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Complexification of the projective and
injective tensor products

by

Gusti van Zyl (Pretoria)

Abstract. We show that the Taylor (resp. Bochnak) complexification of the injective
(projective) tensor product of any two real Banach spaces is isometrically isomorphic to
the injective (projective) tensor product of the Taylor (Bochnak) complexifications of the
two spaces.

1. Introduction. In the Résumé de la théorie métrique des produits
tensoriels topologiques, Grothendieck writes the following: “Dans la théorie
des ⊗-normes développés dans ce travail, il faut bien faire attention que le
corps des scalaires R ou C est fixé une fois pour toutes. Il faut donc distinguer
entre l’ensemble Cr des ‘⊗-normes réelles’ et l’ensemble Cc des ‘⊗-normes
complexes’. Les relations entre les deux ne semblent pas si simples qu’on
pourrait s’y attendre” [3, p. 18].

One way to study relationships between real and complex tensor norms
is through “complexification”.

Most of the well-known Banach spaces have complex as well as real ver-
sions. For example, one has Cn as well as Rn, and in function spaces one
almost always finds an analogous Banach space of complex-valued functions
whenever one has a Banach space of real-valued functions. In [4] the com-
plexification of vector spaces is given a general axiomatic approach, and
then the problem of the complexification of Banach spaces, i.e. finding the
norm functional on the complex space from the norm functional on the real
space, is considered.

A concrete description of their definition is to identify the complexifica-
tion of a real vector space X with X⊕X, making the latter a complex vector
space by defining scalar multiplication with the formula (α + iβ)(x, y) :=
(αx− βy, αy + βx), whenever α+ iβ ∈ C, (x, y) ∈ X ⊕X.
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It is natural to write x+ iy for (x, y) ∈ X ⊕X. The authors of [4] show
which complexification procedure, that is, a method of assigning a norm
to the complexification of the Banach space in a way that is applicable to
all Banach spaces, or, in other words, defining it in a way that is not tied
to the definition of any particular Banach space, is the smallest or largest;
which procedure produces `1C from `1R, and so on. One might also ask which
properties of the Banach space are preserved by which complexification pro-
cedures.

In this article we consider the complexification of the injective and pro-
jective tensor products of real Banach spaces, and show in each case a com-
plexification procedure that turns the injective (projective) tensor product
of two Banach spaces into the injective (projective) tensor product of their
complexifications.

As in, for example, [2], we denote the tensor product of Banach spaces
X and Y , endowed with the tensor norm α, by X⊗α Y , and the completion
under this norm by X

α
⊗ Y. In this article, excepting the concluding remarks,

α will be either the injective tensor norm α = ∨ or the projective tensor
norm α = ∧. We will use the symbols 1= for isometric isomorphism, C(K)
for the Banach space of real-valued functions on the the compact Hausdorff
spaceK, and CC(K) for the Banach space of complex-valued functions onK.

2. The injective tensor product. For any real Banach space X, we
write XT for its Taylor complexification, which means that the complexifi-
cation X ⊕X is endowed with the Taylor complexification norm,

‖x+ iy‖XT
:= sup

0≤θ≤2π
‖(cos θ)x− (sin θ)y‖X .

(See [4, p. 6] for a discussion.) As the Taylor complexification of a C(K)-
space is also the complexification obtained by the functional calculus ap-
proach on Banach lattices, as discussed in [4, p. 6], which yields CC(K), we
have CC(K) 1= C(K)T .

Before the main theorem of this section, we make a quick observation.

Theorem 2.1. There is a linear bijection between the complex vector
spaces XT ⊗∨ YT and (X ⊗∨ Y )T .

Proof. Both spaces are the complex span of {x⊗ y : x ∈ X, y ∈ Y }.

Theorem 2.2. Let u ∈ XT ⊗∨ YT . Then ‖u‖XT⊗∨YT
= ‖u‖(X⊗∨Y )T

.

Proof. On the one hand, defining ZX := {x̂(·) | x ∈ X} as the image of
the usual isometric imbedding of X into a subspace of C(BX∗), and defining
ZY similarly, we have X 1= ZX and Y

1= ZY .
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By injectivity of ⊗∨, we find ZX ⊗∨ ZY is a subspace of C(BX∗) ⊗∨
C(BY ∗) and thus isometrically isomorphic to a subspace of C(BX∗ ×BY ∗).

Now the injectivity of the Taylor complexification procedure (see
[4, p. 14]) can be applied to get

(ZX ⊗∨ ZY )T
1= a subspace of C(BX∗ ×BY ∗)T
1= a subspace of CC(BX∗ ×BY ∗).

Following all these isometries, we conclude that

B : (X ⊗∨ Y )T → CC(BX∗ ×BY ∗),
n∑
j=1

(ej ⊗∨ fj + i(gj ⊗∨ hj)) 7→
n∑
j=1

(êj(·)f̂j(··) + i(ĝj(·)ĥj(··))),

is isometric.
On the other hand, X 1= ZX implies XT

1= (ZX)T , same with Y , and
now the injectivity of the Taylor procedure and then the injectivity of ⊗∨
yield

XT ⊗∨ YT
1= (ZX)T ⊗∨ (ZY )T
1= a subspace of C(BX∗)T ⊗∨ C(BY ∗)T
1= a subspace of CC(BX∗)⊗∨ CC(BY ∗)
1= a subspace of CC(BX∗ ×BY ∗).

The canonical isometries combined in the above set of statements imply that
the mapping

D : XT ⊗∨ YT → CC(BX∗ ×BY ∗),
n∑
j=1

(aj + ibj)⊗ (cj + idj) 7→
n∑
j=1

(âj(·) + îbj(·))(ĉj(··) + id̂j(··)),

is isometric.
Let u ∈ XT ⊗∨ YT = (X ⊗∨ Y )T be given. It is easy to verify that

both B and D are complex-linear mappings, and that for any x ⊗ y in the
vector space generating set X ⊗Y we have B(x⊗ y) = x̂(·)ŷ(··) = D(x⊗ y);
therefore, B(u) = D(u).

Now because B(u) = D(u) and both B andD are isometries, we conclude
that ‖u‖XT⊗∨YT

= ‖D(u)‖ = ‖B(u)‖ = ‖u‖(X⊗∨Y )T
.

Clearly, by taking completions in the previous result, we get our main
result on the complexification of the injective tensor product:

Theorem 2.3. Let X,Y be real Banach spaces. The spaces (X
∨
⊗ Y )T

and XT

∨
⊗ YT are isometrically isomorphic.
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3. The projective tensor product. A similar result holds when we
consider the projective tensor norm. In this case, however, another complex-
ification procedure should be used, as is indicated by the following. If we
identify, as in [4], the complexification of X with X ⊗ `22, the Taylor proce-

dure arises when we view x+ iy = x⊗ e1 + y ⊗ e2 as a member of X
∨
⊗ `22,

while the Bochnak norm is that of x ⊗ e1 + y ⊗ e2 ∈ X
∧
⊗ `22. So duality

considerations hint that the Bochnak norm will do the trick.
Before we consider the complexification of the projective tensor product,

we prove the following result (stated in [4] without proof). The result is
not necessary for our treatment of the complexification of the projective
tensor product, but it emphasises the dual relationship between these two
complexification norms. We writeXB for the Bochnak complexification ofX.

Theorem 3.1. Let X be a real Banach space. Then (X∗)B
1= (XT )∗ and

(X∗)T
1= (XB)∗.

Proof. Recall that the Schatten dual norm αs of a tensor norm α is
defined on X ⊗ Y by the natural embedding

X ⊗ Y ⊆ (X∗ ⊗α Y ∗)∗.
It is known that in general

X∗ ⊗(αs)∗ Y
∗ ⊆ (X ⊗α∗ Y )∗ isometrically,

and that (αs)∗ = α on X⊗α Y if Y is finite-dimensional and α is accessible.
Set α := ∨, which is known to be an accessible (even totally accessible)

norm. Set Y := `22, so we have Y ∗
1= Y. Hence X∗

∨
⊗ Y ∗ ⊆ (X

∧
⊗ Y )∗,

i.e. (X∗)T ⊆ (XB)∗ (isometrically). Now it is elementary to verify, by the
finite-dimensionality of Y , that in fact equality holds in the last inclusion:
(X∗)T

1= (XB)∗.
Since ∧ is also an accessible tensor norm, the same argument shows that

(X∗)B
1= (XT )∗.

Remark: An alternative argument, with Y := `22, is

X∗
∧
⊗ Y ∗ 1= N (X,Y ∗) (Y being finite-dimensional)

1= I(X,Y ∗) (Y is reflexive)
1= (X

∨
⊗ Y )∗.

Another reason why the Bochnak procedure is so compatible with the pro-
jective tensor product, is that it gives the “expected” complexification of
L1(µ)-spaces (see [4]), hence of `1-spaces. In other words, the Bochnak com-
plexification of a real `1(γ)-space is the complex `1(γ)-space. Another essen-
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tial property of Bochnak’s procedure is that it preserves quotients, i.e. for
Banach spaces X,Y the quotient space (X/Y )B is (isometrically isomorphic
to) a quotient of XB.

Recall the usual isometric surjection (valid for any Banach space X)
Q : `1(BX)→ X : (λx)x∈Bx 7→

∑
x∈BX

λxx. We will use the notation λx for
(λxy)y∈BX

where

λxy :=
{
‖x‖ if y = x/‖x‖,
0 otherwise.

When there is another Banach space for which we consider such a surjection,
we will use the symbol µ rather than λ to avoid confusion.

Theorem 3.2. Let X,Y be real Banach spaces. Then the Banach spaces

XB

∧
⊗ YB and (X

∧
⊗ Y )B are isometrically isomorphic.

Proof. (Due to similarities with the proof of the previous result, we
combine the steps in one theorem.) We first show that the mapping T :
XB ⊗ YB → (X ⊗ Y )B given by
n∑
k=1

(ak + ibk)⊗ (ck + idk) 7→
n∑
k=1

((ak ⊗ ck − bk ⊗ dk) + i(bk ⊗ ck + ak ⊗ dk))

is a linear bijective isometry.
It is clear that T is complex-linear. Moreover, the set B = {x ⊗ y :

x ∈ X, y ∈ Y } has as complex span both XB ⊗ YB and (X ⊗ Y )B; the
former since (a+ ib)⊗ (c+ id) = a⊗ b+ (ib)⊗ c+ a⊗ (id) + (ib)⊗ (id) for
any a, b ∈ X and c, d ∈ Y , and the latter since a⊗ b+ i(c⊗d) belongs to the
span for any a, b ∈ X and c, d ∈ Y. Now because T (u) = u for any u ∈ B,
we see at once that T is surjective and injective.

To see that T is isometric, consider the following diagram:

`1C(BX ×BY )

L1
��

M1

++XXXXXXXXXXXXXXXXXXXXXXXXX

`1C(BX)
∧
⊗ `1C(BY )

L2

��

(`1(BX ×BY ))B

M2

��

(`1(BX))B
∧
⊗ (`1(BY ))B

L3
����

(`1(BX)
∧
⊗ `1(BY ))B

M3
����

(`1(BX))B
∧
⊗ YB

L4
����

(X
∧
⊗ `1(BY ))B
M4

����

XB

∧
⊗ YB induced isometry

//(X
∧
⊗ Y )B
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Here L1 is the canonical isometry: It is a special case (with count-

ing measure) of the isometric isomorphism between L1(µ)
∧
⊗ L1(ν) and

L1(µ × ν), which in turn can be deduced from the canonical isometry be-

tween L1(µ)
∧
⊗ Z and L1

Z(µ) for any Banach space Z, shown for example in
[2, Theorem 1.10].

The fact that L2 is isometric is due to the above-mentioned result that
the Bochnak complexification of any real `1-space gives the complex `1-
space.

Now the fact that Y is a quotient (under the usual quotient map) of
`1(BY ), together with the quotient property of the Bochnak procedure, im-
plies that there is an isometric surjection (`1(BY ))B → YB. Employing the
quotient property of the projective tensor norm then yields an isometric
surjection

L3 : (`1(BX))B
∧
⊗ (`1(BY ))B → (`1(BX))B

∧
⊗ YB.

Repeating the steps in the construction of L3, but this time on the left
hand side, yields an isometric surjection

L4 : (`1(BX))B
∧
⊗ YB → XB

∧
⊗ YB.

The mapping M1 is isometric for the same reason as L2 is. And M2

is isometric for the same reason as L1. The projective properties of the
projective norm and of the Bochnak procedure give us the isometry M3;
and repetition, but this time on the right hand side, yields an isometric
map M4.

Let S be the (complex) span of the set {(λa + iλb)(µc + iµd) | a, b ∈ X,
c, d ∈ Y }. Let L be the map L4 ◦ L3 ◦ L2 ◦ L1, but with domain restricted
to S. Thus L : `1C(BX × BY ) ∩ S → XB ⊗ YB is the linearization of the
map (λa + iλb)(µc + iµd) 7→ (a + ib) ⊗ (c + id). Similarly we let M =
(M4 ◦M3 ◦M2 ◦M1)|S . Therefore M is the linearization of the mapping
`1C(BX ×BY ) ∩ S → (X ⊗ Y )B given by

(λa + iλb)(µc + iµd) 7→ (a⊗ c− b⊗ d) + i(b⊗ c+ a⊗ d).

Now both L and M are compositions of isometric mappings, hence iso-
metric themselves. This shows that T is isometric, because for any member
v ∈ (X⊗Y )B, there is t ∈ `1C(BX×BY ) such that L(t) = v, thus if T (u) = v
then ‖u‖ = ‖L(t)‖ = ‖M(t)‖ = ‖T (u)‖.

Thus T : XB ⊗ YB → (X ⊗ Y )B is a linear isometric bijection.
Since XB ⊗∧ YB and (X ⊗∧B)B are isometrically isomorphic as normed

vector spaces, their closures XB

∧
⊗ YB and (X

∧
⊗ Y )B are also isometrically

isomorphic.
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We conclude with two remarks.

1. It is not known whether there are other real-tensor-norm/complex-
tensor-norm pairs satisfying a relationship as in Theorems 2.3 and 3.2. In
this remark we will discuss the case of the Hilbertian tensor norm, denoted
by H. (See for example the book [1, 12.7] for the definition of H; this book
uses the notation w2 for H.)

Suppose one applies to the real Banach space X the complexification
procedure that results from using the H-norm on X ⊗ `22. Then, since
the tensor norms H and ∨ are equal on X ⊗ `22 for any Banach space X,
this complexification is just the Taylor complexification procedure that was
used in Section 2. The analogue of Theorems 2.3 and 3.2 would then be
that

(X
H
⊗ Y )T

1= XT

H
⊗ YT

for all real Banach spaces X and Y .
If X and Y are Hilbert spaces, it is then a consequence of Theorem 2.3

that XT

H
⊗ YT

1= (XT

∨
⊗ YT ). However, XT and YT are not Hilbert spaces.

The author thinks that this last isometric isomorphism—and therefore the
above-mentioned presumed analogue of Theorems 2.3 and 3.2—cannot hold,
because he believes that two Banach spaces V and W , of which neither are

Hilbert spaces, cannot satisfy the isometric isomorphism V
H
⊗W 1= V

∨
⊗W .

2. The following general relationship between real and complex tensor
norms holds if we consider isomorphic rather than isometric results. We say
that tensor norms α1 and α2 are equivalent if there exist constants c1 and
c2 such that for any u ∈ X⊗Y , where X and Y are any Banach spaces over
the same scalar field,

α1(u) ≤ c1α2(u) ≤ c2α1(u).

Let Tr denote the collection of equivalence classes of tensor norms in the
real theory, and Tc the collection of equivalence classes of tensor norms in
the complex theory.

Then one can use the maximal properties of α-integral operator ideals
to show that there exists an injective mapping of Tr into Tc. The fact that
such a mapping exists was already claimed, without proof, in the Résumé,
and the construction of such a mapping will be given in a forthcoming
article.
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