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Factorization and domination of
positive Banach–Saks operators

by

Julio Flores and Pedro Tradacete (Madrid)

Abstract. It is proved that every positive Banach–Saks operator T : E → F be-
tween Banach lattices E and F factors through a Banach lattice with the Banach–Saks
property, provided that F has order continuous norm. By means of an example we show
that this order continuity condition cannot be removed. In addition, some domination
results, in the Dodds–Fremlin sense, are obtained for the class of Banach–Saks opera-
tors.

1. Introduction. Factorization properties of operators between Banach
spaces have been widely studied. It is well known that every weakly compact
operator between Banach spaces factors through a reflexive Banach space [6].
In contrast, M. Talagrand showed that, in general, a weakly compact opera-
tor between Banach lattices cannot be expected to factor through a reflexive
Banach lattice [20]. However, C. D. Aliprantis and O. Burkinshaw proved
that this can be done under quite general assumptions [1].

Regarding the class of Banach–Saks operators between Banach spaces,
Beauzamy provided in [5] an analogous factorization result. Namely, every
Banach–Saks operator factors through a Banach space with the Banach–
Saks property. In this note we want to consider the analogous question in
the Banach lattice context. In particular, we will prove that every positive
Banach–Saks operator from a Banach lattice to an order continuous Banach
lattice factors through a Banach lattice with the Banach–Saks property (see
Theorem 2.1). In addition, we show that Talagrand’s example [20] can be
used to prove that the order continuity hypothesis cannot be removed (see
Example 1).
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In the second part of this note we give a domination result for the class of
Banach–Saks operators (Corollary 3.3) which improves the results previously
obtained in [12]. Recall that the domination problem for a class C of operators
acting between Banach lattices is stated as follows:

Problem 1. Let 0 ≤ R ≤ T : E → F be two positive operators. Assume
that T belongs to the class C. What conditions on E and F ensure that R
belongs to C?

For positive endomorphisms on a Banach lattice the power problem is
closely related:

Problem 2. Let 0 ≤ R ≤ T : E → E, and T ∈ C. What is the smallest
n ∈ N such that Rn ∈ C?

Corollary 3.2 provides an answer to this question for the class of Banach–
Saks operators.

Power and domination problems have been studied for other classes of
operators in [3], [4], [7], [14], [21], and more recently in [11] and [15].

We refer to the books [16], [17] and [2] for unexplained terms and nota-
tion.

Acknowledgements. The authors would like to thank Professor
N. J. Kalton for very helpful conversations.

2. Factorization of operators through Banach lattices with the
Banach–Saks property. Recall that an operator between Banach spaces
T : X → Y is Banach–Saks if every bounded sequence (xn) in X has a
subsequence such that (Txnk

) is Cesàro convergent, that is, the sequence
of arithmetic means (N−1

∑N
k=1 T (xnk

))N is convergent in the norm of Y .
A Banach space is said to have the Banach–Saks property if the identity op-
erator is Banach–Saks. We say that a Banach space X has the weak Banach–
Saks property if every weakly null sequence in X has a Cesàro convergent
subsequence.

For convenience, we will say that a subset S of a Banach space X is a
Banach–Saks set if for every sequence (xn) in S, there exists a subsequence
(xnk

) that is Cesàro convergent. Clearly, an operator T : X → Y is Banach–
Saks if and only if T (BX) is a Banach–Saks set, where BX is the closed unit
ball of X.

The main result of this note is the following:

Theorem 2.1. Let E and F be Banach lattices and T : E → F a
positive Banach–Saks operator. If F is order continuous, then there exist a



Positive Banach–Saks operators 93

Banach lattice H with the Banach–Saks property and operators T1 : E → H,
T2 : H → F such that the following factorization diagram holds:

E
T //

T1   A
AA

AA
AA

F

H

T2

>>~~~~~~~~

Before the proof, we need to collect some definitions and facts. Recall that
an order continuous Banach lattice E with a weak unit can be considered as
an (in general non-closed) order ideal of L1(Ω,Σ, µ) for a certain probability
space (Ω,Σ, µ), such that the natural inclusion E ↪→ L1(Ω,Σ, µ) is contin-
uous with norm smaller than one [17, Prop. 1.b.14]. Recall also that in an
order continuous Banach lattice every ideal is complemented by a positive
projection [17, Prop. 1.b].

Let E be a Banach function space with order continuous norm defined
over a finite measure space (Ω,Σ, µ). Recall that a bounded subset A ⊂ E
is equi-integrable if for every ε > 0 there exists δ > 0 such that ‖fχB‖E < ε
for every B ∈ Σ with µ(B) < δ and every f ∈ A. The following result is
known (see [10, Lemma 3.3] for a proof).

Lemma 2.2. Let E be a Banach lattice with order continuous norm and a
weak unit , and hence representable as an order ideal in L1(Ω,Σ, µ) for some
probability space (Ω,Σ, µ). A norm bounded sequence (gn) in E is convergent
if and only if it is equi-integrable and ‖ ‖1-convergent.

Proof of Theorem 2.1. First of all, we claim that the solid hull of T (BE)
is a Banach–Saks set.

Indeed, since T is Banach–Saks, T (BE) is a Banach–Saks set. Let W
denote the solid hull of T (BE). Take an arbitrary sequence (zk) in W . This
sequence satisfies |zk| ≤ |Txk| for certain xk ∈ BE . For every k, take rk =
|xk| in BE ; then

|zk| ≤ Txk| ≤ Trk.

Since T is Banach–Saks, there exist g ∈ F and some subsequence (ks) such
that

1
m

m∑
s=1

Trks → g

in the norm of F . In fact, by [8] we can assume that the same property holds
for every subsequence of (ks).

TakeM , the closed ideal of F generated by x = g+
∑∞

s=1 zks/2
s. Accord-

ing to the remarks above, denote by i : M ↪→ L1(Ω,Σ, µ) the continuous
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inclusion of M as an order continuous Banach lattice with weak unit into
some L1(Ω,Σ, µ), and let P : F →M be a positive projection onto M .

Clearly, the composition

iPT : E → L1(Ω,Σ, µ)

is a Banach–Saks operator. In particular, iPT (BE) is relatively weakly com-
pact and so is its own convex solid hull, as L1(Ω,Σ, µ) is a band in its bidual
[2, Theorem 4.39]. Hence, there exists f ∈ L1(Ω,Σ, µ) such that i(zks)→ f
in the weak topology of L1(Ω,Σ, µ). Since L1(Ω,Σ, µ) has the weak Banach–
Saks property [19], passing to a further subsequence we can assume that

1
m

m∑
s=1

i(zks)→ f

in the norm of L1(Ω,Σ, µ).
Notice that ∣∣∣∣ 1

m

m∑
s=1

zks

∣∣∣∣ ≤ 1
m

m∑
s=1

Trks ,

and m−1
∑m

s=1 Trks → g in the norm of F . It follows that (m−1
∑m

s=1 zks)m
is equi-integrable in F , and therefore convergent in F by the previous lines
and Lemma 2.2. Thus, W is a Banach–Saks set as claimed.

Consider now F0, the completion of the space {z ∈ F : ∃λ <∞, z ∈ λW}
under the norm induced by the Minkowski functional of W . Since W is solid
and convex, the space F0 is in fact a Banach lattice. Hence, so is (F0, F )θ,p
(0 < θ < 1, 1 < p <∞), the space obtained by Lions-Peetre interpolation of
F0 and F [17, 2.g]. Moreover, by [5, Thm. 2], (F0, F )θ,p has the Banach–Saks
property.

Finally, since T (BE) ⊂ W , the operator T : E → F0 is bounded. Thus,
by the interpolation theorem [17, Prop. 2.g.15], T is bounded from E to
(F0, F )θ,p. Let T1 : E → (F0, F )θ,p denote this operator. Since W ⊂ BF , we
also see that the inclusion i : (F0, F )θ,p ↪→ F is bounded. Therefore, we have
the factorization

E

T1 $$I
IIIIIIII

T // F

(F0, F )θ,p
, � i

::uuuuuuuuu

Take H = (F0, F )θ,p and T2 = i to conclude the proof.

Corollary 2.3. Let E be a Banach lattice. If 0 ≤ T : E → E is
Banach–Saks, then T 2 factors through a Banach lattice with the Banach–
Saks property.
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Proof. Since c0 does not have the Banach–Saks property, T cannot be an
isomorphism on any subspace of E isomorphic to c0. Hence, by [13, Thm. I.2],
there exist an order continuous Banach lattice F and positive operators R
and S such that

E
T //

R ��@
@@

@@
@@

E

F

S

??~~~~~~~

Therefore, since F is order continuous, Theorem 2.1 implies that RT : E →
F factors through a Banach latticeH with the Banach–Saks property. Hence,
T 2 = SRT also factors through H as claimed.

Note that, in general, every Banach–Saks operator between Banach
spaces factors through a Banach space with the Banach–Saks property
[5, Thm. 1]. However, if the operator acts between Banach lattices it is not
true in general that the space obtained in such a factorization has to be a lat-
tice. To see this we will benefit from the well-known example provided by Ta-
lagrand [20] of a positive weakly compact operator between Banach lattices
which fails to factor through any reflexive Banach lattice. Since Banach–Saks
property implies reflexivity it suffices to prove that Talagrand’s operator is
in fact Banach–Saks. Thus, Theorem 2.1 (and Corollary 2.3) turns out to be
optimal in a sense.

Let us briefly recall for the reader’s convenience the construction of Ta-
lagrand’s operator. First, let

L = {h : N ∪ {∞} → {0, 1} : ∃p ≤ i1 < · · · < ip, h(i) = 0 for i 6= i1, . . . , ip}.

Then L ⊂ C(N∪{∞}) is weakly compact. For every l ≥ 1 consider the map

θl : Ll → C((N ∪ {∞})l),

defined as θl(h1, . . . , hl)(n1, . . . , nl) = 1 if the number of indices i for which
hi(ni) = 1 is even, and θl(h1, . . . , hl)(n1, . . . , nl) = 0 otherwise. Notice that
since θl is continuous for the topology of pointwise convergence in C((N ∪
{∞})l), the set Kl = θl(Ll) is weakly compact.

LetM be the Aleksandrov compactification of the discrete sum of the sets
(N∪{∞})l. Each Kl can be considered as a subset of C(M) by extending the
functions of Kl to zero outside (N∪{∞})l. Let K =

⋃
lKl. By construction,

K consists of {0, 1}-valued functions, so K is contained in the positive cone
of C(M).

Lemma 2.4. The closed convex hull of K, coK, is a Banach–Saks set.

Proof. Indeed, take (yn) arbitrarily in coK. We want to show that there
is a subsequence of (yn) whose arithmetic means are convergent. For each
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n ∈ N write

yn =
∞∑
j=1

λn,jwn,j ,

where
∑∞

j=1 λn,j = 1, λn,j ≥ 0, and wn,j belongs to Wj = coKj .
Passing to a subsequence of (yn), we can assume that for all j ∈ N, there

exists λj such that λn,j
n→ λj , with

∑∞
j=1 λj = 1. Let

y′n =
∞∑
j=1

λjwn,j and en = yn − y′n.

SinceKj is weakly compact, so isWj ; hence, passing to a further subsequence
we can assume that for each j ∈ N there is some zj ∈Wj such that wn,j

n→ zj
weakly. Note that for each j ∈ N, Wj is weakly compact in C((N ∪ {∞})j),
which is isomorphic to c0. Since c0 has the weak Banach–Saks property [9],
we deduce that Wj is a Banach–Saks set. Hence, using [8] and a diagonal
process, we can extract a subsequence (ni) such that for each j ∈ N there
exists fj : N→ R satisfying∥∥∥ k∑

i=1

wni,j − kzj
∥∥∥ ≤ fj(k)

and fj(k)/k → 0 as k →∞. Since the Wj are disjointly supported on M we
get ∥∥∥ k∑

i=1

y′ni
− k

∞∑
j=1

λjzj

∥∥∥ =
∥∥∥ ∞∑
j=1

λj

( k∑
i=1

wni,j − kzj
)∥∥∥ ≤ max

j
λjfj(k),

which implies

1
k

k∑
i=1

y′ni

k→
∞∑
j=1

λjzj

in the norm of C(M). Hence, (y′ni
) (and every subsequence of it) has con-

vergent arithmetic means.
A gliding hump argument shows that (en) has a subsequence equivalent

to the unit vector basis of c0. Indeed, taking an appropriate subsequence we
can assume that λn,j → λj fast enough, so that the following construction
can be carried out. First, set n1 = 1 and let j1 be such that∥∥∥ ∞∑

j=j1

(λn1,j − λj)wn1,j

∥∥∥ < 1
2
.
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Next, take n2 such that∥∥∥ j1∑
j=1

(λn2,j − λj)wn2,j

∥∥∥ < 1
23
,

and then choose j2 such that∥∥∥ ∞∑
j=j2

(λn2,j − λj)wn2,j

∥∥∥ < 1
23
.

In this way, we construct inductively a pair of sequences (nk) and (jk) such
that

∞∑
k=1

∥∥∥enk
−

jk−1∑
j=jk−1

(λnk,j − λj)wnk,j

∥∥∥ ≤ 1.

Thus, (enk
) is equivalent to (

∑jk
j=jk−1

(λnk,j − λj)wnk,j)k, which is a disjoint
sequence in C(M) equivalent to the unit vector basis of c0.

Finally, note that every subsequence of the unit vector basis of c0 has
convergent arithmetic means. Therefore, both (enk

) and (y′nk
) have subse-

quences with the same property. This implies that the same is true for some
subsequence of (yn), and the proof is finished.

Example 1. There exists a positive operator U : `1 → C[0, 1] which is
Banach–Saks but fails to factor through a Banach lattice with the Banach–
Saks property.

Proof. Note that K can be seen as a subset of C[0, 1] by taking a positive
embedding of C(M) into C([0, 1]) such that its image is complemented. Take
a dense sequence (xn) in K and consider the operator

U : `1 → C([0, 1]), (an)∞n=1 7→
∞∑
n=1

anxn.

Clearly, U is positive. Moreover, U(B`1) = coK is a Banach–Saks set by
Lemma 2.4, and therefore the operator U is Banach–Saks.

By [20, Thm. A] the operator U : `1 → C([0, 1]) does not factor through
any reflexive Banach lattice. Since every space with the Banach–Saks prop-
erty is reflexive, the proof is finished.

This shows that the hypotheses in Theorem 2.1 are necessary. Moreover,
if we consider the operator Ũ : `1 ⊕ C([0, 1]) → `1 ⊕ C([0, 1]) given by
Ũ(x, y) = (0, U(x)), then one notices that Corollary 2.3 cannot be improved.

3. Domination of Banach–Saks operators. In this section we look
at the problem of domination for Banach–Saks operators on Banach lat-
tices. Recall that an operator T : E → X from a Banach lattice E to a



98 J. Flores and P. Tradacete

Banach space X is order weakly compact if T maps order intervals to weakly
precompact sets [2, p. 318]. Observe that given 0 ≤ R1 ≤ T1 : E1 → E2

and 0 ≤ R2 ≤ T2 : E2 → E3 with T1 Banach–Saks and T2 order weakly
compact, the proof of Theorem 2.1 can be adapted to obtain the factoriza-
tion

E1

T1 //
R1

//______

P1

''NNNNNNNNNNNNN

Q1 ''N
NNNNNN

E2

T2 //
R2

//______ E3

H

P2

77ppppppppppppp Q2

77ppppppp

where H is a Banach lattice with the Banach–Saks property, 0 ≤ Q1 ≤ P1

and 0 ≤ Q2 ≤ P2. From this a domination result for Banach–Saks opera-
tors is easily obtained. However, we provide an alternative proof of this fact
which does not depend on interpolation. This is the content of the following
result which improves some previous work in [12].

Theorem 3.1. Let E1, E2 and E3 be Banach lattices and 0 ≤ Ri ≤ Ti :
Ei → Ei+1 be positive operators for i = 1, 2. If T1 is a Banach–Saks operator
and T2 is order weakly compact , then the composition R2R1 is a Banach–Saks
operator.

Proof. Since T2 is order weakly compact, by [13, Thm. I.2] we have the
factorization

E1

T1 //
R1

//______ E2

φ   A
AA

AA
AA

T2 //
R2

//_______ E3

F

P
>>}}}}}}} Q

>>}
}

}
}

where F is an order continuous Banach lattice and 0 ≤ Q ≤ P .
Take an arbitrary sequence (xn) in BE1 and the closed ideal generated

by (|φT1(xn)|) in F ↪→ L1(Ω,Σ, µ) as above.
Since T1 is Banach–Saks and

|φR1xnk
| ≤ φT1|xnk

|,

there exists a subsequence (nk) such that the arithmetic means

1
m

m∑
k=1

φT1|xnk
|

converge to some x ∈ F . Then (cm = m−1
∑m

k=1 φR1xnk

)
m

is an equi-
integrable sequence in F (and the same is true for any subsequence of (nk)
by [18]).
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Since φT1 is weakly compact, Gantmacher’s theorem implies in particular
that the adjoint (φT1)∗ is order weakly compact, so we get a factorization
for φT1 and φR1 through a Banach lattice G such that both G and G∗ are
order continuous [13, Prop. I.4 and Thm. I.6]:

E1

T1 //
R1

//_______

U

  A
AA

AA
AA

V   A
A

A
A

E2

φ   A
AA

AA
AA

T2 //
R2

//_______ E3

G
ψ

// F

P
>>}}}}}}} Q

>>}
}

}
}

By passing to some subsequence, [2, Theorem 4.25] shows that (φR1xnk
)

is weakly Cauchy, hence weakly convergent in L1(Ω,Σ, µ). Now, by [19],
(φR1xnk

) has a subsequence whose arithmetic means converge in the norm
of L1(Ω,Σ, µ) to some function f ∈ L1(Ω,Σ, µ). However, since∣∣∣∣ 1

m

m∑
k=1

φR1xnk

∣∣∣∣ ≤ 1
m

m∑
k=1

φT1|xnk
|,

and
1
m

m∑
k=1

φT1|xnk
| → x

for some x ∈ F , we must have |f | ≤ x, which implies that f ∈ F . Therefore
the sequence of arithmetic means, (cm), must be convergent in the norm
of F (see Lemma 2.2). This implies that φR1 and consequently R2R1 are
Banach–Saks operators.

Corollary 3.2. Let E be a Banach lattice and 0 ≤ R ≤ T : E → E be
positive operators. If T is Banach–Saks, then so is R2.

Proof. Since T is Banach–Saks, it is also weakly compact [18], and in
particular order weakly compact. Theorem 3.1 yields the result.

Note that in [12, Ex. 2.9] it was shown that there exist operators

0 ≤ R ≤ T : `1 → `∞

such that T is Banach–Saks, but R is not. This shows that Corollary 3.2 is
sharp; indeed, consider the operators 0 ≤ R̃ ≤ T̃ : `1⊕ `∞ → `1⊕ `∞ defined
by

R̃ =
(

0 0
R 0

)
, T̃ =

(
0 0
T 0

)
.

Clearly T̃ is Banach–Saks, but R̃ is not. Notice that R̃2 = 0.
We also have the following improvement upon [12, Thm. 1.1].



100 J. Flores and P. Tradacete

Corollary 3.3. Let E and F be Banach lattices such that F is order
continuous. If 0 ≤ R ≤ T : E → F with T Banach–Saks, then R is also a
Banach–Saks operator.

Proof. Use Theorem 3.1 and the fact that order intervals in an order
continuous Banach lattice are weakly compact [17, p. 28].

The following question remains open: Can order continuity on F be re-
placed with order continuity on E∗ in Corollary 3.3?
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