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Regularity of the effective diffusivity of random diffusion
with respect to anisotropy coefficient

by

M. Cudna (Lublin) and T. Komorowski (Lublin and Warszawa)

Dedicated to Professor Jan Kisyński on the occasion of his 75th birthday

Abstract. We show that the effective diffusivity of a random diffusion with a drift
is a continuous function of the drift coefficient. In fact, in the case of a homogeneous
and isotropic random environment the function is C∞ smooth outside the origin. We
provide a one-dimensional example which shows that the diffusivity coefficient need not
be differentiable at 0.

1. Introduction. A simple model of diffusion in a complicated medium
is given by an Itô stochastic differential equation

dx(t) = V (x(t);ω) dt+ σ(x(t);ω) dw(t),
x(0) = x0

(1.1)

(see e.g. [9]). Here V (x;ω) = 1
2∇x ·a(x;ω), x ∈ Rd, where a(x;ω) is a station-

ary, d×dmatrix valued, random field given over a probability space (Ω,F ,P)
and σ(x;ω), x ∈ Rd, is the square root of the symmetric part of the field,
as(x;ω) = 1

2 [a(x;ω) + aT (x;ω)]. The process (w(t))t≥0 is a d-dimensional,
standard Brownian motion independent of the field a(·). The symmetric part
(as(x))x∈Rd is assumed to be uniformly positive definite and sufficiently reg-
ular so that the solution of the stochastic differential equation exists; the
precise assumptions are formulated in the next section. The generator of
the random diffusion (x(t))t≥0 is a second order differential operator in di-
vergence form: Lωf = 1

2∇x · (a(x;ω)∇xf) for f ∈ C2
0 (Rd). We adopt the

standard notation for usual function spaces: Cm0 (Rd) denotes the space of
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all Cm-smooth, compactly supported functions, Cb(Rd) is the space of all
bounded continuous functions, etc. It is well known from homogenization
theory that the process (x(t))t≥0 satisfies both the law of large numbers
and the central limit theorem (see e.g. [10, 5]), i.e. x(t)/t tends a.s. to 0 as
t→∞, while x(t)/

√
t converges weakly to a zero mean normal vector with

a non-degenerate diffusivity matrix D = [Dpq]. Unfortunately, the matrix is
not given explicitly and its calculation is, in general, quite difficult.

Suppose now that an external force is added. As a result the particle
acquires a drift. The equation describing the motion in a constant external
force field is given by

dx(t) = [V (x(t);ω) + v] dt+ σ(x(t);ω) dw(t),
x(0) = x0,

(1.2)

where v ∈ Rd is a constant vector. One can show that then x(t)/t → v a.s.
as t → ∞. In addition, using a rather standard homogenization argument
(see Theorem 2.1 below), one can prove that (x(t)− vt)/

√
t tends to a zero

mean normal vector with covariance matrix D(v) = [Dpq(v)].
In the present paper we are concerned with smoothness of the covariance

matrix with respect to the anisotropy parameter v. It has been shown in [6]
that the function v 7→ D(v) is continuous at 0. We prove (see Theorem 2.2
below) that in fact it is continuous for all v ∈ Rd. Moreover, if the field
a(·) is statistically isotropic (see Definition 2.5), then the diffusivity is an
isotropic tensor in v and C∞-smooth on Rd \{0}. As we explain in Section 6,
this result is not entirely intuitively clear. Not getting too technical at this
point, we only mention that a quite natural numerical scheme for computing
the derivatives of the solution of the corresponding cell problem (see (3.8)
below) does not imply the existence of the derivatives (see Remark 6.3). In
fact, as shown in the one-dimensional example (see Section 5), the diffusivity
coefficient D(v) may not be differentiable at 0.

2. Preliminaries and the statement of main theorems. Suppose
that (Ω,F ,P) is a probability space. We shall denote by 〈·〉P the expectation
with respect to P. To describe the homogeneous random field (a(x))x∈Rd it is
convenient to assume that there exists an ergodic group (τx)x∈Rd of measure
preserving transformations on Ω, i.e. P(τx(A)) = P(A) for all x ∈ Rd, and
A ∈ F and τx(A) = A for all x ∈ Rd implies that A is P-trivial. We assume
that the group is measurable and stochastically continuous, i.e. (x, ω) 7→
1A(τxω) is jointly measurable for any A ∈ F , and the unitary group Tx :
L2(P) → L2(P), x ∈ Rd, given by Txf(ω) := f(τxω) is strongly continuous.
Denote by 〈·, ·〉P, ‖ · ‖L2(P) the scalar product and the corresponding norm
on L2(P). Let Dp, p = 1, . . . , d, be the L2-infinitesimal generators of the
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group in the directions ~ep := (0, . . . ,
p
1, . . . , 0), p = 1, . . . , d. Let also ∇ :=

(D1, . . . , Dd).
Let a : Ω → Rd2 be a random matrix for which there exists a determin-

istic constant λ0 > 0 such that

(2.1) a(ω)ξ · ξ ≥ λ0|ξ|2, ∀ξ ∈ Rd and P-a.s. ω.
We assume furthermore that the entries of the matrix a = [apq] satisfy

(2.2) ess sup
{
|apq(ω)|+

d∑
k=1

|Dkapq(ω)|+
d∑

k,l=1

|D2
klapq(ω)|

}
<∞

for all p, q = 1, . . . , d. For a given random matrix a we can define a homo-
geneous random field a(x;ω) := a(τxω), (ω, x) ∈ Ω × Rd. Similarly, one can
associate a random vector or scalar field with an arbitrary random vector or
variable.

2.1. The statements of main results. We now give the precise statements
of our main results. Their proofs are contained in the following sections.

Let (x(t))t≥0 be the solution to (1.2). With no loss of generality we set
x0 = 0. We assume that the standard Brownian motion (w(t))t≥0 appearing
there is given over a certain probability space (Σ,W,Q). The trajectory
process is defined over the product probability space (Ω×Σ,F ⊗W,P⊗Q).
In our first result we give the law of large numbers and the central limit
theorem for the solutions of (1.2).

Theorem 2.1. We have x(t)/t→ v as t→∞, both a.s. and in L1 with
respect to the measure P⊗Q. In addition, there exists a d-dimensional , zero
mean Gaussian measure ν∗ on Rd such that for any f ∈ Cb(Rd),

lim
t→∞

〈[
EQf

(
x(t)− vt√

t

)
−
�
f dν∗

]2〉
P

= 0.

Here EQ and 〈·〉P denote the expectations with respect to Q and P, respec-
tively.

The quenched version of this result has already appeared in [6], where
an analytic proof, using Harnack estimates for linear parabolic p.d.e-s, has
been given. For completeness we present below (see Section 3) an argument
that reduces the central limit theorem to certain properties of correctors,
i.e. solutions of the resolvent equation (3.8), that can be verified when the
generator is a bounded perturbation of a normal operator (see Appendix B
below and also [4]).

Let D(v) = [Dpq(v)] be the diffusivity matrix of ν∗.

Theorem 2.2. Suppose that the field of coefficients satisfies assumptions
(2.1) and (2.2). Then the function v 7→ D(v) is continuous.
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The proof of this result is contained in Section 4.

2.2. Isotropic fields and C∞-smoothness of diffusivity. Let O(d) denote
the topological group of real orthonormal d× d matrices.

Definition 2.3. Suppose that B : Rd → Rd2 is a d × d matrix valued
function. We say that the function is isotropic if

B(gx) = gB(x)gT , x ∈ Rd, g ∈ O(d).

We can think of B(x) as a linear operator acting on Rd. An isotropic,
matrix valued function remains unchanged under the orthogonal change of
coordinates x′ := gx, x ∈ Rd, where g ∈ O(d). One can prove the following
characterization of the second order symmetric isotropic tensors.

Proposition 2.4. Suppose that B : Rd → Rd2 is a symmetric matrix
valued , isotropic function. Then there exist functions f1, f2 : (0,∞) → R
such that

(2.3) B(x) = f1(|x|)(Id− x̂⊗ x̂) + f2(|x|)x̂⊗ x̂.
Here x̂⊗ x̂ := [|x|−2xpxq].

This is a well known result, especially in the physics and engineering
literature; for completeness we recall its proof in Appendix A. One can also
define a notion of statistical isotropy for a random matrix valued field.

Definition 2.5. We say that a(·) is statistically isotropic if for any g ∈
O(d) the law of the field (a(gx))x∈Rd is the same as that of (ga(x)gT )x∈Rd .

Theorem 2.6. Suppose that in addition to assumptions (2.1) and (2.2)
the field of coefficients is statistically isotropic. Then the function v 7→ D(v)
is C∞ on Rd \ {0}.

3. The proof of Theorem 2.1

3.1. Environment process, Dirichlet spaces and the law of large numbers.
The material discussed in this section is standard in probabilistic homoge-
nization theory. We shall refer a reader to either [7] or [8] for detailed proofs
of the results cited here (see also [4]).

A convenient tool, frequently used in homogenization theory of random
diffusions, is the so called environment process. It is an Ω-valued stochastic
process describing the environment from the vantage point of the diffusing
particle ζt := τx(t)(ω). It can be shown that the process is Markovian. To de-
scribe its generator define the following function spaces. For a non-negative
integer m let Cm(Ω) be the space of all random variables F that have all
partial derivatives Dm1

1 . . . Dmd
d F , m1 + · · ·+md = m, such that the corre-

sponding random fields are continuous and deterministically bounded. Define
also C∞(Ω) :=

⋂
m≥0C

m(Ω). One can show that the measure P is invariant
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for the process considered. The transition semigroup extends to a strongly
continuous semigroup on L2(P), and C2(Ω) is a core of the L2(P)-generator
L(v) of the process, given by the formula

L(v)F (ω) = L(0)F (ω) +
d∑
p=1

vpDpF (ω), F ∈ C2(Ω),(3.1)

where

L(0)F (ω) =
1
2

d∑
p,q=1

Dp(apqDqF (ω)), F ∈ C2(Ω).(3.2)

Suppose that L(v)F = 0. Since

(3.3) 0 = −〈L(v)F, F 〉P =
1
2

d∑
p,q=1

〈as
pqDpF,DqF 〉P ≥

λ0

2

d∑
p=1

‖DpF‖2L2(P),

the above implies that ∇F = 0. Ergodicity of the group (τx)x∈Rd of spatial
shifts implies that F ≡ const P-a.s. This in turn shows that the only bounded
functions that satisfy L(v)F = 0 are constant P-a.s. Thus, the measure P is
ergodic for the process (ζt)t≥0. Equation (1.2) reads

(3.4) x(t) =
t�

0

c(v)(ζs) ds+M(t),

where c(v)q (ω) := vq + 1
2

∑d
p=1Dpapq(ω) and

(3.5) M(t) :=
t�

0

σ(ζs) dw(s), t ≥ 0,

is a martingale of bounded quadratic variation. With the help of the ergodic
theorem and the law of large numbers for martingales (see e.g. Theorem
VII.9.2 of [2]), one can therefore conclude that limt→∞ x(t)/t = 〈c(v)〉P = v
both a.s. and in L1.

Let L2
0(P) := [f ∈ L2(P) : f ⊥ 1]. Define the Hilbert space H1 as the

completion of H1
0 , the subspace of L2

0(P) consisting of those F for which

(3.6) ‖F‖21 :=
d∑
p=1

‖DpF‖2L2(P) <∞,

in the norm given by (3.6). The corresponding scalar product is the unique
extension of 〈F,G〉1 :=

∑d
p=1〈DpF,DpG〉P, F,G ∈ H1

0 . We denote by H−1

the Hilbert space dual to H1. Let H−1
0 ⊂ L2

0(P) consist of those F ∈ L2
0(P)

for which G 7→ 〈F,G〉P, G ∈ H1
0 , extends to a bounded linear functional

ι(F ) ∈ H−1 defined on the entire H1. The mapping ι : H−1
0 → H−1 is a
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linear embedding and

(3.7) ‖ι(F )‖−1 = sup
‖G‖1≤1

〈F,G〉P <∞.

We shall identify H−1
0 with the range of ι and omit the notation for the

operator.
Note that Dp, p = 1, . . . , d, extend to bounded linear operators from H1

to L2(P). It can be checked directly that the operator ∆ :=
∑d

p=1D
2
p extends

from C2(Ω) to a unitary mapping between H1 and H−1.

3.2. Central limit theorem. In this section we prove that the laws of(
(x(t)− vt)/

√
t
)
t>0

converge weakly, as t → ∞, to the law of a zero mean,
Gaussian random vector. We start with the cell problem, i.e. the resolvent
equation

(3.8) (λ− L(v))χ(p)
λ,v = cp,

where λ > 0 and cp := c
(0)
p , p = 1, . . . , d. Observe that for any F ∈ H1

0 ,

〈cp, F 〉P = −1
2

d∑
q=1

〈apqDqF 〉P,

thus, by definition, each cp is in H−1
0 . Mulitplying both sides of (3.8) by

χ
(p)
λ,v, integrating over P and using coercivity (see (2.1)), we obtain

λ‖χ(p)
λ,v‖

2
L2(P) + λ0‖χ(p)

λ,v‖
2
1 ≤ ‖cp‖−1‖χ(p)

λ,v‖1,
which leads to the estimates

sup
λ∈(0,1]

‖χ(p)
λ,v‖1 ≤

1
λ0
‖cp‖−1(3.9)

and

sup
λ∈(0,1]

λ‖χ(p)
λ,v‖

2
L2(P) ≤

1
λ0
‖cp‖2−1.

In fact, more can be deduced: see (3.14) and (3.15) below.
Observe that

(3.10) L(v)F = L0F +BF,

where L0, B are the closures of L0F := (λ0/2)∆F +
∑d

p=1 vpDpF and

(3.11) BF :=
1
2

d∑
p,q=1

Dp[(apq − λ0∆pq)DqF ], F ∈ C2(Ω),

respectively. Note that

(3.12) 〈F, (−L0)F 〉P ≤ 〈F, (−L(v))F 〉P ≤ C∗〈F, (−L0)F 〉P, ∀F ∈ C2(Ω),
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for some C∗ independent of F . Using standard regularity properties of dif-
fusions one can easily verify that C2(Ω) is invariant under semigroups gen-
erated by any of the operators L0, L∗0, B and B∗. It is therefore a common
core for each of these operators (see Proposition 1.3.3 of [1]). Moreover, the
operator L0 is normal in the sense of the definition given in Appendix B.
One can also easily observe that there exists C > 0 such that

(3.13) 〈F,BG〉2P ≤ C〈F, (−L0)F 〉P〈G, (−L0)G〉P, ∀F,G ∈ C2(Ω).

As shown in Appendix B, the above conditions imply that

(3.14) lim
λ→0+

λ‖χ(p)
λ,v‖

2
L2(P) = 0

and

(3.15) χ(p)
v := lim

λ→0+
χ

(p)
λ,v exists in H1.

The latter is equivalent to the fact that Dqχ
(p)
v ∈ L2(P), q = 1, . . . , d, and

(3.16) lim
λ→0+

Dqχ
(p)
λ,v = Dqχ

(p)
v

in the L2 norm for q = 1, . . . , d. Note also that in light of (3.9) we obtain

(3.17) ‖χ(p)
v ‖1 ≤

1
λ0
‖cp‖−1.

Using (3.4) and (3.8) we can write

(3.18) xp(t)− vpt = Rp,λ(t) + M̃p,λ(t),

where M̃p,λ(t) := Mp(t) + Np,λ(t) and M(t) = (M1(t), . . . ,Md(t)) is given
by (3.5) while

Np,λ(t) := χ
(p)
λ,v(ζt)− χ

(p)
λ,v(ζ0)−

t�

0

L(v)χ
(p)
λ,v(ζs) ds.

Note that by Itô’s formula,

(3.19) M̃p,λ(t) =
t�

0

(~ep +∇χ(p)
λ,v)σ(ζs) dw(s), t ≥ 0.

The remainder term is

Rp,λ(t) := χ
(p)
λ,v(ζ0)− χ(p)

λ,v(ζt) + λ

t�

0

χ
(p)
λ,v(ζs) ds.

Let

M̃p(t) :=
t�

0

(~ep +∇χ(p)
v )σ(ζs) dw(s), t ≥ 0.
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From the above and (3.19) we see that the quadratic variation of (M̃p,λ(t)−
M̃p(t))t≥0 equals

(3.20) 〈M̃p,λ− M̃p〉t =
t�

0

as(ζs)(∇χ(p)
λ,v −∇χ

(p)
v )(ζs) · (∇χ(p)

λ,v −∇χ
(p)
v )(ζs) ds

for any λ > 0. Thus, in light of (3.15) and (3.16), the martingales (M̃λ(t))t≥0

converge, as λ → 0+, in the Hilbert space norm induced by the quadratic
covariation, to M̃(t) = (M̃1(t), . . . , M̃d(t)), t ≥ 0. As a consequence, also
Rp,λ(t)→ Rp(t) in L2(P) as λ→ 0+ for p = 1, . . . , d. Note that

(3.21)
Rp(t)√

t

=
1√
t

[
M̃p,λ(t)− M̃p(t) + χ

(p)
λ,v(ζ0)− χ(p)

λ,v(ζt) + λ

t�

0

χ
(p)
λ,v(ζs) ds

]
.

Thus, using an elementary estimate (
∑4

i=1 ai)
2 ≤ 4

∑4
i=1 a

2
i and (3.20), we

obtain from (3.21)

1
t
〈EQR

2
p(t)〉P ≤ 4〈as(∇χ(p)

λ,v −∇χ
(p)
v ),∇χ(p)

λ,v −∇χ
(p)
v 〉P

+
4
t

[2 + (λt)2]‖χ(p)
λ,v‖

2
L2(P).

Substituting in the above estimate λ = 1/t and using (3.14) and (3.16), we
obtain

(3.22) lim
t→∞

1
t
〈EQR

2
p(t)〉P = 0.

By virtue of the ergodic theorem,

1
t
〈M̃p, M̃q〉t =

1
t

t�

0

as(ζs)(~ep +∇χ(p)
v (ζs)) · (~eq +∇χ(q)

v (ζs)) ds→ Dpq(v)

as t→∞, both a.s. and in L1 for each p, q = 1, . . . , d. Here,

(3.23) Dpq(v) := 〈as(~ep +∇χ(p)
v ), ~eq +∇χ(q)

v 〉P.

Using the central limit theorem for martingales with stationary and er-
godic increments (see e.g. Theorem 5.4 of [3]), we conclude that the laws of
M̃(t)/

√
t converge weakly to the law of a normal random vector as t→∞.

Applying the decomposition (3.18) together with (3.22), we can justify the
central limit theorem for (x(t) − vt)/

√
t as t → ∞. The limiting law is

that of a normal random vector with zero mean and with covariance matrix
D(v) = [Dpq(v)].
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4. The proof of Theorem 2.2. Suppose that E(dk) is the spectral
resolution corresponding to the group (Tx)x∈Rd . It is an L2(P) orthogonal
projection valued Borel measure defined on (Rd,B(Rd)) such that Tx =	
eik·xE(dk) for x ∈ Rd. For a given φ ∈ L2(P) one can define a numeri-

cal, finite, Borel measure eφ(A) := 〈E(A)φ, φ〉P for A ∈ B(Rd). It is called
the spectral measure of φ. In fact, the definition of the spectral measure can
be extended to the elements of the spaces H±1. Let B0 be a subfamily of sub-
sets A ∈ B(Rd) that are separated from 0, i.e. dist(0, A) > 0, and bounded,
i.e. there exists R > 0 for which A ⊂ B(0, R).

Proposition 4.1. Suppose that φ ∈ H1 or φ ∈ H−1. Then there exists a
unique measure eφ, also called the spectral measure of φ, such that eφ({0})=0
and for any sequence (φn)n≥1 in H1

0 or in H−1
0 that converges to φ in the

respective norm we have

(4.1) lim
n→∞

eφn(A) = eφ(A) for all A ∈ B0.

In addition, for φ ∈ H1 we have

(4.2) ‖φ‖21 =
�
|k|2 eφ(dk) <∞,

while for φ ∈ H−1,

(4.3) ‖φ‖2−1 =
� eφ(dk)
|k|2

<∞.

Conversely , suppose that φ ∈ L2(P) has spectral measure eφ that satisfies
either (4.2) or (4.3). Then it belongs to H1 or H−1, respectively.

Proof. The group (Tx)x∈Rd can be extended to act as a C0 group of
unitary maps on H1. Its spectral resolution E1(dk) allows us to define the
spectral measure e1φ(dk) := (E1(dk)φ, φ)1 corresponding to any φ ∈ H1.
Note that for φ ∈ H1

0 we have

(4.4) e1φ(dk) = |k|2eφ(dk).

Indeed, we then have Txφ =
	
eik·xE1(dk)φ. Hence, for any f ∈ S(Rd),〈�

f(x)Txφdx, φ
〉

1
=

�
f̌(k) e1φ(dk),

where f̌(k) :=
	
eik·xf(x) dx denotes the inverse Fourier transform of f . On

the other hand, the left hand side of the above equality equals
d∑
p=1

〈�
f(x)TxDpφdx,Dpφ

〉
P

=
�
|k|2f̌(k) eφ(dk).

Since the above equalities hold for all f ∈ S(Rd) we infer that (4.4) remains
valid for φ ∈ H1

0 . We can now use (4.4) to define the spectral measure eφ,
not necessarily finite, for any φ ∈ H1. Of course, (4.2) follows directly from
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the definition. For any A ∈ B(Rd) we have eφn−φ(A) ≤ ∆−2‖φn − φ‖21,
provided that dist(0, A) ≥ ∆. From the triangle inequality we also have
|e1/2φn

(A)−e1/2φ (A)| ≤ e1/2φn−φ(A). These two facts yield (4.1). Suppose now that
the spectral measure satisfies

	
|k|2 eφ(dk) <∞. It is straightforward to check

that this condition implies the existence of Dpφ, in fact Dpφ = i
	
kpE(dk)

for p = 1, . . . , d. Thus, φ belongs to H1 (see (3.6)).
The group (Tx)x∈Rd also extends to a strongly continuous, unitary group

on H−1, which allows one to define the spectral resolution E−1(dk), which
leads to the definition of the spectral measure e−1

φ (dk). For φ ∈ H−1
0 we

can show, using duality, that e−1
φ (dk) = |k|−2 eφ(dk). This equality allows

extending the definition of eφ(dk) to all φ ∈ H−1. The remaining part of the
argument is quite analogous to the H1 case and we leave it to the reader.

For φ ∈ H1
0 we let Aφ := v · ∇φ ∈ L2(P). Since ‖Aφ‖L2(P) ≤ |v|`2‖φ‖1,

where |v|`2 := (
∑d

i=1 v
2
i )

1/2, the operator A can be extended to a bounded
operator from H1 to L2(P). Note also that

(4.5) eAφ(dk) =
(v · k)2

|k|2
e1φ(dk).

Proposition 4.2. Suppose that φ ∈ H1 and Aφ ∈ H−1. Then

(4.6) −1〈Aφ, φ〉1 = 0.

Here −1〈·, ·〉1 denotes the duality pairing between the spaces H1 and H−1.

Proof. Since ∇ is a generator of a unitary group on L2(P) each of its
components is anti-self-adjoint. Consequently, we obtain

(4.7) 〈Aφ, φ〉P = 0, ∀φ ∈ H1
0 .

Suppose that φ ∈ H1. Let φn :=
	
[|k|≥1/n]E

1(dk)φ. We have limn→∞ φn = φ

in H1 and (φn)n≥1 ⊂ H1
0 , and by virtue of (4.7),

(4.8) −1〈Aφn, φn〉1 = 0, ∀n ≥ 1.

Observe also that Aφn → Aφ in L2(P). We have

‖Aφn‖2−1 =
� eAφn(dk)
|k|2

(4.5)
=

� (k · v)2

|k|4
e1φn

(dk)

=
�

[|k|≥1/n]

(k · v)2

|k|4
e1φ(dk) ≤

� (k · v)2

|k|4
e1φ(dk) = ‖Aφ‖2−1 <∞.

Hence, some subsequence of (Aφn)n≥1 converges weakly in H−1. Since it
converges in L2 to Aφ its H−1-weak limit must be equal to Aφ as well.
Knowing that (φn)n≥1 converges strongly in H1 we obtain

(4.9) 0 = lim
n→∞ −1〈Aφn, φn〉1 = −1〈Aφ, φ〉1.



Effective diffusivity of random diffusion 279

Directly from the definition (see (3.11)), one can observe that B extends
to a bounded operator from H1 to H−1. Furthermore, directly from the
definition, we have −1〈(−B)φ, φ〉1 ≥ 0 for all φ ∈ H1.

Proposition 4.3. Suppose that φ ∈ H1 is such that Aφ ∈ H−1 and

(4.10) −
(
λ0

2
∆+A

)
φ−Bφ = cp.

Then φ = χ
(p)
v .

Proof. Observe that, upon letting λ → 0+, it follows from (3.8) that
Aχ

(p)
v ∈ H−1 and χ(p)

v satisfies (4.10). We can therefore write

−
(
λ0

2
∆+A

)
(φ− χ(p)

v )−B(φ− χ(p)
v ) = 0.

Testing both sides of the above equation with φ−χ(p)
v and using Proposition

4.2 we conclude that ‖φ− χ(p)
v ‖21 = 0.

Theorem 4.4. The function v 7→ χ
(p)
v ∈ H1 is strongly continuous.

Proof. Suppose vn → v0. From (3.17) we have ‖χ(p)
vn ‖1 ≤ C with C

independent of n. In addition, since each χ
(p)
vn satisfies (4.10) we conclude

that also ‖Aχ(p)
vn ‖−1 ≤ C for a certain constant independent of n. Both of

these sequences are therefore weakly relatively compact in the respective
spaces.

We show that (χ(p)
vn )n≥1 is weakly convergent in H1. Note that since each

χ
(p)
vn satisfies (4.10) this fact necessarily implies that (Aχ(p)

vn )n≥1 converges
H−1-weakly. It suffices therefore to show that (χ(p)

vn )n≥1 has a unique weak
limiting point. So suppose that χ(p)

∗ := w-limn→∞ χ
(p)
vn in H1. Then also

(Aχ(p)
vn )n≥1 converges H−1-weakly to Aχ(p)

∗ . Since Aχ(p)
∗ ∈ H−1 we can claim

that χ(p)
∗ satisfies (4.10) with v = v0. Thus, according to Proposition 4.3, it

equals χ(p)
v0 and the uniqueness claim follows.

We show that convergence is in fact strong in the H1 norm. We have

−
(
λ0

2
∆+A

)
χ(p)
vn
−Bχ(p)

vn
= cp, ∀n ≥ 0.

After testing both sides with χ(p)
vn , we obtain

−
−1

〈(
λ0

2
∆+B

)
χ(p)
vn
, χ(p)

vn

〉
1

= −1〈cp, χ(p)
vn
〉1, ∀n ≥ 0.
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Taking the limits on both sides we obtain

1
2

lim
n→∞

d∑
k,l=1

〈as
klDkχ

(p)
vn
, Dlχ

(p)
vn
〉P = −1〈cp, χ(p)

v0 〉1

=
1
2

d∑
k,l=1

〈as
klDkχ

(p)
v0 , Dlχ

(p)
v0 〉P.

Combining this fact with the already proven weak convergence we conclude
that

0 =
1
2

lim
n→∞

d∑
k,l=1

〈as
kl(Dkχ

(p)
vn
−Dkχ

(p)
v0 ), Dlχ

(p)
vn
−Dlχ

(p)
v0 〉P

≥ lim
n→∞

λ0

2
‖χ(p)

vn
− χ(p)

v0 ‖
2
1.

From the continuity of the corrector and (3.23) we conclude that the
mapping v 7→ D(v) is continuous.

5. One-dimensional example. Assume that d = 1 and, with no loss
of generality, that v > 0. The diffusivity coefficient is then a positive scalar
field a(x;ω) := a(τxω), x ∈ Rd, with a(ω) ≥ λ0 P-a.s. We suppose that the
laws of (a(x))x∈R and of (a(−x))x∈R are identical.

In this case the cell problem reads

(5.1) −1
2
D(aDχv)− vDχv =

1
2
Da.

We claim that if v 6= 0 the above equation has a solution in H1
0 . From (5.1)

and ergodicity of the group of spatial shifts it follows that there exists a
deterministic constant Cv such that

(5.2) aDχv + 2vχv + a = Cv.

Let χv(x;ω) := χv(τxω). Since χ′v(x;ω) = Dχv(τxω) we can rewrite (5.2)
as the first order linear o.d.e.

(5.3) a(x)χ′v(x) + 2vχv(x) = Cv − a(x).

It can be solved explicitly and we obtain

χv(x;ω) = C1(ω) exp
{
−2v

x�

0

dy

a(y;ω)

}
(5.4)

+
x�

0

[
Cv

a(y;ω)
− 1
]

exp
{
−2v

x�

y

dz

a(z;ω)

}
dy,

where C1(ω) is a random variable. We assume that for any ∆ > 0 there
exists a random variable A(ω) > 0 such that |C1(τxω)| ≤ A(ω)e∆|x|. Then
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(5.5) χv(ω) = χv(x; τ−xω) = C1(τ−xω) exp
{
−2v

x�

0

dy

a(y; τ−xω)

}

+
x�

0

[
Cv

a(y; τ−xω)
− 1
]

exp
{
−2v

x�

y

dz

a(z; τ−xω)

}
dy.

Using the fact that a(ω) is deterministically bounded from above and letting
x → ∞ we conclude that the first term on the right hand side of (5.5) has
to vanish. On the other hand, in the second term we can change variables
y′ := y − x, use the identity a(z; τ−xω) = a(z − x;ω) and then let x → ∞.
We conclude in this way that the corrector must be of the form

χv(ω) =
0�

−∞

[
Cv

a(y;ω)
− 1
]

exp
{
−2v

0�

y

dz

a(z;ω)

}
dy.

To determine Cv we use the condition that χv is, in particular, of zero mean.
Thus, taking into account that (a(y))y∈R and (a(−y))y∈R have the same laws
we obtain

(5.6) Cv =
〈
	∞
0 exp{−2v

	y
0 a
−1(z) dz} dy〉P

〈
	∞
0 a−1(y) exp{−2v

	y
0 a
−1(z) dz} dy〉P

.

One can verify by a direct calculation that χv given by (5.5) together with
(5.6) is indeed a solution to the cell problem (5.1).

According to (3.23) the effective diffusivity coefficient equals

D(v) = 〈a(1 +Dχv)(1 +Dχv)〉P
(5.2)
= 〈(Cv − 2vχv)(1 +Dχv)〉P = Cv.

In the last equality we have used the fact that
	
χv dP = 0 and

	
Dψ dP = 0

for any ψ and χvDχv = 1
2Dχ

2
v.

Let b := a−1 − 〈a−1〉P. Denote by R(y) the covariance function of the
random field b(y;ω) := b(τyω). We shall assume that the field has good
mixing properties, i.e. in particular that v1/2

	y/v
0 b(z) dz converges weakly,

as v → 0, to a zero mean Brownian motion with the variance

σ2 := 2
∞�

0

R(y) dy <∞.

Then, of course, vs
	y/v
0 b(z) dz → 0 in probability when s > 1/2.

Set

F (v) := v
〈∞�

0

exp
{
−2v

y�

0

a−1(z) dz
}
dy
〉

P
,

G(v) := v
〈∞�

0

a−1(y) exp
{
−2v

y�

0

a−1(z) dz
}
dy
〉

P
.
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We have Cv = F (v)/G(v) and, after a change of variables y := vy, we obtain

F (v) =
∞�

0

e−2y〈a−1〉P
〈

exp
{
−2v

y/v�

0

b(z) dz
}〉

P
dy

=
∞�

0

e−2y〈a−1〉P
〈[

1− 2v
y/v�

0

b(z) dz + 2v2
(y/v�

0

b(z) dz
)2

+ o(v2)
]〉

P
dy

=
∞�

0

e−2y〈a−1〉P(1 + 2vσ2y + o(v)) dy =
1

2〈a−1〉P
+

vσ2

2〈a−1〉2P
+ o(v).

From isotropy of the diffusivity we conclude that

F (v) =
1

2〈a−1〉P
+
|v|σ2

2〈a−1〉2P
+ o(v), ∀v 6= 0.

Analogously we can write

G(v) = v

∞�

0

〈
a−1(y) exp

{
−2v

y�

0

a−1(z) dz
}〉

P
dy

= − 1
2

〈∞�
0

d

dy
exp
{
−2v

y�

0

a−1(z) dz
}
dy
〉

P
=

1
2
.

Therefore we have

D(v) =
1

〈a−1〉P
+
|v|σ2

〈a−1〉2P
+ o(v), ∀v 6= 0.

The function is continuous at 0 but is not of class C1.

6. The proof of Theorem 2.6

Proposition 6.1. The tensor valued mapping v 7→ D(v) is isotropic.

Proof. Let g ∈ O(d) and let x(v)(t) denote the diffusion with drift v given
by

(6.1) dx(v)(t) = a1/2(x(v)(t)) dw(t) +
[

1
2∇ · a(x(v)(t)) + v

]
dt,

where (w(t))t≥0 is a standard d-dimensional Brownian motion. We show
that the laws of x(gv)(t) and gx(v)(t) are the same. This, in turn, implies the
isotropy of v 7→ D(v). Isotropy of the field (a(x))x∈Rd (see Definition 2.3)
implies that the joint laws of the fields (a(gx), a1/2(gx), (∇·a)(gx)g)x∈Rd and
of (ga(x)gT , ga1/2(x)gT ,∇· a(x))x∈Rd are the same. The law of (gx(v)(t))t≥0

is identical with that of the solution to

dy(t) = a1/2(y(t))g dw(t) +
[

1
2∇ · a(y(t)) + gv

]
dt, y(0) = 0.

Since (gw(t))t≥0 is another standard Brownian motion we conclude that the
law of (y(t))t≥0 coincides with that of (x(gv)(t))t≥0.
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We proceed with the proof of Theorem 2.6. For θ ∈ R and fixed v 6= 0
the corrector χ(p)

θv ∈ H
1 satisfies

(6.2) −Lθχ
(p)
θv = cp,

where Lθ := (λ0/2)∆ + θA + B. We show that θ 7→ χ
(p)
θv is differentiable in

H1 at any θ 6= 0. Let

δχ(p)(θ, h) :=
χ

(p)
(θ+h)v − χ

(p)
θv

h
.

We have
−Lθδχ(p)(θ, h) = Aχ

(p)
(θ+h)v.

The key observation is the following.

Lemma 6.2. For each θ 6= 0 the mapping h 7→ Aχ
(p)
(θ+h)v is continuous

at 0 in the H−1 norm.

Proof. By Theorem 4.4 the mapping h 7→ χ
(p)
(θ+h)v is continuous at 0 in

the H1 norm. This implies that h 7→ Lθχ
(p)
(θ+h)v is continuous at 0 in the H−1

norm. From (6.2) we deduce that

(6.3) Aχ
(p)
(θ+h)v = −(θ + h)−1(cp + L0χ

(p)
(θ+h)v)

and the conclusion of the lemma follows easily.

The convergence of δχ(p)(θ, h) in the H1 norm, as h → 0, now follows
easily from the argument similar to the one used in the proof of Theorem
4.4. We then find that the limit d

dθχ
(p)
θv satisfies

(6.4) −Lθ
(
dχ

(p)
θv

dθ

)
= Aχ

(p)
θv .

One can use again the aforementioned argument to conclude that the func-
tion θ 7→ d

dθχ
(p)
θv is H1-continuous, except possibly at θ = 0. By recursion

this claim can be extended to higher order derivatives dn

dθnχ
(p)
θv for all n ≥ 1.

C∞-smoothness of the corrector along the direction of a vector v implies
of course C∞-differentiability of v 7→ D(v) with respect to the radial vari-
able |v|. Its differentiability with respect to the angular variable v̂ := v/|v|
follows from isotropy of the tensor (see Proposition 2.4). Thus, the conclusion
of Theorem 2.6 follows.

Remark 6.3. Observe that the above argument relies on isotropy of
the diffusivity field x 7→ a(x). If we tried to prove differentiability of the
mapping v 7→ χ

(p)
v in a direction ` ⊥ v, the approximation scheme (6.3)

would break down. Note that then δ`χ
(p)(h) := h−1[χ(p)

v+h` − χ
(p)
v ] satisfies
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−L1δ`χ
(p)(h) = Aχ

(p)
v+h`. The function h 7→ Aχ

(p)
v+h` is continuous in the

L2(P) norm, by virtue of Theorem 4.4. One cannot, though, use the cell
problem (4.10) to bootstrap the continuity to the H−1 norm. Thus, it is
not possible to apply the argument of Theorem 4.4 to obtain the desired
differentiability property in the ` direction.

A. The proof of Proposition 2.4. Let g~e1 = ~e1 and g~ei = −~ei for
i = 2, . . . , d. Observe that for any t ∈ R and i ≥ 2 we have

B1i(t~e1) = B(t~e1)~ei · ~e1 = −B(g(t~e1))gT~ei · gT~e1
= −B(t~e1)~ei · ~e1 = −B1i(t~e1).

Suppose that i 6= j and j 6= 1. Consider g such that g~ek = ~ek for k 6= j and
g~ej = −~ej . We show by a similar argument that Bij(t~e1) = 0. The matrix
B(t~e1) is therefore diagonal. Suppose that σ is a permutation of {2, . . . , d}.
We let g~e1 = ~e1 and g~ei = ~eσ(i) for i = 2, . . . , d. Note that for any i ≥ 2,

Bii(t~e1) = B(t~e1)~ei · ~ei = B(g(t~e1))gT~ei · gT~ei
= B(t~e1)~eσ−1(i) · ~eσ−1(i) = Bσ−1(i),σ−1(i)(t~e1).

Thus Bii(t~e1) = u(t) for i = 2, . . . , d. We also let v(t) := B11(t~e1).
Let gx ∈ O(d) be such that gx~e1 = x̂ := |x|−1x and gx~ei = ~fi−1 for

i = 2, . . . , d, where ~f1, . . . , ~fd−1 is an orthonormal system satisfying ~fi · x̂ = 0
for i = 1, . . . , d− 1. We can then write

B(x) = B(|x|gx~e1) = gxB(|x|~e1)gTx = u(|x|)Id + [v(|x|)− u(|x|)]x̂⊗ x̂.

B. The proof of (3.14) and (3.15). Recall the decomposition (3.10)
of the operator L(v). From (3.12) there exist constants 0 < c∗ < C∗ < ∞
such that

(B.1) c∗‖F‖21 ≤ 〈F, (−L0)F 〉P ≤ C∗‖F‖21,
for every F ∈ C2(Ω). In view of (B.1) and the sector condition (see (3.13)),
B is a bounded mapping from H1 to H−1, i.e. there exists a constant CB > 0
such that

(B.2) ‖BF‖−1 ≤ CB‖F‖1 for all F ∈ C2(Ω).

Indeed, by definition of the H−1 norm, the sector condition (3.13) and the
bound (B.1),

‖BF‖−1 = sup
‖G‖1=1

〈BF,G〉P ≤ C0‖F‖1

for some C0 > 0 and all F ∈ H1. According to the results in Section 1.2 of
[7], to prove (3.14) and (3.15) it suffices to show that

(B.3) sup
0<λ≤1

‖L(v)χ
(p)
λ,v‖−1 <∞.
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The closure of L0 : C2(Ω)→ L2(P) is normal, i.e. the operators

S0 :=
1
2

(L0 + L∗0) = λ0∆ and iA0 :=
i

2
(L0 − L∗0) = i

d∑
p=1

vpDp,

defined on C2(Ω), are essentially self-adjoint and their spectral resolutions
commute. Note that the spectrum of L0 is contained in the complex half
plane <λ ≤ 0. For given λ > 0 and V ∈ H−1 let Fλ be the solution of the
resolvent equation (λ − L0)Fλ = V. Using the spectral resolution of L0 we
can write

Fλ =
∞�

0

∞�

−∞

1
λ+ ϕ+ iτ

E(dϕ, dτ)V,

where E(dϕ, dτ) is the spectral resolution of the identity which corresponds
to the normal operator L0. Since V ∈ H−1 we obtain, thanks to (B.1),

∞�

0

∞�

−∞

1
ϕ
eV (dϕ, dτ) ≤ 1

c∗
‖V ‖2−1 <∞,

where eV (dϕ, dτ) stands for the spectral measure of V , i.e. eV (dϕ, dτ) =
〈E(dϕ, dτ)V, V 〉P. Hence, using again (B.1),

(B.4) ‖L0Fλ‖2−1 ≤ C∗
∞�

0

∞�

−∞

∣∣∣∣ ϕ+ iτ

λ+ ϕ+ iτ

∣∣∣∣2 eV (dϕ, dτ)
ϕ

≤ C∗
c∗
‖V ‖2−1.

Recall that χ(p)
λ,v is the solution of the full resolvent equation (λ−L)χ(p)

λ,v = cp.
Since L = L0 +B, we may rewrite the resolvent equation as

(λ− L0)χ(p)
λ,v = cp +Bχ

(p)
λ,v.

By (B.4), with cp +Bχ
(p)
λ,v in place of V , we obtain

sup
0<λ≤1

‖L(v)χ
(p)
λ,v‖−1 ≤ sup

0<λ≤1
‖L0χ

(p)
λ,v‖−1 + sup

0<λ≤1
‖Bχ(p)

λ,v‖−1

≤
(
C∗
c∗

)1/2

sup
0<λ≤1

‖cp +Bχ
(p)
λ,v‖−1 + sup

0<λ≤1
‖Bχ(p)

λ,v‖−1.

By (B.2), the previous expression is bounded above by(
C∗
c∗

)1/2

‖cp‖−1+
[
1 +

(
C∗
c∗

)1/2]
sup

0<λ≤1
‖Bχ(p)

λ,v‖−1

≤
(
C∗
c∗

)1/2

‖cp‖−1 + CB

[
1 +

(
C∗
c∗

)1/2]
sup

0<λ≤1
‖χ(p)

λ,v‖1.

By (3.9) this sum is less than or equal to C‖cp‖−1 for some C > 0, thus
(B.3) follows.
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