some n the sets Us, s ∈ 2n,
have been constructed. The projection π(U) of each open set U ⊂ X has
infinite algebraic dimension. Consequently, for every finite-dimensional linear
subspace F of L the intersection (F +Ln)∩U is nowhere dense in U . Using
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this fact, by finite induction of length 2n+1 in each set Us, s ∈ 2n, we
can select two distinct points xŝ 0, xŝ 1 ∈ Us so that the indexed set {xt +
Ln : t ∈ 2n+1} is linearly independent in L/Ln. Next we can select open
neighborhoods Ut of the points xt to satisfy the conditions (1)–(4). This
finishes the inductive construction.

Now it is easy to see that the intersection C =
⋂
n∈ω

⋃
s∈2n U s is a Can-

tor set in X. It follows from (4) that the image π(C) in L/L∞ is linearly
indepenedent and has size c.

Lemma 2. Let L be a complete linear metric space of size |L| ≤ c and
(Ln)n∈ω be a non-decreasing sequence of closed linear subspaces of L with
infinite-dimensional quotient space L/L∞ where L∞ =

⋃
n∈ω Ln. Let H∞ be

a Hamel basis for L∞ such that for every n ∈ ω the intersection H∞ ∩Ln is
a hereditarily Baire Hamel basis in Ln. Then H∞ can be enlarged to a dense
hereditarily Baire Hamel basis H for L.

Proof. Let π : L → L/L∞ denote the quotient homomorphism and let
C be the family of Cantor sets C ⊂ L whose projection π(C) on L/L∞ has
algebraic dimension c. The family C has size |C| ≤ |L|ω ≤ c because each
Cantor set C ∈ C is a continuous image of the Cantor cube 2ω and each
continuous map f : 2ω → L is uniquely determined by values of f on a
countable dense subset of 2ω. Let C = {Cα : α < c} be an enumeration of
the family C by ordinals < c.

By transfinite induction we can construct a transfinite sequence of points
{xα : α < c} ⊂ L so that xα ∈ Cα \ (L∞ + Lin{xβ : β < α}). At each step α
the choice of the point xα is possible because each set π(Cα) has algebraic
dimension c.

After completing the inductive construction we will get a set E = {xα :
α < c} whose projection onto L/L∞ is injective and has linearly independent
image in L/L∞. Then the union H∞ ∪E is a linearly independent subset of
L and can be enlarged to a Hamel basis H for L. Since H∞ is a Hamel basis
for L∞, we have H ∩ L∞ = H∞. We claim that the space H is hereditarily
Baire and dense in L.

To prove the density of H, take any non-empty open subset U ⊂ L. By
Lemma 1, the set U contains a Cantor set C ⊂ U belonging to the family C.
By the inductive construction, E ∩ C 6= ∅ and hence H ∩ U 6= ∅ too.

Next we show that H is hereditarily Baire. Assuming the converse and
applying [De], we can find a closed countable subset C ⊂ H without isolated
points. Then the closure C of C inX is a Polish space without isolated points
and so is the complement C \C. We claim that for each open set U ⊂ C the
setW = U\H has an infinite-dimensional image π(W ) in L/L∞. The density
of C\H in C implies that U ⊂W . Assuming that π(W ) is finite-dimensional,
we would find that W ⊂ U ⊂ W ⊂ L∞ + F =

⋃
n∈ω(Ln + F ) for some
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finite-dimensional linear subspace F ⊂ L with F ∩ L∞ = {0}. The Baire
theorem guarantees that some non-empty open subset of U lies in Ln + F .
Replacing U by this open set we can assume that U ⊂ Ln + F . Since Hn =
H ∩Ln = H∞∩Ln is a Hamel basis for Ln, we have H ∩ (Ln+F ) = Hn∪B
for some finite set B disjoint from L∞. Then U ∩H = U ∩ (Ln + F ) ∩H =
U ∩ (Hn ∪B) ⊂ U ∩Ln ∪ (U ∩B). We claim that U ∩B = ∅. Assuming the
converse, we would infer that U ∩B is a non-empty closed subset of U ∩H,
which is not possible because U ∩H = U ∩ C has no isolated points. Thus
U ∩ H = U ∩ Hn ⊂ Ln is a countable set without isolated points in Hn,
which contradicts the fact that Hn = H ∩ Ln is a hereditarily Baire Hamel
basis for Ln.

Applying Lemma 2 to the sequence (Ln) of trivial linear spaces Ln = {0}
we obtain a part of Theorem 1.

Lemma 3. Each infinite-dimensional linear complete metric space X
with |X| ≤ c contains a dense hereditarily Baire Hamel basis.

The remaining part of Theorem 1 is proved in

Lemma 4. Each complete metric linear space X of size |X| = c+ contains
a dense hereditarily Baire Hamel basis.

Proof. Given a complete linear metric space X of size |X| = c+, write X
as the union X =

⋃
α<c+ Xα of an increasing transfinite sequence (Xα)α<c+

of closed linear subspaces of size |Xα| = c such that, for every α < c+,

• the quotient Xα+1/Xα is infinite-dimensional;
• Xα = X<α =

⋃
β<αXβ if α has uncountable cofinality;

• Xα/X<α is infinite-dimensional if α has countable infinite cofinality.

It is convenient to assume that X−1 = {0}. By transfinite induction, for
every α < c+ we shall construct a dense hereditarily Baire Hamel basis Hα in
Xα so that Hα ⊃

⋃
β<αHβ . To start the inductive construction let H0 = ∅.

Assume that for some ordinal α, dense hereditarily Baire Hamel bases
Hβ have been constructed in each space Xβ for β < α. Now consider three
cases:

1) α = β + 1 is a successor ordinal. In this case apply Lemma 2 with
L = Xα and Ln = Xβ , n ∈ ω, to enlarge the Hamel basis Hβ to a dense
hereditarily Baire Hamel basis Hα for the space Xα.

2) α is a limit ordinal with countable cofinality. In this case we can find
an increasing sequence of ordinals (αn)n∈ω with α = supn αn and apply
Lemma 2 with L = Xα, Ln = Xαn and H∞ =

⋃
n∈ωHαn to enlarge the

Hamel basis H∞ to a dense hereditarily Baire Hamel basis Hα for Xα.
3) α is of uncountable cofinality. In this case X<α =

⋃
β Xβ and we can

put Hα =
⋃
β<αHβ . The density of the Hamel bases in Xβ implies the den-
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sity of Hα in Xα. Let us show that the Hamel basis Hα is hereditarily Baire.
Assuming the converse, and applying [De], we can find a closed countable
subset C ⊂ Hα without isolated points. Since α has uncountable cofinality,
C ⊂ Hβ for some β < α. Then Hβ contains a closed meager subspace C and
thus is not hereditarily Baire, which is a contradiction.

2. Proof of Theorem 2. Given an infinite cardinal κ, we denote by
ω
√
κ the smallest infinite cardinal λ with λω ≥ κ. The proof of Theorem 2 is

similar to that of Theorem 1 and relies on

Lemma 5. For every κ-perfect complete metric space X and a comeager
subspace G ⊂ X there is a subspace Π ⊂ G homeomorphic to the countable
product λω, where the cardinal λ = ω

√
κ is endowed with the discrete topology.

Proof. The complement X \ G, being meager in X, lies in the count-
able union

⋃
n∈ω Zn of closed nowhere dense subsets Zn in X. Since X is

κ-perfect, each non-empty open subset U ⊂ X has size |U | ≥ κ and density
d(U) ≥ ω

√
κ = λ. By the Erdős–Tarski theorem [ET] (see also [En, 4.1.H]),

the metrizable space X \Z0 contains a family U0 consisting of λ many open
subsets of X \ Z0 of diameter < 1/20 such that the family U0 = {U :
U ∈ U0} is disjoint. Repeating this argument, inductively construct a se-
quence (Un)n∈ω of families of non-empty open sets of X \Zn having diameter
< 1/2n so that U = {U : U ∈ Un} is disjoint,

⋃
Un+1 ⊂

⋃
Un and for every

U ∈ Un the family Un+1(U) = {W ∈ Un+1 : W ⊂ U} has size λ. It is easy to
see that the space F =

⋂
n∈ω

⋃
Un ⊂ X \

⋃
n∈ω Zn ⊂ G is homeomorphic to

the product
∏
n∈ω Un where each Un is endowed with the discrete topology,

and the latter product is homeomorphic to λω.

With Lemma 5 in hand, we are now able to present

Proof of Theorem 2. Let X be an infinite-dimensional linear complete
metric space of size |X| = 2κ = κω for some cardinal κ. Without loss of
generality, κ is the smallest infinite cardinal with that property. If |X| ≤ c,
then X has a hereditarily Baire Hamel basis by Theorem 1 and we are done.
So asume that |X| > c and hence κ > ω.

Let K denote the family of all subspaces K ⊂ X that are homeomorphic
to the countable product κω where κ is endowed with the discrete topology.
Observe that each embedding f : κω → X is uniquely determined by the
values of f on a dense subset of κω. Since κω has density κ, the family K
has size |K| ≤ |X|κ = (2κ)κ = 2κ = |X| and hence can be enumerated as
K = {Kα : α < |X|}. Observe that each space K ∈ K has size |K| = κω > c
and algebraic dimension κω.

By transfinite induction we can construct a transfinite sequence of points
{xα : α < c} ⊂ X so that xα ∈ Kα \ Lin{xβ : β < α}. At each step α the
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choice of the point xα is possible because each setKα has algebraic dimension
κω > α.

After completing the inductive construction we will get a linearly inde-
pendent set E = {xα : α < c} that meets each set K ∈ K. Complete E to a
Hamel basis H ⊃ E.

We claim that for each closed |X|-perfect subset F ⊂ X the intersection
F ∩H is non-meager. Assuming the converse, we can apply Lemma 5 to find
a topological copy K ⊂ F \H of κω. It follows from the construction of H
that K ∩H 6= ∅, which contradicts the inclusion K ⊂ F \H.

3. Some remarks and open problems. Our Theorem 2 generalizes
Corollary 3.4 of [BDHMP] supplying a non-meager Hamel basis in each Ba-
nach space X whose density d(X) satisfies the equality 2d(X) = d(X)ω. In
its turn, this corollary was derived from Theorem 3.3 of [BDHMP] guar-
anteeing the existence of a non-meager Hamel basis in each Banach space
X satisfying cof(MX) ≤ |X|, where cof(MX) stands for the cofinality of
the ideal of meager sets in X. Having this result in mind, the authors of
[BDHMP] asked in [BDHMP, Question 2] if the inequality cof(MX) > |X|
holds for a suitable Banach space X. This is indeed so if d(X) = |X|. We
shall prove a somewhat more general result giving lower and upper bounds
for the cardinal cof(MX) via the weight w(X) and the cellularity c(X) of a
linear topological space X.

Proposition 3. Let X be a Baire topological space without isolated
points. Then

(1) cof(MX) ≤ w(X)c(X);
(2) cof(MX) > |U| for any disjoint family U of open sets in X.

Proof. (1) Fix a base B of the topology of X of size |B| = w(X). Let
N = {X \

⋃
U : U ⊂ B, |U| ≤ c(X)}. It is clear that |N | ≤ w(X)c(X).

We claim that each nowhere dense subset Z ⊂ X lies in some set N ∈ N .
Indeed, take a maximal disjoint subfamily U ⊂ B with

⋃
U ⊂ X \ Z and

note that |U| ≤ c(X). Then Z ⊂ X \
⋃
U ∈ N . It follows that the family

N∞ = {
⋃
C : C is a countable subfamily of N} is cofinal in MX and has

size |N∞| ≤ |N |ω ≤ (w(X)c(X))ω = w(X)c(X). Then cof(MX) ≤ |N∞| ≤
w(X)c(X).

(2) Assume conversely that cof(MX) ≤ |U| for some disjoint family U of
non-empty open sets in X. Pick a cofinal familyM inMX of size |M| ≤ |U|
and enumerateM = {MU : U ∈ U} by elements of the family U . Each open
set U ∈ U is not meager because X is Baire. Consequently, U 6⊂ MU and
we can pick a point xU ∈ U \MU . Then the set A = {xU : U ∈ U}, being
discrete, is nowhere dense in X. On the other hand, A lies in no setM ∈M,
which means thatM is not cofinal in the idealMX .
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Since each metrizable space X contains a disjont family U of open sets of
size |U| = d(X) (see [ET] or [En, 4.1.H]), Proposition 3 implies the following
corollary answering Question 2 of [BDHMP].

Corollary 2. For any metrizable Baire space X without isolated points
we get d(X) < cof(MX) ≤ 2d(X).

A typical linear topological space with countable cellularity is the Tikho-
nov product Rκ of κ many lines. Then repeating the argument of the proof
of Theorem 3.3 [BDHMP] we can prove

Proposition 4. For any infinite cardinal κ the linear topological space
X=Rκ has a non-meager Hamel basis and satisfies cof(MX)≤κω≤2κ= |X|.

In spite of (partial) results proven in this paper we still do not know the
complete answer to the basic

Problem 1. Let X be an infinite-dimensional Banach space.
(1) Does X have a non-meager Hamel basis?
(2) Does X have a non-meager Hamel basis if |X| = c++?
(3) Does X have a Hamel basis containing no uncountable compact sub-

set?
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