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Mazur–Orlicz equality

by

Fon-Che Liu (Tamshui)

Dedicated to Andrzej Granas

Abstract. A remarkable theorem of Mazur and Orlicz which generalizes the Hahn–
Banach theorem is here put in a convenient form through an equality which will be re-
ferred to as the Mazur–Orlicz equality. Applications of the Mazur–Orlicz equality to lower
barycenters for means, separation principles, Lax–Milgram lemma in reflexive Banach
spaces, and monotone variational inequalities are provided.

1. Introduction. All vector spaces considered here are real vector spaces.
A real-valued function q defined on a vector space E is called a sublin-

ear functional if (i) q(λx) = λq(x) for λ > 0 and x ∈ E; (ii) q(x + y) ≤
q(x) + q(y) for x and y in E. Since q(0) = q(λ0) = λq(0) for all λ > 0,
and q(0) = q(x + [−x]) ≤ q(x) + q(−x), it follows that q(0) = 0 and
−q(−x) ≤ q(x) for x ∈ E. As usual, the algebraic dual of E will be de-
noted by E′.

Mazur and Orlicz proved in [10] the following remarkable theorem:

Theorem 1. Let E be a vector space with a sublinear functional q defined
on it. Suppose S is an arbitrary nonempty set , τ a map from S into E,
and θ a real-valued function on S. Then the following two statements are
equivalent :

(A) There is l ∈ E′ with l ≤ q on E such that

θ(s) ≤ l(τ(s)) ∀s ∈ S.
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(B) For any finite subset {s1, . . . , sl} of S,
l∑

j=1

λjθ(sj) ≤ q
( l∑
j=1

λjτ(sj)
)

for all λ1 ≥ 0, . . . , λl ≥ 0.

Remark 1. To give a flavor of Theorem 1, we infer from Theorem 1 that
for each x0 ∈ E there is l ∈ E′ with l ≤ q such that l(x0) = q(x0). Indeed, let
S = {x0}, τ(x0) = x0, and θ(x0) = q(x0) in Theorem 1. Then (B) holds triv-
ially and hence (A) holds, i.e. there is l ∈ E′ with l ≤ q such that l(τ(x0)) =
l(x0) ≥ θ(x0) = q(x0). But l(x0) ≤ q(x0), because l ≤ q. Thus l(x0) = q(x0).

Mazur and Orlicz [10] also gave extensive applications of Theorem 1,
showing that it is an ingenious and useful form of the Hahn–Banach theorem.
Different proofs and generalizations of this theorem abound in the literature
(see, for example, [1], [4], [5], [8], [9], [11], [12]) and it is now usually referred
to as the Mazur–Orlicz theorem.

In this note we consider a convenient form of the Mazur–Orlicz theorem,
which we will later refer to as the Mazur–Orlicz equality (see Theorem 2).
This form will be given in Section 2 together with some applications to
lower barycenters of means (see below for definitions) and to some general
separation principles. In Section 3, we shall apply the Mazur–Orlicz equality
to obtain a generalization of the Lax–Milgram theorem in reflexive Banach
spaces and to give a simple proof of a variational inequality of Hartman and
Stampacchia [6].

The remaining part of this section is devoted to some necessary defini-
tions and preliminaries. For a given nonempty set S, we denote by Pf(S)
the family of all probability measures supported on finite sets in S. Hence if
p ∈ Pf(S), then there is a finite set {s1, . . . , sl} in S and λ1 ≥ 0, . . . , λl ≥ 0
with

∑l
j=1 λj = 1 such that p(A) =

∑
sj∈A λj ; p will then be written

as
〈
s1,...,sl
λ1,...,λl

〉
. If τ is a map from S into a vector space, we shall denote	

S τ dp =
∑l

j=1 λjτ(sj) by τ(p) if p =
〈
s1,...,sl
λ1,...,λl

〉
.

For a given set S, let B(S) be the vector space of all bounded real-valued
functions defined on S. The sublinear functional sup is defined by

sup(f) = sup
s∈S

f(s)

for f ∈ B(S); sup(|f |) is denoted by ‖f‖∞ and called the sup-norm of f . It
is clear that B(S) is a Banach space with the sup-norm. Let E be a vector
subspace of B(S) and suppose E satisfies the following conditions:

(i) E contains all the constant functions;
(ii) if f ∈ E, then f+ = f ∨ 0 ∈ E.
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From (ii) it follows that f− = −(f ∧ 0) = f+ − f is in E. Such a vector
subspace E of B(S) is called a ∨-subspace of B(S). In particular, if S is a
topological space, then the space of all bounded continuous functions is a
∨-subspace of B(S). If E is a ∨-subspace of B(S), then l ∈ E′ is called a
mean on E if

(i) l(f) ≥ 0 when f ≥ 0;
(ii) l(1) = 1;

(iii) l(f) ≤ ‖f‖∞.

It is easily verified that a linear form l is a mean on E if and only if l ≤ sup
on E.

Let l be a mean on a ∨-subspace E of B(S) and F ⊂ E. Then x0 ∈ S
will be called a lower barycenter of l relative to F if

f(x0) ≤ l(f) ∀f ∈ F.

Note that if −F ⊂ F, then x0 is a lower barycenter of l relative to F if and
only if

f(x0) = l(f) ∀f ∈ F;

in this case we call x0 a barycenter of l relative to F. In particular, if F is a
vector subspace of E, then a lower barycenter of l relative to F is always a
barycenter of l relative to F.

A family F of functions defined on a set S is called jointly convex-like
on S if for any finite family {f1, . . . , fl} ⊂ F and for any p ∈ Pf(S) there is
x ∈ S such that

fj(x) ≤ fj(p), j = 1, . . . , l.

The smallest topology on S with respect to which each function in F is lower
semicontinuous will be denoted by T (F). If S is compact for the topology
T (F), then the pair (S,F) is called lower compact.

2. Mazur–Orlicz equality. We now formulate and prove the Mazur–
Orlicz equality alluded to in Section 1. Some applications of it will also be
considered in this section.

Theorem 2 (Mazur–Orlicz equality). Let E, q, and τ be as in Theo-
rem 1. Then

max
l∈E′
l≤q

inf
s∈S

l(τ(s)) = inf
p∈Pf(S)

q(τ(p)).(1)

Proof. For any p ∈ Pf(S) and l ∈ E′ with l ≤ q we have (existence of
such l is due to Banach, see also Remark 1)

inf
s∈S

l(τ(s)) ≤ l(τ(p)) ≤ q(τ(p)),
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hence
sup
l∈E′
l≤q

inf
s∈S

l(τ(s)) ≤ inf
p∈Pf(S)

q(τ(p)).

If infp∈Pf(S) q(τ(p)) = −∞, then for l ∈ E′ with l ≤ q we have

inf
s∈S

l(τ(s)) = −∞,

and consequently

max
l∈E′
l≤q

inf
s∈S

l(τ(s)) = inf
p∈Pf(S)

q(τ(p)) = −∞.

If β = infp∈Pf(S) q(τ(p)) > −∞, then β is a finite number and

q(τ(p)) ≥ β ∀p ∈ Pf(S).

Now if we let θ(s) = β for s ∈ S, then since q is sublinear, statement (B)
in Theorem 1 holds. Then statement (A) holds by Theorem 1, which means
that there is l ∈ E′ with l ≤ q such that

inf
s∈S

l(τ(s)) ≥ β.

Hence infs∈S l(τ(s)) = β, concluding the proof.

Remark 2. We have shown that the Mazur–Orlicz equality follows from
the Mazur–Orlicz theorem (Theorem 1). Now we show the converse. So
suppose Theorem 2 holds; we shall show that Theorem 1 follows. Since in
Theorem 1, (B) follows from (A) trivially, we need only prove that (A)
follows from (B). For this purpose, let Ê = E⊕R, q̂(x, t) = q(x) + t if x ∈ E
and t ∈ R, and τ̂(s) = (τ(s),−θ(s)) for s ∈ S. By Theorem 2 with E, τ , q
replaced by Ê, τ̂ , and q̂ respectively, there is l̂ ∈ Ê′ with l̂ ≤ q̂ such that

inf
s∈S

l̂(τ̂(s)) = inf
p∈Pf(S)

q̂(τ̂(p)),

or

l̂(τ̂(s)) ≥ inf
p∈Pf(S)

q̂(τ̂(p)) ∀s ∈ S.(2)

Since l̂(x, t) = l(x) + αt where l ∈ E′ and α ∈ R, it is easily verified from
l̂ ≤ q̂ that l ≤ q and α = 1. Then

l̂(τ̂(s)) = l(τ(s))− θ(s) ∀s ∈ S.(3)

Now for p ∈ Pf(S), q̂(τ̂(p)) = q(p)−θ(p) ≥ 0 by (B), hence infp∈Pf(S) q̂(τ̂(p))
≥ 0. It then follows from (2) and (3) that θ(s) ≤ l(τ(s)) for s ∈ S. Hence
(A) holds. Therefore the Mazur–Orlicz equality is equivalent to the Mazur–
Orlicz theorem.
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Corollary 1. Let f1, . . . , fn be real-valued functions defined on a set S.
Then

max
λ∈∆n−1

inf
s∈S

n∑
j=1

λjfj(s) = inf
p∈Pf(S)

max
1≤j≤n

fj(p),(4)

min
λ∈∆n−1

sup
s∈S

n∑
j=1

λjfj(s) = sup
p∈Pf(S)

min
1≤j≤n

fj(p),(5)

where ∆n−1 is the standard simplex in Rn.

Proof. (4) follows from Theorem 2 with E=Rn, τ(s) = (f1(s), . . . , fn(s))
and q(x) = max1≤j≤n xj for x = (x1, . . . , xn) in Rn; while (5) follows from
(4) by replacing each fj by −fj .

Corollary 1 has been obtained in [9] by using a generalized form of the
Mazur–Orlicz theorem and has been applied there to prove a minimax the-
orem of Ky Fan [3]. We now use Corollary 1 to show the existence of lower
barycenters for means.

Theorem 3. Let S be a nonempty set and E a ∨-subspace of B(S). Let
F ⊂ E. Suppose F is jointly convex-like on S and (S,F) is a lower compact
pair. Then each mean l on E has a lower barycenter relative to F.

Proof. Let l be a mean on E. For each f ∈ F, let

Af = {x ∈ S : f(x) ≤ l(f)}.
In the following, we consider on S the topology T (F), hence S is compact
and each f ∈ F is lower semicontinuous. For f ∈ F, there is y ∈ S such
that f(y) = minx∈S f(x). Then f(y) ≤ l(f) and hence Af 6= ∅. Let now
{f1, . . . , fn} be any finite subset of F. By Corollary 1,

inf
p∈Pf(S)

max
1≤j≤n

{fj(p)− l(fj)} = max
λ∈∆n−1

inf
s∈S

n∑
j=1

λj{fj(s)− l(fj)}(6)

= max
λ∈∆n−1

min
s∈S

{ n∑
j=1

λjfj(s)− l
( n∑
j=1

λjfj

)}
≤ 0.

Since F is jointly convex-like, for each p ∈ Pf(S), there is s ∈ S such that

fj(p) ≥ fj(s), j = 1, . . . , n,

hence
max

1≤j≤n
{fj(p)− l(fj)} ≥ max

1≤j≤n
{fj(s)− l(fj)},

and consequently from (6) we have

0 ≥ inf
p∈Pf(S)

max
1≤j≤n

{fj(p)− l(fj)} ≥ min
s∈S

max
1≤j≤n

{fj(s)− l(fj)}.
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Thus there is x ∈ S such that

fj(x) ≤ l(fj), j = 1, . . . , n,

or x ∈
⋂n
j=1Afj

. We have shown that {Af}f∈F has the finite intersection
property. Since S is compact, it follows that

⋂
f∈FAf 6= ∅. Let x ∈

⋂
f∈FAf .

Then x is a lower barycenter of l relative to F.

Corollary 2. If X is a compact convex subset in a topological vector
space, and F a family of bounded lower semicontinuous convex functions
on X, then for each mean l on a ∨-subspace of B(X) containing F, there is
x0 ∈ X such that

f(x0) ≤ l(f) ∀f ∈ F.

In particular , if l is a mean on C(X), then there is x0 ∈ X such that

f(x0) = l(f)

for all continuous affine functions f on X.

The formulation and proof of Theorem 3 suggest the following question:
under what condition on τ , the RHS of (1) in Theorem 2 can be replaced
by infs∈S q(τ(s))? We now consider this question.

Let E, q, S, and τ be as in Theorem 1. Then τ is called almost q-convex
if for every p ∈ Pf(S) and ε > 0, there is s ∈ S such that

l(τ(s)) ≤ l(τ(p)) + ε(7)

for all l ∈ E′ with l ≤ q. It is a routine matter to verify that τ is almost
q-convex if for any s1, s2 in S and ε > 0, there is s ∈ S such that

l(τ(s)) ≤ 1
2{l(τ(s1)) + l(τ(s2))}+ ε(8)

for all l ∈ E′ with l ≤ q.
A set S ⊂ E is called almost q-convex if the identification map from S

into E is almost q-convex, i.e. for any s1, s2 in S and ε > 0 there is s ∈ S
such that

l(s) ≤ 1
2{l(s1) + l(s2)}+ ε(9)

for all l ∈ E′ with l ≤ q. In particular, if S ⊂ E has the property that for
any s1, s2 in S there is s ∈ S such that

q

(
s− s1 + s2

2

)
≤ 0,(10)

then S is almost q-convex. Sets S ⊂ E satisfying (10) have been first intro-
duced in [7].
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Theorem 4. Let E, q, and τ be as in Theorem 1 and assume that τ is
almost q-convex. Then

max
l∈E′
l≤q

inf
s∈S

l(τ(s)) = inf
s∈S

q(τ(s)).(11)

Proof. By Theorem 2 and the fact that infs∈S q(τ(s))≥ infp∈Pf(S) q(τ(p)),
it is sufficient to show that for each p ∈ Pf(S) and ε > 0 there is s ∈ S such
that

q(τ(s)) ≤ q(τ(p)) + ε.(12)

Since τ is almost q-convex, there is s ∈ S such that

l(τ(s)) ≤ l(τ(p)) + ε

for all l ∈ E′ with l ≤ q. For this s, there is l̂ ∈ E′ with l̂ ≤ q such that
l̂(τ(s)) = q(τ(s)) (see Remark 1), hence

q(τ(s)) = l̂(τ(s)) ≤ l̂(τ(p)) + ε ≤ q(τ(p)) + ε,

thus (12) holds.

Corollary 3. If S ⊂ E is almost q-convex , then there is l ∈ E′ with
l ≤ q such that

inf
s∈S

l(s) = inf
s∈S

q(s).

Remark 3. If S ⊂ E satisfies (10), then S is almost q-convex and Corol-
lary 3 holds. This special case is proved in [7] together with many applica-
tions.

Remark 4. Corollary 3 contains as special case a strict separation prin-
ciple: if infs∈S q(s) = σ > 0, then there is l ∈ E′ with l ≤ q such that l(s) ≥ σ
for all s ∈ S.

3. Further applications. In this section we consider two further ap-
plications of Theorem 2. The first application is a generalization of the
Lax–Milgram theorem in reflexive Banach spaces; the second application is
a simplified proof of a special case of a theorem of Hartman and Stampac-
chia [6] on a variational inequality as given by Dugundji and Granas [2].
This special case is itself a fairly general form of variational inequality.

Let E be a reflexive Banach space and let (x, x∗) 7→ B(x, x∗) be bilinear
on E× E∗. Then B is called bounded if there is C ≥ 0 such that

|B(x, x∗)| ≤ C‖x‖ ‖x∗‖, x ∈ E, x∗ ∈ E∗,

and positive definite if there is σ > 0 such that

max
x∗∈Jx

B(x, x∗) ≥ σ‖x‖2 ∀x ∈ E,(13)
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and for x 6= 0 we have

B(x, x∗) > 0 ∀x∗ ∈ Jx,(14)

where for x ∈ E,

Jx = {x∗ ∈ E∗ : ‖x∗‖ = ‖x‖ and 〈x∗, x〉 = ‖x‖2}.
It is known from the Hahn–Banach theorem that Jx 6= ∅ for x ∈ E. The
set-valued map J is called the duality map of E.

Remark 5. If E is a Hilbert space and E∗ is identified with E through
the Riesz representation theorem, then Jx = {x} for x ∈ E. Then positive
definiteness defined above coincides with the positive definiteness of bilinear
forms on Hilbert space.

The following theorem is a generalization of the Lax–Milgram theorem
(see Remark 5):

Theorem 5. Let E be a reflexive Banach space and B a bounded and
positive definite bilinear form on E × E∗. Then for each l ∈ E∗, there is a
unique y∗0 ∈ E∗ such that

l(x) = B(x, y∗0), x ∈ E.
Furthermore, y∗0 satisfies ‖y∗0‖ ≤ ‖l‖/σ, where σ is the constant in (13).

Proof. We may assume that l 6= 0 and let β = ‖l‖/σ > 0. Let K be
the closed unit ball in E∗. Since E is reflexive, K is compact in the weak
topology of E∗ and hence so is S = βK. In the following, the topology on
S is the topology inherited from E∗ with weak topology. Consider now the
map τ : E→ C(S) defined by

τ(x) = B(x, ·)− l(x), x ∈ E.
Obviously τ is a linear map, and hence if p ∈ Pf(E), then τ(p) = B(x0, ·)−
l(x0) = τ(x0) for some x0 ∈ E. Hence

inf
p∈Pf(E)

sup τ(p) = inf
x∈E

sup τ(x),

where the sublinear functional sup on C(S) ⊂ B(S) is defined in Section 1.
Now for x ∈ E, x 6= 0,

sup τ(x) = max
y∗∈S
{B(x, y∗)− l(x)}

≥ max
y∗∈Jx

{
B

(
x,

β

‖x‖
y∗
)
− l(x)

}
=

β

‖x‖
max
y∗∈Jx

B(x, y∗)− l(x)

≥ β

‖x‖
σ‖x‖2 − l(x) = ‖l‖ · ‖x‖ − l(x) ≥ 0,
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and consequently
inf

p∈Pf(E)
sup τ(p) ≥ 0.

From Theorem 2, it follows that there is a mean µ on C(S) such that

µ(τ(x)) ≥ 0 ∀x ∈ E.

Since τ is linear, µ(τ(x)) = 0 for all x ∈ E. But by Corollary 2, there is
y∗0 ∈ S such that

τ(x)(y∗0) = µ(τ(x)) = 0

for all x ∈ E, or

l(x) = B(x, y∗0) ∀x ∈ E.(15)

Now we claim that y∗0 is uniquely determined by (15). Suppose y∗1 satisfies
(15) with y∗0 replaced by y∗1 and y∗1 6= y∗0. Then, since E is reflexive, there is
x0 in E with ‖x0‖ = 1 such that

‖y∗0 − y∗1‖ = 〈y∗0 − y∗1, x0〉,

which implies y∗0−y∗1
‖y∗0−y∗1‖

∈ Jx0 and hence

B

(
x0,

y∗0 − y∗1
‖y∗0 − y∗1‖

)
> 0,

consequently B(x0, y
∗
0 − y∗1) > 0, or

l(x0) = B(x0, y
∗
0) > B(x0, y

∗
1) = l(x0),

which is absurd. So y∗0 is uniquely determined. Since y∗0 ∈ S = βK, we have
‖y∗0‖ ≤ β = ‖l‖/σ.

Remark 6. From the proof of Theorem 5, it is clear that the existence
of y∗0 still holds even if we do not assume that condition (14) holds for B.
But then uniqueness of y∗0 is not guaranteed.

Theorem 6 (Hartman–Stampacchia). LetX be a reflexive Banach space,
and C a closed , bounded , and convex subset of X. Suppose f : C → X∗ is
monotone, i.e. 〈f(x)−f(y), x−y〉 ≥ 0 for any x and y in C. Assume further
that f |L∩C is continuous for each line L in X. Then there is y0 ∈ C such
that 〈f(y0), y0 − x〉 ≤ 0 for all x in C.

Proof. We claim first that there is y0 ∈ C such that 〈f(x), y0 − x〉 ≤ 0
for all x ∈ C. For this purpose, let E be the Banach space of all continuous
functions on C with sup-norm, where C is equipped with the weak topology
and therefore is compact by the reflexivity of X, and let τ : C → E be
defined by

τ(s)(x) = 〈f(s), s− x〉
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for s and x in C. Let p ∈ Pf(C), say p =
〈
s1,...,sn

λ1,...,λn

〉
. Then

τ(p)(x) =
n∑
i=1

λi〈f(si), si − x〉

=
n∑
i=1

λi{〈f(si)− f(x), si − x〉+ 〈f(x), si − x}

≥
n∑
i=1

λi〈f(x), si − x〉 =
〈
f(x),

n∑
i=1

λisi − x
〉
,

and hence

sup τ(p) ≥ sup
x∈C

〈
f(x),

n∑
i=1

λisi − x
〉
≥
〈
f
( n∑
i=1

λisi

)
, 0
〉

= 0.

Now apply Theorem 2 with S = C and q = sup to infer that there is a mean
l on E such that

l(τ(s)) ≥ 0, s ∈ C.
Since each τ(s) is a continuous affine function on C, it follows from Corol-
lary 2 that there is y0 ∈ C such that l(τ(s)) = τ(s)(y0) = 〈f(s), s− y0〉 ≥ 0
for all s in C. Thus we have shown that there is y0 in C such that

〈f(x), y0 − x〉 ≤ 0, x ∈ C.(16)

Now we use the same argument as in [2] to show that

〈f(y0), y0 − x〉 ≤ 0, x ∈ C.(17)

For any x in C and t ∈ [0, 1], let zt = tx+ (1− t)y0. Then zt ∈ C and hence
〈f(zt), y0− zt〉 ≤ 0. But 〈f(zt), y0− zt〉 = 〈f(zt), t(y0−x)〉 = t〈f(zt), y0−x〉
implies 〈f(zt), y0 − x〉 ≤ 0. Let now t → 0. By our assumption of the
continuity of f |L∩C for each line L in X we have

〈f(y0), y0 − x〉 = lim
t→0
〈f(zt), y0 − x〉 ≤ 0,

which completes our proof.
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