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Continuous rearrangements of the Haar
system in H, for 0 <p < oo

by

KRzYSzZTOF SMELA (Rzeszéw)

Abstract. We prove three theorems on linear operators T, : H,(B) — H) induced
by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary
condition for T, to be continuous for 0 < p < oco.

1. Introduction. Denote by D the collection of all dyadic intervals
in [0,1]. The Lebesgue measure on [0, 1], the cardinality of the set or the
absolute value, depending on the context, will be denoted by the same | - |.
With each interval I € D, I = [k/2", (k+1)/2"), we associate the Haar
function Ay p,

P if 2k /2" <t < (2k 4 1)/27H1,
hip(t) = q —2n/P if (2k + 1)/27F! <t < 2(k + 1)/27+L,
0 otherwise.
We define H,, as the space of all distributions f = ) ay,hs, for which

I fllz, = ﬁ (Z |a1,ph[,p(t)|2)p/2} Hp < 00.

0 IeD
For 1 < p < oo, || - ||g, is actually a norm. When 0 < p < 1 the above
expression defines a quasi-norm. It is known ([W1]) that H, spaces are
isomorphic to classical Hardy spaces of analytic functions on the unit disc.
Suppose B C D. Then H,(B) denotes the closed linear span of {hr, : I € B}
in Hy. For a one-to-one map 7 : B — D it is of interest to consider the
operators Ty, : Hy(B) — H,, given by

T7-7p(h[,p) = hT(I),p (I S B)

After [Mu] such operators will be called rearrangements of the Haar system
(or subsystem), for short rearrangements in Hy,. In this paper we describe
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the continuous rearrangements T, : H,(B) — H, for 0 < p < oo. This
allows us for example to characterize the isomorphisms (isomorphic rear-
rangements) of Hy(B) induced by 7. We restrict the discussion to H), spaces
for 0 < p < co. However, for p > 1, H,, = L, with equivalent norms, so in
this case the results presented here apply to L,. The operators T, in L,
1 < p < o0, for 7 length preserving were investigated by Semyonov [Sem].
The operators T, in BMO and T, in H, for 1 <p <2 and 2 < p < oo,
for arbitrary injection 7, were thoroughly studied by Miiller [Mu]. Geiss
et al. [GMP] described extrapolation of rearrangement operators in H), for
0 < p < 2, namely they showed that for 0 < s < p < 2and 0 < 6 < 1
satisfying 1/p = (1 —6)/s + 0/2 there exists a constant ¢ > 0, depending
only on s and p, such that

|Tr,s : Hs — HSH170 < HTﬂp tHyp — Hp”

(the reverse inequality is rather standard and follows by interpolation). Thus
results from [Mu] were extended in [GMP] to the case 0 < p < 1.

For £L C D and I € D we use £L NI to denote the family of all intervals
from the family £ contained in I; Q(I) denotes D N I. All intervals from D
of length 2™ will be denoted by D,,. In other words, D,,, = DN{I C [0,1] :
|I| =27™}. For £ C D, the set of all maximal intervals in £ with respect to
inclusion will be denoted by mag(L). After [Mu] we say that £ C D satisfies
the M-Carleson condition if
(1) sp = 37 1] < M.

sep || 52,
We use [£] to denote the infimum of the constants M that satisfy (1) and we
call it the Carleson constant of the family L. If there exists N < oo such that
[7=1(£)] < N[L] for each £ C 7(B), we say that 7—1 preserves the Carleson
constant, and we denote by [7~!] the infimum of such constants N. Similarly,
we say that 7 preserves the Carleson constant if there exists N < oo such
that [7(£)] < N[L] for every £ C B, and we define [7] as the infimum of
such N. We will see that for 0 < p < 2 the operator T, is continuous if and
only if 77! preserves the Carleson constant, while for 2 < p < oo the operator
T:p is continuous if and only if 7 preserves the Carleson constant. These
results appeared in [Mu] for rearrangements in BMO and H, for 1 < p < 2
and 2 < p < oo, and were then extended in [GMP] to 0 < p < 1. Our main
result is proved with the use of atomic decomposition of H, ([CoW], [We]).

2. A sufficient condition. We now give a sufficient condition for 7% ,
to be continuous.

THEOREM 1. Let 0 < p < 2. Assume B, C are families of dyadic inter-
vals from D such that there exists a bijection 7 : B — C. If 77! preserves
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the Carleson constant, then the operator
Trp : Hp(B) — Hy(C)
mduced by T is continuous.
Proof. We divide the proof into six parts.
1. It suffices to show that for some finite constant C' < oco.

1 Trp(2)]| 1, < Cllzlm,

for all x € H,(B) of norm |[[z|g, < 1 with finite Haar expansion r =
Y arphrp. Indeed, if & = 3, parphry and |7, (2)||g, > N, then (by
simple approximation) there exists a finite family R; C R such that
I1T(>_ jer, @asphip)lla, > N. By [We, Theorem 2.2] we may also assume
that x is a simple (2,p,00) atom (see [We] for definition). Moreover, we
shall show in the next part that we can assume that the quadratic function
S(x)= (. a%ph%p)l/z is bounded,

(2) 1/8<S(x)[t] <1 forte]0,1].
2. In order to justify (2) we use an atomic decomposition of z similar to

the one used in the proof of [We, Theorem 2.2]. Let {h;,}; denote the Haar
functions {hy,} numbered according to the Haar order. For s € N set

0 () arphryp if hsp = hrp and ary # 0,
=P = 0 if hgp = hyp and ayy, = 0.
We define stopping times vy, for k € Z by

n+1 1/2

Vgp(t) = inf {n eN: (Z d$7p(x)2[t]> > 2’“}.
5=0

Now z has an atomic decomposition

(3) T = Z Ck,pAk,p
k

where

Chp=3" 2k’{t € [0,1] : S(z)[t] > 2k}’1/p

and Ay, are simple (2, p, 00) atoms described by

Ay = > Xt vap(t) < s <vppap(t)}) - dop(a) - o)
s>0

with the property

/ /
@ 5 (Slewsl)”” < Mol < (X lewal?)™
k k
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Indeed, if we decompose = using (3), then applying the Abel rearrangement
([We]) we get

(5) Y lewpl” =37y (2))F|{t: SP(2)[1] > (2")*}]
k k

= 2p3i : Z[(Qp)kﬂ — (2P)F)|{t : SP(2)[t] > (2°)F}]
k

= 2p6i D @) (@) <SPl < (201
k

3. For z = Y x 1ph1p the collection of all dyadic intervals I from D
for which x7, # 0 in this Haar decomposition of x will be called the Haar
support of x. Now we will construct an atomic decomposition of some vector
2’ such that

(6) Haar support of 2’ = Haar support of .
We assume for the moment that Ay, = 0 for & < 0. For ¢ € [0, 1] let
k07p(t) = min{k : Akyp[t] 75 0}

and By, (1) = Ak, (t)- Suppose kn—1p(t) has been defined for some n > 1.
Then we define

knp(t) = min{k > kn1,(t) : Agp[t] # 0}
if it exists. Let Iy ;) denote the longest interval in the Haar support of
Ay, »(t) containing t. We put
hp ¢
(7) Bkn,p(t) [t] = ckn,p(t)Ak‘n’p(t) [t] + 2k’n,P(t)_2 h kn,P(t)[ ] ]
‘ Ikn,p(t)[t]‘
We can see that
2kn.p(t)=2 < S(Bk, ) < 2knpOFL g1 ¢ € supp(By,, (1))

so By, () multiplied by 9~ (knp(M+1) gatisfies the boundedness condition (2)
on its support. Define By, (to get rid of ¢ in the index) as follows:

By plt] = By, ) [t] if kpp(t) = k.

It is easy to check that %Bk,p are (2,p,00) atoms. To specify 2’ mentioned
in (6), we set
— Z By p.
k

Notice that each By, ), can be easily decomposed into a sum of simple atoms
By, ) (where ky,(t) = k) with pairwise disjoint supports being dyadic
intervals. If we can show that

(8) | Trp(Brp)llt, < CllBrpll,
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for every k and C' = C([r™1]) < oo, then for C, from (4),
TA§3&@H < 2o Bl

(8) (4),(7)
< ON B, < cr-cn2al,
k

O Tl <

and we are done.
4. Suppose z € H,(B), 1/8 < S(xz) <1 on [0,1], A is the Haar support
of z, and z has finite Haar expansion (i.e. A is finite)

T = Z arphyp.
IcA
For k € N define
Rirp(r) = {t €10,1] : (22)°71 < SP(Trp(@))[t] < (27)7}.
We shall always assume that |Ls| = 1min{|7(I)| : I € A} and L, € D

for each s. If Ly C Ry ,p(z) and Jl,...,Jgl are all intervals from 7(A)
containing Lg, we define

S

Bs={J1,...,Jg,}

and

ay= Y (/1]

&Szmax{aJ : JEB s

Br= a1 phr=1(1) plloc,
and choose an interval Js € B, such that
(10) |J5| = max{|J| : J € By, ay = a5}
Then, if Ly C R rp(x), we have

9(k=1)p < ( Z of/”ﬁ?,)p/

JeBs
5. We consider three possible cases:
(i) 2:JeBS ﬁ?] <1l
(i) > jes. ﬁ?, >1but ) ep. ajﬁ?] — ai < 0 for some K € Bg;
(iil) >_sen, B2 > 1 and > JeB, af% — ag > 0 for each K € B;.
We write s € A;, s € Ay, or s € Ay, according to the case. Then
2 p/2
(1) (2 o a) I =30 3D
s JeBs iii
We will estimate each sum separately.
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CASE (i). We have

(12 S =3 (X o) < Y AL,

i seA; JeBs SEA;

Now we define

s(J) = ‘ U E‘ L

Ee{Js: JsCJ, Js#J, s€As}

From the sequence (J)sc 4; we choose a subsequence (J,) scA; such that:

1. Jy# J;forallk,je Al k+#j,
2. for each j & A! there exists k € Al such that J; = Jj, .

Then by definition of JS, as and 5(J ) we get

(13) Y @lLs| = Z'T |J|5 L]

SEA; SEA;
1/ 7
T (J
- ¥ [P S m)
seA] & Ly CJs
j\k:j;‘

10 Z |7~ }J (‘js’_‘ U ED
sEA! ‘ Ee{Jy: JyCJs, Ju#Js, s€A;}
= > NI = 5(J))

s€A]

= > > > TN = s(7,))

s€EA] M 9-n<)_g(J,)<2-nt1

<23 % > [T (T2

SEA] M 2-n<l_g(J,)<2-n+1

We shall show that

(14) > > N (Tl < 6l

SCA] T g-n<]_g(J,)<2nt1

To do this we use some ideas of Jones ([Jo, p. 201]).

Fix I € may[r'({Js: s € Al _Suppose that for some natural numbers
L and I (s € Al), whenever 1 —s(J;) € [27,27"F1) we have

(15) 27" =1,/L.
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Now if Al = {s1,...,s,}, we define

~ ~ o~ ~ ~ ~

2= (Jayses Ty Tagse e JngsensJuryens du)
N——
ls, times ls,times ls, times

and write x as (xy,)!_; where 7 =>"" | l; . Then we split (z,,)],_; into L

subsequences S1, ..., Sy, by evenly distributing the entries x,: put z, in Sy
if n = ¢ (mod L), so that if x,, = J, for some s € Al we put a copy of Js
in S,. Notice that each sequence S; consists of pairwise different elements.
Thus from now on, S;’s will be families of intervals. Then

(OIS DI DI S S FA R S AR A

n s€A] SEA]

1

Y T)cI Y(Js)cI

2-n<1—g(J;)<2-n+1 L2
> M Mt

=l J.es;
T’l(js)cl
Moreover, for each Jy € D and j < L the number of intervals :fs from the
family S; with |J5| = 27™ and J, C Jy satisfies

T > 1
(17) y{JstO:seAg,Jsesjmpm}\gprz Yol
sEA]
J.€DmNJo
By definition of s,

(18) " =s(I)I] < 1ol,

s€A!
JsCJo
so (for j < L)

(19) Sl = >0 2SN Dw) N |

Js€8;nJo m2>—log, [Jo]

(17) 1 ~ (18)
< 20| + 7 DRAPARESE: [P/
s€A!
JsCJo
This gives [S;] < 3 for 1 < j < L. Now for all j < L and all K €
maz[7~1(S;)], by definition of the Carleson constant, we have

1 e B

(20) il DD OATES a C))
fsESj
7"1(:7;)CK
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So for j < L we get

(21) S I < FHSHINL
stASj
r=1(Js)Cr

Similarly, by (20) we obtain

(22) D e O ) o 73] I NS ¢
J.es; Kemarlr—(S;)]
= s U ),
jsESj

Because [77!] preserves the Carleson constant, for [r~1] = M we have

(19)
(23) [F (SO < 1180 < M -3,
thus
ooy 1 & R
Y. A=sU)lr )l = 20y > )
86/1\4{ J=1 :]\SGS]'
T (Js)Cl (Tl
(21),(23)
< 6M|Il.
But I was chosen from maz[r—1{Js : s € Al}], so by (22) we get
(24) > <6M.
CASE (ii). Since for s € Ajj,
(25) Z Otjﬂ?] —axg <0
JGBS

for some K € B;, by definition of s we can of course assume that K = j;,
i.e.
(26) > @B <as.
JeBs
Thus for s € A;; we have
2 p/2 PR _ p/2 (26) 1 N N
(30 i)™ < (a2t 3 i)™ < b =a
JEBs JEBs

Now we can repeat the argument used in Case (i) to show that

(27) > <6M.
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CasE (iii). Since ) ;cp. ajﬁ?, — ag > 0 for each K € Bs, by direct
computation for s € Aj; we get

( Z ai/Pﬁ?])p/? < <&§/p71 Z aJB?])p/Q

JeBs JEBs
2/p—1 p/2
< [( > aJﬁ?]) ( > OéJﬁ?J)] = asp7.
JeBs JEBs JeBs

Let {K;}ier be the family of all dyadic intervals such that:

1. |Ky| = %min{|N| Ner Y {J:J€Bs, s Ay}) forallt €T,

2. Uer Ko = U{J : J € Bs, s € Aiii},

3. Ky, # Ky, whenever t1,ty € T, t1 # to.

Surprisingly easily, we get

S (S aB)nl< Y Srtmig<yY S Ik

sEA;; JeBs s€A;; JEBs SEA;i
JEBs
Til(J)DKt
=YK X )< YIkl<t
t SEAm t
JEBs
Tﬁl(J)DKt

So we have proved that
(28) d o<1
iii
6. Now we only need to summarize the above observations. The operator

quasinorm of T, ), : H, — H), satisfies (the first 27 on the right hand side
below comes from (9)), by (3) and (5),

6P _
1 TrpllP <2727 o - (6M + 6M + 1) - |l )

<p. Y
=7 T

<(12M +1) - 8,
and we are done. =

REMARK 1. In case (iii) of the above proof we have found an analytic
condition on 7 guaranteeing the continuity of 7 : H,(B) — H, for arbitrary
B C D. This condition does not make use of [r~1] at all.

QUESTION 1. Does the condition from Case (iii) characterize contractive
rearrangements in Hy,?

We can now apply Theorem 1 and duality to prove our main result.
There already exists a proof of our next theorem in the literature: see Geiss
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et al. [GMP] who used general concepts such as complex interpolation of
quasi-Banach lattices.

THEOREM 2. Let BUC C D and let 7: B — C be a bijection. If

(a) 0<p<2and 1 preserves the Carleson constant, or
(b) 2 < p < oo and T preserves the Carleson constant,

then the operator T, : Hy(B) — Hp(C) induced by T is continuous.

3. A necessary condition. Now we formalize a necessary condition
for the continuity of T ,. We simply prove the converse to Theorem 2.

THEOREM 3. Let BUC C D and let 7 : B — C be a bijection. Suppose
Trp: Hy(B) — Hy(C) induced by T is a continuous operator. Then

(a) 771 preserves the Carleson constant if 0 < p < 2;
(b) T preserves the Carleson constant if 2 < p < 0.

Proof. (a) Suppose that T’ is continuous but 771 does not preserve the
Carleson constant. By [Jo, Lemma 2.1] and [Mu, Proposition 2] this implies
that

VM >13cMcc: [£M] <4 and [rH(£M)] > 4M.
By [Ga, Lemma 3.2 in Chapter 10], there exists an interval I € D and 2M
pairwise disjoint families £ ¢ Q(I)Nr~1(LM), i =1,...,2M, such that &
covers at least half of I. By [W2, Lemma 3.3], span{h;, : I € [J? €7}, ie.
lLIp(Uf:M1 £, contains a space X spanned by vectors with pairwise disjoint
Haar supports and isomorphic to £2M with constant Cp.But {hy,:J € LMY

C,
spans £, with constant Cp 4, in particular, 77 ,(X) & ¢, because we can
divide £M into eight disjoint parts E{V[, ey EQ/I such that for 1 < ¢ < 8 and

I € LM we have

U <

I£JelncM
so {hyp, : J € Efw} spans £, with constant 2P for 1 < i < 8 (cf.
[Sm, Lemma 2]). Since M can be arbitrarily large, and since T, is continu-

ous and a rearrangement, and H), is p-convex, this leads to a contradiction.
(b) follows by duality from the case 1 < p < 2. m
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