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Abstract. We construct the fundamental solution of ∂t −∆y − q(t, y) for functions
q with a certain integral space-time relative smallness, in particular for those satisfying
a relative Kato condition. The resulting transition density is comparable to the Gaussian
kernel in finite time, and it is even asymptotically equal to the Gaussian kernel (in small
time) under the relative Kato condition.

The result is generalized to arbitrary strictly positive and finite time-nonhomogeneous
transition densities on measure spaces.

We also discuss specific applications to Schrödinger perturbations of the fractional
Laplacian in view of the fact that the 3P Theorem holds for the fundamental solution
corresponding to the operator.

1. Main results and overview. Let d be a natural number. The Gaus-
sian kernel on Rd is defined as

g(s, x, t, y) =
1

(4π(t− s))d/2
exp
(
−|y − x|

2

4(t− s)

)
if −∞ < s < t <∞,

and we let g(s, x, t, y) = 0 if s ≥ t. Here x, y ∈ Rd are arbitrary. It is
well-known that g is a time-homogeneous transition density with respect to
the Lebesgue measure, dz, on Rd. In particular, for x, y ∈ Rd,

�

Rd
g(s, x, u, z)g(u, z, t, y) dz = g(s, x, t, y) if s < u < t.
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We will consider a Borel measurable function q : R×Rd → R, and numbers
h > 0 and 0 ≤ η < 1, such that for all x, y ∈ Rd and s < t ≤ s+ h,

(1)
t�

s

�

Rd

g(s, x, u, z)g(u, z, t, y)
g(s, x, t, y)

|q(u, z)| dz du ≤ η.

Theorem 1. There is a unique continuous transition density g̃ such that

(2)
∞�

s

�

Rd
g̃(s, x, t, y)[∂tφ(t, y) +∆yφ(t, y) + q(t, y)φ(t, y)] dy dt = −φ(s, x),

and
g̃(s, x, t, y)
g(s, x, t, y)

≤ 1
1− η

exp
{

η

(1− η)h
(t− s)

}
.

Here s < t ∈ R, x, y ∈ Rd, and φ ∈ C∞c (R× Rd) are arbitrary.

We consider ∆+ q as an additive perturbation of the Laplacian ∆ by the
operator of multiplication by q (i.e. a Schrödinger perturbation). According
to (2), g̃ is the integral kernel of a left inverse of −(∂t +∆y + q). Put differ-
ently, f : (t, y) 7→ g̃(s, x, t, y) solves (∂t − ∆y − q)f = δ(s,x) in the sense of
distributions. Thus, g̃ is a fundamental solution of ∂t −∆y − q ([31]).

As we will see, g̃ is constructed by means of g and q only, without re-
ferring to ∆. A similar procedure applies to the fundamental solution of the
fractional Laplacian ∆α/2 = −(−∆)α/2. At the end of the paper we give
references and discuss these two important examples in some detail.

The primary goal of the paper is, however, to construct and estimate
analogous time-dependent, or nonautonomous, Schrödinger perturbations for
more general transition densities. We work under the appropriate assump-
tion of relative smallness, or relative Kato condition on q. We give explicit
upper bounds for the resulting transition density, which are new even in the
autonomous Gaussian case. Our development is motivated by the role of the
celebrated 3G Theorem in studying Schrödinger-type perturbations of Green
functions [19, 20, 21] (see also [12], [11], [9], [3], [4], [10]). Another motivation
comes from a recent estimate, the 3P Theorem of [5] for the fundamental
solution of ∆α/2. The estimate was used in [5] to construct the transition
density of autonomous gradient perturbations of ∆α/2, in a way resembling
the above mentioned study of Schrödinger perturbations of Green functions
by means of the 3G Theorem (see also [23]). [5] and the present paper show
that a perturbation technique similar to that of [20] applies even more nat-
urally to the parabolic Green function (that is, the fundamental solution,
or transition density). We propose an explicit construction of the perturbed
transition density under a minimum of assumptions, corresponding to the
generality of [19, 20, 21, 10]. We refer the reader to [13, Theorem 3.5, p. 71],
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[24], and [14, Theorem 19, Ch.VIII] for a selection of results in the perturba-
tion theory of linear operators and semigroups on Banach spaces. For recent
developments in Schrödinger perturbations of time-nonhomogeneous transi-
tion probabilities we refer the reader to [17], [27], [16]. We point out that
our main estimate, Theorem 3 below, is more precise and explicit than those
mentioned above. Accordingly, it also strengthens in the present context the
celebrated Khas’minski’s lemma, one of the main tools in the probabilistic
theory of Schrödinger perturbations of generators of Markov processes (see,
e.g., [11], [16]). This strengthening is of independent interest—the estimate
is valid in the full range of times, rather than only in small time intervals,
and the proof gives a deeper insight into the interplay between individual
terms of the series involved.

To explain the connection of Theorem 1 to our general results we note
that g̃ satisfies the following equation for all x, y ∈ Rd and s, t ∈ R:

g̃(s, x, t, y) = g(s, x, t, y) +
�

R

�

X

g(s, x, u, z)q(u, z)g̃(u, z, t, y) dz du

(see the proof of Theorem 2). This is called Duhamel’s formula or perturba-
tion formula. The equation implicitly defines the perturbed transition density
in this situation (and in more general ones), which we will now discuss.

Consider an arbitrary set X with a σ-algebra M and a (nonnegative)
measure m defined on M. To simplify the notation we will write dz for
m(dz) in what follows. Consider the σ-algebra B of Borel subsets of R, and
the Lebesgue measure, du, defined on B. The space-time, R × X, will be
equipped with the σ-algebra B×M and product measure du dz = dum(dz).

Let p be a B×M×B×M-measurable function defined (everywhere) on
R×X × R×X. We will call p a transition density on X if

p(s, x, t, y) = 0 whenever s ≥ t,(3)
0 < p(s, x, t, y) <∞ when s < t, x, y ∈ X,(4)

and the following Chapman–Kolmogorov equation holds: if s < u < t then

(5)
�

X

p(s, x, u, z)p(u, z, t, y) dz = p(s, x, t, y), x, y ∈ X.

Note that we require strict positivity in (4), while (3) is merely a convention.
By (4) and (5), m is necessarily σ-finite on X. The reader may regard s and
x in p(s, x, t, y) as the starting time and position of a variable mass spreading
in X, and t, y as the ending time and position. Thus,

	
X p(s, x, t, y) dy is the

total mass at time t. We will say that transition densities p′ and p′′ on X
are comparable locally in time if for every h > 0 there is a (finite) constant
c = c(h) such that c−1p′′(s, x, t, y) ≤ p′(s, x, t, y) ≤ cp′′(s, x, t, y) for all
x, y ∈ X provided s < t < s + h. We will say that they are asymptotically
equal if c(h) may be chosen in such a way that c(h)→ 1 as h→ 0+.
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All the functions discussed below will be assumed measurable with re-
spect to the relevant σ-algebras, usually with respect to B ×M.

If q is a nonnegative function defined on R×M, then we let

(6) η∗(q) = inf η,

where the infimum is taken over all η > 0 with the property that there exists
h > 0 such that for all x, y ∈ Rd and s < t ≤ s+ h,

(7)
t�

s

�

X

p(s, x, u, z)q(u, z)p(u, z, t, y) dz du ≤ η p(s, x, t, y).

We will say that a (signed) function q : R×X → R is relatively bounded (at
small times, with respect to p and m) if 0 ≤ η∗(|q|) < ∞. We will say that
q is relatively small if 0 ≤ η∗(|q|) < 1, and we will say that q is relatively
Kato (1) if η∗(|q|) = 0.

Theorem 2. If q : R×X → R is relatively small , then there is a unique
transition density p̃ on X locally in time comparable with p, such that for all
s, t ∈ R and x, y ∈ X we have

(8) p̃(s, x, t, y) = p(s, x, t, y) +
�

R

�

X

p(s, x, u, z)q(u, z)p̃(u, z, t, y) dz du.

If q is relatively Kato, then p̃ and p are asymptotically equal.

We note that explicit upper and lower bounds for p̃ exist expressed in
terms of η∗(q+) and η∗(q−) (see Theorem 3 and (27), and also (41)).

The paper is organized as follows. In Section 2 we describe the basic for-
malism of the perturbation series in the context of the Chapman–Kolmogorov
equation. In Section 3 we reformulate the relative boundedness and smallness
of q. By a combinatorial argument, we prove our main estimate, Theorem 3,
for the perturbation series for relatively small q ≥ 0. In Section 4 we consider
signed relatively small q and we prove Theorem 2. In Section 5 we discuss in
more detail Schrödinger perturbations of the transition densities of Lapla-
cian and fractional Laplacian, and we give the proof of Theorem 1. In view of
the fact that the transition density of the fractional Laplacian (but not that
of the Laplacian) satisfies the 3P Theorem, in Section 5 we characterize the
relative Kato condition by means of the parabolic Kato condition studied
in [30].

Our main goal is to give applications motivating the use of relative small-
ness in perturbation theory of transition densities, along with a self-contained
exposition of some of the relevant techniques. We do not aim at full generality
here. Possible and forthcoming generalizations are mentioned in Section 6,
where we also give a probabilistic interpretation of our results.

(1) A different “relative Kato condition” is used in [7, (4)] and [8, (2)].



Schrödinger perturbations of transition densities 239

2. Algebra of perturbation series. Let q : R×X → R. The identities
we intend to prove below rely merely on changing the order of integration,
which is justified if the integrals involved are absolutely convergent or non-
negative. We shall first consider the latter situation and we will assume that
q ≥ 0.

Duhamel’s formula (8) suggests the following definitions. For s, t ∈ R and
x, y ∈ X, we let p0(s, x, t, y) = p(s, x, t, y) and

(9) pn(s, x, t, y) =
t�

s

�

X

pn−1(s, x, u, z)p(u, z, t, y) q(u, z) dz du

for n ≥ 1, and we define the perturbation of p by q,

(10) p̃q(s, x, t, y) =
∞∑
n=0

pn(s, x, t, y), x, y ∈ X, s, t ∈ R.

If s ≥ t, then pn(s, x, t, y) = 0 for every n ≥ 0 and hence p̃q(s, x, t, y) = 0.
Since p(s, x, t, y) = 0 for s ≥ t, we could write (9) as

pn(s, x, t, y) =
�

R

�

X

pn−1(s, x, u, z)p(u, z, t, y) q(u, z) dz du

for all s, t ∈ R and x, y ∈ X, so the reader should not be alarmed if we
occasionally simplify our notation in this way.

Lemma 1. For all s < u < t, x, y ∈ X, and n = 0, 1, . . . ,

(11)
n∑

m=0

�

X

pm(s, x, u, z)pn−m(u, z, t, y) dz = pn(s, x, t, y).

Proof. We note that (11) is true for n = 0 by (5). Assume that n ≥ 1
and (11) holds for n − 1. The sum of the first n terms in (11) can be dealt
with by induction:

n−1∑
m=0

�

X

pm(s, x, u, z)pn−m(u, z, t, y) dz(12)

=
n−1∑
m=0

�

X

pm(s, x, u, z)
t�

u

�

X

pn−1−m(u, z, r, w)p(r, w, t, y) q(r, w) dw dr dz

=
t�

u

�

X

(n−1∑
m=0

�

X

pm(s, x, u, z)pn−1−m(u, z, r, w) dz
)
p(r, w, t, y) q(r, w) dw dr

=
t�

u

�

X

pn−1(s, x, r, w)p(r, w, t, y) q(r, w) dw dr.
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By (9), the (n+ 1)-st term is

(13)
�

X

pn(s, x, u, z)p0(u, z, t, y) dz

=
�

X

u�

s

�

X

pn−1(s, x, r, w)p(r, w, u, z) q(r, w) dw dr p(u, z, t, y) dz

=
u�

s

�

X

pn−1(s, x, r, w)p(r, w, t, y) q(r, w) dw dr.

and (11) follows on adding (12) and (13).

We next prove the Chapman–Kolmogorov equation for p̃q =
∑∞

n=0 pn.

Lemma 2. For all s < u < t and x, y ∈ X,�

X

p̃q(s, x, u, z)p̃q(u, z, t, y) dz = p̃q(s, x, t, y).

Proof. By Lemma 1,
�

X

p̃q(s, x, u, z)p̃q(u, z, t, y) dz =
�

X

∞∑
i=0

pi(s, x, u, z)
∞∑
j=0

pj(u, z, t, y) dz

=
∞∑
n=0

n∑
m=0

�

X

pm(s, x, u, z)pn−m(u, z, t, y) dz

=
∞∑
n=0

pn(s, x, t, y) = p̃q(s, x, t, y).

We will need the following extension of (9).

Lemma 3. For all n=1, 2, . . ., m=0, 1, . . . , n−1, s, t ∈ R, and x, y ∈ X,

(14) pn(s, x, t, y) =
t�

s

�

X

pn−1−m(s, x, u, z)pm(u, z, t, y) q(u, z) dz du.

Proof. For m = 0, equality (14) holds by definition of pn. In particular,
this proves our claim for n = 1. If the claim is proved for some n ≥ 1, then,
for every m = 1, . . . , n,

pn+1(s, x, t, y) =
�

R

�

X

pn(s, x, u, z)p(u, z, t, y) q(u, z) dz du

=
�

R

�

X

�

R

�

X

pn−1−(m−1)(s, x, w, v)pm−1(w, v, u, z) q(v, w) dw dv

× p(u, z, t, y) q(u, z) dz du

=
�

R

�

X

pn−m(s, x, w, v)pm(w, v, t, y) q(v, w) dw dv.
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3. Estimate from above. In this section we will only consider relatively
bounded q ≥ 0. Given s < t, we let I(s, t) be the smallest number such that
for all x, y ∈ X,

(15)
t�

s

�

X

p(s, x, u, z)p(u, z, t, y)q(u, z) dz du ≤ I(s, t) p(s, x, t, y).

Relative boundedness of q implies that I(s, t) is finite if t − s is small. The
following lemma implies that I(s, t) is then finite for all s < t.

Lemma 4. I(s, v) ≤ I(s, t) + I(t, v) whenever s < t < v.

Proof. Let s < t < v and x, y ∈ X. We have

v�

s

�

X

p(s, x, u, z)p(u, z, v, y) q(u, z) dz du =
t�

s

+
v�

t

=
t�

s

�

X

�

X

p(s, x, u, z)p(u, z, t, w)p(t, w, v, y) dw q(u, z) dz du

+
v�

t

�

X

�

X

p(s, x, t, w)p(t, w, u, z)p(u, z, v, y) dw q(u, z) dz du

≤ [I(s, t) + I(t, v)]
�

X

p(s, x, t, w)p(t, w, v, y) dw

= [I(s, t) + I(t, v)]p(s, x, v, y).

This subadditivity and the relative boundedness yield the following.

Lemma 5. If η > η∗(q), then there is β ≥ 0 such that

(16)
t�

s

�

X

p(s, x, u, z)p(u, z, t, y)q(u, z) dz du ≤ [η + β(t− s)]p(s, x, t, y)

whenever s < t ∈ R and x, y ∈ X.

Proof. For η > η∗(q) let h > 0 be as in the line preceding (7). If k is a
natural number and s+ (k − 1)h < t ≤ s+ kh, then k < 1 + (t− s)/h, and,
by Lemma 4, I(s, t) ≤ kη ≤ η + η(t− s)/h. We can take

(17) β = η/h.

Conversely, if (16) holds with some finite η and β, then q is relatively
bounded, and η∗(q) ≤ η. Also, (16) with 0 ≤ η < 1 (and some finite β)
characterizes relative smallness, and (16) being true for every η ≥ 0 (with
some finite β) is equivalent to the relative Kato condition. Thus, our focus in
(16) is on the value of η; the term β(t− s) is merely a technically convenient
replacement of h.
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In the remainder of the section we will assume that (16) holds with
0 ≤ η < 1 and (finite) β ≥ 0. For instance, every bounded (nonnegative) q
satisfies that assumption with η = 0 and β = supR×X q(u, z). Indeed,

t�

s

�

X

p(s, x, u, z)p(u, z, t, y) q(u, z) dz du ≤ [sup q](t− s)p(s, x, t, y).

We shall need the following identity.

Lemma 6. For all n = 0, 1, . . . and ξ, ν, η ∈ R,

(18)
n∑

m=0

n−m∑
k=0

m∑
j=0

(
n−m
k

)(
m

j

)
ξkνj

k!j!
ηn−k−j

=
n∑
r=0

(
n+ 1
r + 1

)
(ξ + ν)r

r!
ηn−r.

Proof. Let j, r be integers with 0 ≤ j ≤ r ≤ n. There are
(
n+1
r+1

)
subsets

of {0, 1, . . . , n} having r+1 elements. Such a subset, {i1, . . . , ir+1} with i1 <
· · · < ir+1, may be chosen by first fixing m := ij+1 ∈ {j, j+1, . . . , n− r+ j}
and then taking j integers 0 ≤ i1 < · · · < ij < m, and r − j integers
m < ij+2 < · · · < ir+1 ≤ n. This shows that (for every such j)∑

j≤m≤n−r+j

(
m

j

)(
n−m
r − j

)
=
(
n+ 1
r + 1

)
(cf. [15, (5.26)]). Considering k = r− j we see that the conditions 0 ≤ r ≤ n,
0 ≤ j ≤ r, j ≤ m ≤ n− r + j are equivalent to 0 ≤ m ≤ n, 0 ≤ k ≤ n−m,
0 ≤ j ≤ m. Therefore

n∑
m=0

n−m∑
k=0

m∑
j=0

(
n−m
k

)(
m

j

)
ξkνj

k!j!
ηn−k−j

=
n∑
r=0

r∑
j=0

n+j−r∑
m=j

(
m

j

)(
n−m
r − j

)
νjξr−j

j!(r − j)!
ηn−r

=
n∑
r=0

(
n+ 1
r + 1

)
(ν + ξ)r

r!
ηn−r.

The following result is our main technical observation, justifying the as-
sumption (16).

Lemma 7. For all n = 0, 1, 2, . . . , x, y ∈ X, and s, t ∈ R,

(19) pn(s, x, t, y) ≤ p(s, x, t, y)
n∑
k=0

(
n

k

)
(β(t− s))k

k!
ηn−k.
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Proof. Of course, (19) holds for n = 0. By Lemma 3, induction, Lemma 6,
and (16),

(n+ 1)pn+1(s, x, t, y)

=
n∑

m=0

t�

s

�

X

pn−m(s, x, u, z)pm(u, z, t, y) q(u, z) dz du

≤
t�

s

�

X

p(s, x, u, z)p(u, z, t, y)q(u, z) dz du

×
n∑

m=0

n−m∑
k=0

m∑
j=0

(
n−m
k

)(
m

j

)
(β(u− s))k

k!
ηn−m−k

(β(t− u))j

j!
ηm−j

=
t�

s

�

X

p(s, x, u, z)p(u, z, t, y) q(u, z) dz du
n∑
r=0

(
n+ 1
r + 1

)
(β(t− s))r

r!
ηn−r

≤ p(s, x, t, y)[η + β(t− s)]
n∑
r=0

(
n+ 1
r + 1

)
(β(t− s))r

r!
ηn−r

= p(s, x, t, y)
[ n∑
r=0

(
n+ 1
r

)
n+ 1− r
r + 1

(β(t− s))r

r!
ηn+1−r

+
n+1∑
r=1

(
n+ 1
r

)
r

(β(t− s))r

r!
ηn+1−r

]

≤ (n+ 1)p(s, x, t, y)
n+1∑
r=0

(
n+ 1
r

)
(β(t− s))r

r!
ηn+1−r.

Theorem 3. If q satisfies (16) with η < 1, then, for all s < t and
x, y ∈ X,

(20) p̃q(s, x, t, y) ≤
1

1− η
exp
(

β

1− η
(t− s)

)
p(s, x, t, y).

Proof. By (10) and Lemma 7,

p̃q(s, x, t, y) ≤ p(s, x, t, y)
∞∑
k=0

(β(t− s))k

k!

∞∑
n=k

(
n

k

)
ηn−k,

where
∞∑
n=k

(
n

k

)
ηn−k =

1
k!

dk

dηk

∞∑
n=0

ηn =
1
k!

dk

dηk
1

1− η
=

1
k!

k!
(1− η)k+1

=
1

(1− η)k+1
.
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Therefore

p̃q(s, x, t, y) ≤ p(s, x, t, y)
1

1− η

∞∑
k=0

(β(t− s)/(1− η))k

k!
(21)

=
1

1− η
exp
(

β

1− η
(t− s)

)
p(s, x, t, y).

4. Small signed perturbations. We will present some immediate con-
sequences of Theorem 3 for signed q. Let q+ = max(q, 0) and q− =
max(−q, 0), so that q = q+ − q−. It will be convenient to consider the fol-
lowing integral kernels over space-time R×X:

Pf(s, x) := Ppf(s, x) :=
�

R

�

X

p(s, x, u, z)f(u, z) dz du,

P qf(s, x) := P qp f(s, x) :=
�

R

�

X

p(s, x, u, z)f(u, z)q(u, z) dz du.(22)

For t ∈ R and y ∈ X we have

(P qp(·, ·, t, y))(s, x) =
�

R

�

X

p(s, x, u, z)p(u, z, t, y)q(u, z) dz du

= p1(s, x, t, y), s ∈ R, x ∈ X.
Using Lemma 3 we find by induction that, for every natural n,

((P q)np(·, ·, t, y))(s, x) = P q(pn−1(·, ·, t, y))(s, x) = pn(s, x, t, y).

For ease of notation, we can write pn(s, x, t, y) = (P q)np(s, x, t, y), or even
pn = (P q)np. In view of (10) we define (for signed q)

(23) p̃q =
∞∑
n=0

(P q)np,

whenever the integrals and the sum are nonnegative or absolutely conver-
gent. Given (signed) q1 and q2 we consider the effect of two consecutive
perturbations,

(̃p̃q1)q2 :=
∞∑
n=0

(P q2epq1 )np̃q1 .
Here P q2epq1f(s, x) =

	
R
	
X p̃q1(s, x, u, z)f(u, z)q2(u, z) dz du (cf. (22)). The fol-

lowing is a special case of a general result on perturbations of integral kernels
(see, e.g., [28, Problem 1.13]).

Lemma 8. Under the assumptions of nonnegativity or absolute conver-
gence,

(24) (̃p̃q1)q2 = p̃q1+q2 .
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Proof. It is not hard to verify that

P q2epq1 =
∞∑
k=0

(P q1)kP q2 .

It follows that

(̃p̃q1)q2 =
∞∑
n=0

(P q2epq1 )np̃q1 =
∞∑
n=0

( ∞∑
k=0

(P q1)kP q2
)n ∞∑

l=0

(P q1)lp

=
∞∑
n=0

∑
σ∈{1,2}n

P qσ(1) . . . P qσ(n)p = p̃q1+q2 .

Proof of Theorem 2. We assume that η∗(|q|) < 1, in particular η∗(q−) < 1
and η∗(q+) < 1. By Theorem 3, p̃q− =

∑∞
n=0(P

q−)np is convergent, hence

p̃−q− =
∞∑
n=0

(−1)n(P q−)np

is well defined and |p̃−q− | ≤ p̃q− . Therefore the arguments of Section 2
apply, in particular p̃−q− satisfies the Chapman–Kolmogorov equation (see
Lemma 2). We will prove that p̃−q− ≥ 0. Indeed, let η∗(q−) < η < 1 and let
h > 0 be as required between (6) and (7), that is, for all s < t ≤ s+ h,

P q−p(s, x, t, y) ≤ ηp(s, x, t, y) ≤ p(s, x, t, y), x, y ∈ X.
Then (P q−)n+1p(s, x, t, y) ≤ η(P q−)np(s, x, t, y) for n = 1, 2, . . ., and hence

(25) p̃−q− = (p− P q−p) + ((P q−)2p− (P q−)3p) + · · · ≥ (1− η)p.
In particular, p̃−q−(s, x, t, y) ≥ 0 provided s < t < s+ h. By the Chapman–
Kolmogorov equation, p̃−q−(s, x, t, y) is nonnegative for all times s, t. Also,

p̃−q− = p− (P q−p− (P q−)2p)− ((P q−)3p− (P q−)4p) + · · · ≤ p
provided s < t < s+ h. Therefore,

(26) p̃−q−(s, x, t, y) ≤ p(s, x, t, y) for all s, t ∈ R, x, y ∈ X.
This further shows that the perturbation of p̃−q− by q+ is well defined, and

(̃p̃−q−)
q+
≤ p̃q+ (cf. (9)). On the other hand, the (nonnegative) series defining

p̃|q| is convergent. Thus, by Lemma 8 and the considerations above,

p̃−q− ≤ (̃p̃−q−)
q+

= p̃q ≤ p̃q+ .

We note that if n is a natural number and s < t < s+ nh, then Chapman–
Kolmogorov, (25), Theorem 3, and (17) imply that, for all x, y ∈ X,

(27) (1− η)n ≤ p̃q(s, x, t, y)
p(s, x, t, y)

≤ 1
1− η

exp
nη

1− η
.
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By Theorem 3 (applied to |q|), the series
∑∞

n=0(P
q)np is absolutely conver-

gent and hence

(I − P q)p̃q =
∞∑
n=0

(P q)np−
∞∑
n=0

(P q)n+1p = p.

Thus p̃ = p̃q solves (8).
To prove the uniqueness of the solution, let p̃ be any transition density

which locally in time is comparable with p. Then the integral in (8) is ab-
solutely convergent. This follows from Lemma 5 (note that the domain of
integration in (8) is merely (s, t)×X). Therefore (I − P q)p̃ = p and

p̃ =
∞∑
n=0

(P q)n(I − P q)p̃ =
∞∑
n=0

(P q)np = p̃q.

If η∗(|q|) = 0 then we can have 0 < η < 1 arbitrarily small in the above
discussion, therefore p̃q and p are asymptotically equal by (27).

Let P̃ = Pep, that is, P̃ f(s, x) =
	
R
	
X p̃(s, x, u, z)f(u, z) dz du, where

p̃ = p̃q. Note that

(28) P̃ =
∞∑
n=0

(P q)nP.

Following [30], [16], we will say that q : R × X → R belongs to the
parabolic (space-time) Kato class for p if

(29) lim
h→0+

sup
s∈R, x∈X

�

X

s+h�

s

p(s, x, u, z)|q(u, z)| du dz = 0

and

(30) lim
h→0+

sup
t∈R, y∈X

�

X

t�

t−h
p(u, z, t, y)|q(u, z)| du dz = 0.

We say that p is probabilistic if

(31)
�

X

p(s, x, t, y) dy = 1 for s < t, x ∈ X.

Lemma 9. If p is probabilistic, p(s, x, t, y) = p(s, y, t, x) for s, t ∈ R,
x, y ∈ X, and q is relatively Kato for p, then q is in the parabolic Kato class.

Proof. Let h, η ≥ 0, and assume that for all x, y ∈ Rd and s < t ≤ s+ h,
t�

s

�

X

p(s, x, u, z)p(u, z, t, y)|q(u, z)| dz du ≤ ηp(s, x, t, y).
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Integrating this with respect to dy we obtain
t�

s

�

X

p(s, x, u, z)|q(u, z)| dz du ≤ η.

Thus, η∗(|q|) = 0 yields (29). Integrating with respect to dx instead, we
obtain (30).

We note that Corollary 11 below gives a special converse to Lemma 9.
In view of Theorem 3, the relative Kato condition seems more intrinsic

to Schrödinger perturbations than the parabolic Kato condition (see [16,
Lemma 5.2] and [27, Theorem 3.10]), but the former may be cumbersome to
verify in specific situations. For instance, the relative Kato condition for the
Gaussian kernel is rather difficult to explicitly characterize (as opposed to
that for the transition density of ∆α/2, 0 < α < 2, see below). It should be
noted that each transition density p determines a specific class of relatively
Kato functions q, and a detailed analysis is required to exhibit interesting
(unbounded) q. We also remark that the relative Kato condition may be
interpreted as a Kato condition for bridges (see Section 6).

5. Examples. In this section we assume that X = Rd, d ≥ 1,M is the
σ-algebra of Borel subsets of Rd, and dz is the Lebesgue measure on Rd.
Let α ∈ (0, 2). Our aim is to discuss the transition density, p̃(s, x, t, y), of
∆α/2+q, where q is relatively small. To state our estimates of p̃, we specialize
to

(32) p(s, x, t, y) = pt−s(y − x),
where x, y ∈ Rd, s < t, and pt is the smooth real-valued function on Rd

determined by

(33)
�

Rd
pt(z)eiz·ξ dz = e−t|ξ|

α
, ξ ∈ Rd, t > 0.

In particular, for α = 1 we have

(34) pt(z) = Γ ((d+ 1)/2)π−(d+1)/2 t

(|z|2 + t2)(d+1)/2
,

the Cauchy convolution semigroup. Note that for every α ∈ (0, 2),

(35) pt(z) = t−d/αp1(t−1/αz), t > 0, z ∈ Rd.

This follows from (33). We let p(s, x, t, y) = 0 if s ≥ t. By the definitions,
p is time- and space-homogeneous: for all s, t, h ∈ R and x, y, z ∈ Rd we have

p(s, x, t, y) = p(s+ h, x+ z, t+ h, y + z).

The semigroup Ptf(x) =
	
Rd f(y)pt(y − x) dy has ∆α/2 as infinitesimal gen-

erator ([1], [29], [3], [22]). Referring to the abstract, p(s, x, t, y) is the funda-
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mental solution of ∂t −∆α/2
y in the sense of distributions ([3]):

(36)
�

R

�

Rd
p(s, x, t, y)[∂t +∆α/2

y ]φ(t, y) dy dt = −φ(s, x),

where s ∈ R, x ∈ Rd, and φ ∈ C∞c (R × Rd). Here C∞c (R × Rd) is the class
of all infinitely differentiable compactly supported functions on R×Rd, and

∆α/2ϕ(y) = lim
t↓0

Ptϕ(y)− ϕ(y)
t

=
2αΓ ((d+ α)/2)
πd/2|Γ (−α/2)|

lim
ε↓0

�

{|z|>ε}

ϕ(y + z)− ϕ(y)
|z|d+α

dz, y ∈ Rd.

A simple proof of (36) can be given by using Fourier transform in the space
variable, and (33) (we omit the details).

We will assume that q is relatively small for p. Let (Lφ)(t, y) = ∂tφ(t, y)+
∆
α/2
y φ(t, y). We also introduce (Qφ)(t, y) = q(t, y)φ(t, y), the operation of

multiplication by q. Referring to our previous notation we have P q = PQ,
and (28) now reads

(37) P̃ =
∞∑
n=0

(PQ)nP.

We can interpret (36) as

(38) PLφ = −φ (φ ∈ C∞c (R× Rd)).

This implies that

(39) P̃ (L+Q)φ = −φ (φ ∈ C∞c (R× Rd)).

Indeed, by (38),

P̃ (L+Q)φ = PLφ+
∞∑
n=1

(PQ)nPLφ+
∞∑
n=0

(PQ)n+1φ = −φ.

The associativity of the operations involved, which we have used freely above,
follows from Fubini’s theorem. Indeed, φ ∈ C∞c (R×Rd) and Lφ are bounded
by a constant multiple of p(·, ·, t0, y0) for some t0 ∈ R, y0 ∈ Rd (see the
remarks on (8) in the proof of Theorem 2). This proves (39):�

R

�

Rd
p̃(s, x, t, y)[∂tφ(t, y) +∆α/2

y φ(t, y) + q(t, y)φ(t, y)] dy dt = −φ(s, x),

where s ∈ R, x ∈ Rd, and φ ∈ C∞c (R×Rd). In fact, (s, x, t, y) 7→ p̃(s, x, t, y) is
continuous, except when s = t. Indeed, continuity is first proved inductively
for each pn in (10), by using an argument of uniform integrability. We omit
the details of the proof, and refer the reader to a similar argument in the
proof of [5, Lemma 14] (see also Lemma 9 and (19) above). The continuity
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of p̃ = p̃q then follows from the locally (in time) uniform convergence of the
series in (21).

Proof of Theorem 1. We consider the Gaussian transition density g in-
troduced in Section 1. This corresponds to α = 2 in (32), and an analogue
of (36) holds for g and the Laplacian with a similar proof. The above dis-
cussion of the fractional Laplacian also applies to the Laplacian, provided q
is relatively small with respect to g.

Apart from obvious similarities, there exist important differences between
p (0 < α < 2) and g (α = 2). For instance the global decay of p in space is
qualitatively different from that of g. In fact, we have the following estimate
of p (cf. (34) and see, e.g., [6] for a proof).

Lemma 10. There exists c = c(d, α) such that , for all z ∈ Rd and t > 0,

c−1

(
t

|z|d+α
∧ t−d/α

)
≤ pt(z) ≤ c

(
t

|z|d+α
∧ t−d/α

)
.

This power-type asymptotics yields the following 3P Theorem ([5]).

Theorem 4. There exists a constant c = c(d, α) such that

p(s, x, u, z) ∧ p(u, z, t, y) ≤ cp(s, x, t, y) for x, z, y ∈ X, s, u, t ∈ R.
For numbers a, b ≥ 0 we have ab = (a ∨ b)(a ∧ b) and a ∨ b ≤ a + b.

Therefore Theorem 4 yields the following variant form with five occurrences
of p:

(40) p(s, x, u, z)p(u, z, t, y) ≤ cp(s, x, t, y)[p(s, x, u, z) + p(u, z, t, y)].

From this and Lemma 9 we immediately obtain the following consequence.

Corollary 11. For the transition density of the fractional Laplacian
∆α/2 with 0 < α < 2, the parabolic Kato class equals the relative Kato class.

For instance, if α < d, then Lemma 10 (see also (35)) yields
h�

0

pt(z) dt ≈ |z|α−d ∧ [h2|z|−d−α], z ∈ Rd, h > 0.

If 0 < ε ≤ α, |q(u, z)| ≤ |z|−α+ε, s ∈ R, x ∈ Rd, and we let h→ 0, then
s+h�

s

�

Rd
p(s, x, u, z)|q(u, z)| dz du ≤

�

Rd
|z|−α+ε

h�

0

pt(z) dt dz → 0.

Therefore each such q belongs to the parabolic Kato class, and so it is
relatively Kato. Let us note that the local (in time) comparability of the
Schrödinger semigroups of the fractional Laplacian for q in the (parabolic)
Kato class is a new result even in the autonomous case of [3]. We also refer
the reader to [31] for recent Gaussian results, with a definition [31, (1.2)] not
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unrelated to our relative Kato condition (see also [10, Definition 3.1] and
[16, Lemma 5.2], [27, Theorem 3.10]).

For a study of other consequences of the Kato condition for autonomous
additive perturbations we refer the reader to [32], [4], [5].

6. Further discussion. For the sake of clarity, let us add a comment
on the lower bound in (27). If q is relatively Kato for g (see Section 1) then
for g̃ = g̃q we have

(41)
gq(s, x, t, y)
g(s, x, t, y)

≥ exp
(
−
t�

s

�

X

g(s, x, u, z)g(u, z, t, y)
g(s, x, t, y)

q−(u, z) dz du
)
.

An analogous estimate holds for the transition density p of the fractional
Laplacian ∆α/2. These results follow from the fact that

Rλ := (I + λP q−)−1P q− , λ > 0,

is a sub-Markov resolvent (of P q−), a unique kernel satisfying

Rλ + λP q−Rλ = P q− .

For further background, we refer the reader to [2, 7.2–7.7]. By an argument of
log-convexity (see, e.g., [20] or [18, p. 429], and also [2, 8.1–8.2]), we obtain
(41). It is noteworthy that one only needs relative boundedness of q− to
obtain satisfactory lower bounds for p̃, as defined by (8).

We omit the (standard) details for two reasons. Firstly, our emphasis in
this paper is on upper bounds, or non-explosion results. Secondly, in view of
possible generalizations mentioned below it seems economical to postpone
the full discussion to a future paper. We remark that, in principle, the lower
bound (41) is well known (see, e.g., [11], [3]).

We now comment on possible and forthcoming generalizations of our
results. It is possible to extend the present results to more general integral
kernels or to measures (rather than functions q; see [20], [26], [16] for a related
study). In fact, considering q(dudz) = ηδu0(du)dz, where η ≥ 1 and δu0 is
the probability measure concentrated at u0, shows that p̃q may explode in
finite time u0.

The technique based on Theorem 3 applies to more general additive per-
turbations (of the generator). In studying these, one should attempt a natural
and general description (in terms of p) of a class of perturbations which lead
to comparability theorems. In this connection we refer to [25] for a discussion
of nonlocal perturbations of the fractional Laplacian, and to [5] for a study
of gradient perturbations of ∆α/2 under the assumption that 1 < α < 2.

There is a deep well-known connection of Schrödinger operators to the
theory of multiplicative functionals of Markov processes (see, e.g., [16]). We
now discuss this connection in the case of the Wiener process Y in Rd,
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defined by the transition density g of Section 1 (note that Yt = B2t, where
B is the standard Brownian motion). Let Es,x and Ps,x be respectively the
expectation and distribution of the process starting at the point x ∈ Rd at
time s ∈ R, so that Ps,x[Yt ∈ A] =

	
A g(s, x, t, y) dy, where Yt is the canonical

continuous coordinate process evaluated at time t > s. For y ∈ Rd we let
Et,ys,x and Pt,ys,x denote, respectively, the expectation and distribution of the
process starting at x at time s and conditioned to reach y at time t (Brownian
bridge). The process is defined by the transition probability density function
r(u1, z1, u2, z2) = g(u1, z1, u2, z2)g(u2, z2, t, y)/g(u1, z1, t, y), where s ≤ u1 <
u2 < t and z1, z2 ∈ Rd. Thus, the finite-dimensional distributions are given
by the density functions

(42)
g(s, x, u1, z1)g(u1, z1, u2, z2) . . . g(un, zn, t, y)

g(s, x, t, y)
,

and we have the following disintegration of Ps,x:

(43) Ps,x(Yu1 ∈ A1, . . . , Yun ∈ An; Yt ∈ B)

=
�

B

Pt,ys,x(Yu1 ∈ A1, . . . , Yun ∈ An)g(s, x, t, y) dy.

Here x, z1, . . . , zn, y ∈ Rd, s ≤ u1 < · · · < un < t, and A1, . . . , An ⊂
Rd are Borel sets. Consider the multiplicative functional ([11]) eq(s, t) =
exp(

	t
s q(u, Yu) du). We have

Et,ys,xeq(s, t) =
∞∑
n=0

1
n!

Et,ys,x
(t�
s

q(u, Yu) du
)n
.

According to (9) and (42),

(44) Et,ys,x
t�

s

q(u, Yu) du =
t�

s

�

Rd

g(s, x, u, z)q(u, z)g(u, z, t, y)
g(s, x, t, y)

dz du

=
g1(s, x, t, y)
g(s, x, t, y)

.

Furthermore,

Et,ys,x
1
2

(t�
s

q(u, Yu) du
)2

= Et,ys,x
t�

s

t�

u

q(u, Yu)q(v, Yv) dv du

=
t�

s

t�

u

�

Rd

�

Rd

g(s, x, u, z)g(u, z, v, w)g(v, w, t, y)
g(s, x, t, y)

q(u, z)q(v, w) dw dz dv du

=
t�

s

�

Rd

g(s, x, u, z)g1(u, z, t, y)
g(s, x, t, y)

q(u, z) dz du =
g2(s, x, t, y)
g(s, x, t, y)

.
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By induction, for every n = 0, 1, . . . ,

1
n!

Et,ys,x
(t�
s

q(u, Yu) du
)n

=
gn(s, x, t, y)
g(s, x, t, y)

,

hence
Et,ys,xeq(s, t) =

g̃q(s, x, t, y)
g(s, x, t, y)

.

We may interpret g̃q(s, x, t, y)/g(s, x, t, y) as the eventual inflation of mass
of the Brownian particle moving from (s, x) to (t, y). The mass grows mul-
tiplicatively where q > 0, and decreases where q < 0. Thus we may consider
the results of this paper as uniform bounds for this mass.

The following example illustrates inequality (20). For a general transition
density p we consider a function q(u, z) = q(u), depending only on time and
locally integrable in time. It easily follows from (9) that

p̃q(s, x, t, y)
p(s, x, t, y)

= exp
(t�
s

q(u) du
)
.

Note that η∗(|q|) = 0 in this example, whilst the emphasis in Theorem 3 is
on η∗(|q|) > 0.

In view of (44) and (7), the relative Kato class may be considered as a
Kato class for the conditional processes (bridges); see (29, 30).
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