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Abstract. Let S be a locally compact Hausdorff space. Let Ai, i = 0, 1, . . . , N , be
generators of Feller semigroups in C0(S) with related Feller processes Xi = {Xi(t), t ≥ 0}
and let αi, i = 0, . . . , N , be non-negative continuous functions on S with

PN
i=0 αi = 1.

Assume that the closure A of
PN

k=0 αkAk defined on
TN

i=0D(Ai) generates a Feller
semigroup {T (t), t ≥ 0} in C0(S). A natural interpretation of a related Feller process
X = {X(t), t ≥ 0} is that it evolves according to the following heuristic rules: con-
ditional on being at a point p ∈ S, with probability αi(p), the process behaves like Xi,
i = 0, 1, . . . , N.We provide an approximation of {T (t), t ≥ 0} via a sequence of semigroups
acting in the Cartesian product of N+1 copies of C0(S) that supports this interpretation,
thus generalizing the main theorem of Bobrowski [J. Evolution Equations 7 (2007)] where
the case N = 1 is treated. The result is motivated by examples from mathematical biology
involving models of gene expression, gene regulation and fish dynamics.

1. Introduction. Let S be be a locally compact Hausdorff space, and let
αi, i=0, . . . , N , be non-negative continuous functions on S with

∑N
i=0 αi =1.

Furthermore, let Ai, i = 0, . . . , N , and A be generators of Feller semi-
groups {Ti(t), t ≥ 0} and {T (t), t ≥ 0} in C0(S) with related Feller pro-
cesses Xi = {Xi(t), t ≥ 0} and X = {X(t), t ≥ 0}. Finally, suppose that
D :=

⋂N
i=0D(Ai) is a core for A and that Af =

∑N
i=0 αiAif for f ∈ D.

Then it is natural to expect that X may be described as follows: conditional
on being at p ∈ S, X behaves like Xi with probability αi(p).

However, neither the Trotter product formula nor the Dyson–Phillips
perturbation series support such an interpretation (see [8]). (On the other
hand, this interpretation agrees very well with Volkonskii’s formula where,
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as in Dorroh’s multiplicative perturbation theorem [15], all but one Ai are
zero; see [30, pp. 277–278] and [8].) We justify it by approximating X by a
sequence Xn, n ≥ 0, of Feller processes in the extended space SN+1 composed
of N +1 copies S ×{i}, i = 0, 1, . . . , N , of S. These processes are “mixtures”
of two components. The first of these, starting on S × {i}, behaves like Xi

and never leaves S × {i}. The second is composed of independent Markov
chains indexed by p ∈ S: conditional on starting from a (p, i), i = 0, . . . , N ,
it is a Markov chain with states (p, j), j = 0, 1, . . . , N, and a certain intensity
matrix depending on n and αj(p), j = 0, . . . , N. This matrix is chosen so that
(αi(p))i=0,...,N is its unique invariant probability measure, and the passage
n→∞ corresponds to convergence of the chain to equilibrium. In the limit,
points of SN+1 with the same first coordinates get glued together (the chain
is at equilibrium) to form another copy of S, and the limit process defined
there may indeed be thought of as that behaving with probability αi(p) like
Xi, conditional on being at p.

Specifically, the processes {Xn(t), n ≥ 0} are related to the Feller semi-
groups {Tn(t), t ≥ 0} generated by the operators

(1) An(fi)i=0,...,N = (Aifi)i=0,...,N + nQ(fi)i=0,...,N , fi ∈ D(Ai),

where C0(SN+1) is identified via isometric isomorphism with the Cartesian
product of N + 1 copies of C0(S), and Q is a matrix whose entries are
certain multiplication operators corresponding to bounded and continuous
functions of p; for p fixed, nQ(p) is the intensity matrix of the Markov chain
described above. (In what follows, for notational convenience, we will not
distinguish between a bounded, continuous function h on S and the related
multiplication operator C0(S) 3 f 7→ hf ∈ C0(S).) In other words, although
in general the Xi’s are not deterministic, the Xn’s are somewhat similar to
piecewise deterministic processes of M. H. A. Davis [12, 13, 14] in that their
behavior may be described as follows: starting at the ith copy of S, they stay
there, behaving like Xi until a random time τ when they jump to the jth
copy of S to behave like Xj there. At time τ, conditional on being at (p, i)
they jump to (p, j); the distribution of τ and the probability of choosing j
are determined by the matrix Q: its entries are the jump intensities of the
processes (divided by n).

For our main Theorem 2.1, we choose

(2) Q =



α0 − 1 α1 α2 . . . αN

α0 α1 − 1 α2 . . . αN

α0 α1 α2 − 1 . . . αN

...
...

. . . . . . . . .

α0 α1 α2 . . . αN − 1


,
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and this choice is dictated by the following reasons. First of all (αi(p))i=0,...,N

is the unique stationary measure for Q(p). Secondly, there are only two
eigenvalues of Q(p) : 0 and 1 (in particular, they do not depend directly on
αi, allowing one to avoid additional assumptions on them). These properties
actually allow for a more abstract version of our result where αi are bounded,
commuting operators in a Banach space (see Theorem 2.2). At present it is
unclear if the sole assumption of (αi(p))i=0,...,N being the unique stationary
measure for Q(p) suffices for convergence of {Tn(t), t ≥ 0} to {T (t), t ≥ 0}.

Similar “averaging” procedures are known in mathematical physics (see
e.g. bibliography given in [2]). In the context of stochastic processes, in [33]
the case where An are generators of motions along integral curves of ordinary
differential equations is studied. For the case where An are diffusion opera-
tors, see the literature on so-called fast switching diffusions, e.g. [21, 40, 41].

2. Main result. Let X be a Banach space; its elements will be denoted
x, y, z etc. with possible subscripts. Also, let N ≥ 1 be fixed and let Y be
the Cartesian product of N + 1 copies of X. Elements of this space will be
denoted by x,y, z, (x0, x1, . . . , xN ), (xi)i=0,...,N , etc. We will also write [x]
for the element (x, . . . , x), where x ∈ X. Operators in X will be denoted A,B
etc. and those in Y by A,B etc. with possible subscripts (the only exception
to this rule are the special operators αi to be described below).

Elements of C0(S), the space of continuous functions vanishing at infinity,
defined on S, a locally compact Hausdorff space, will be denoted by f, g, h,
etc. The Cartesian product of N + 1 copies of this space will be denoted by
B and its elements will be denoted analogously to elements of Y described
above.

We denote αi, i = 0, . . . , N , commuting operators in X such that
∑N

i=0 αi

= IX. In the context of C0(S), αi’s are always non-negative, continuous
functions on S with the above property. We set

conv x = conv (xi)i=0,...,N =
N∑

i=0

αixi.

Our main theorem is:

Theorem 2.1. Let Ai, i = 0, . . . , N , and A be the generators of Feller
semigroups {Ti(t), t ≥ 0} and {T (t), t ≥ 0} in C0(S). Also suppose that
Af =

∑N
i=0 αiAif = conv (Aif)i=0,...,N for f ∈ D :=

⋂N
i=0D(Ai) and that

D is a core for A. Finally , let An, n ≥ 0, with D(An) = D(A0)×D(A1)×
· · · × D(AN ) ⊂ Y be given by (1) and (2) so that

(3) Qf = Q(fi)i=0,...,N = (conv f − fi)i=0,...,N .
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Then each An generates a contraction semigroup {Tn(t), t ≥ 0} in B and

(4) lim
n→∞

Tn(t)f = [T (t) conv f ], t > 0, f ∈ B.

In fact, we prove a more general, abstract version of Theorem 2.1:

Theorem 2.2. Let Ai, i = 0, . . . , N , and A be the generators of semi-
groups {Ti(t), t ≥ 0} and {T (t), t ≥ 0} in a Banach space X. Also suppose
that Ax = conv (Aix)i=0,...,N for x ∈ D :=

⋂N
i=0D(Ai) and that D is a core

for A. Finally , let An, n ≥ 0, with D(An) = D(A0)×D(A1)×· · ·×D(AN ) ⊂
Y be given by

(5) An(xi)i=0,...,N = (Aixi)i=0,...,N + nQ(xi)i=0,...,N ,

xi ∈ D(Ai), i = 0, . . . , N,

where

(6) Q(xi)i=0,...,N = (conv x− xi)i=0,...,N ,

and suppose that the An’s generate equibounded semigroups {Tn(t), t ≥ 0}
in Y. Then
(7) lim

n→∞
Tn(t)x = [T (t) conv x], t > 0, x ∈ X.

Our theorem involves “double convex combination” in that in the limit
we have the semigroup generated by a convex combination of generators,
acting on a convex combination of initial conditions.

Theorem 2.1 is a special case of Theorem 2.2. Indeed, under the assump-
tions of Theorem 2.1, A0 is the generator of the semigroup {T0(t), t ≥ 0}
given by T0(t)(fi)i=0,...,N = (Ti(t)fi)i=0,...,N . Moreover, Q is a bounded op-
erator. Hence, by the Phillips perturbation theorem An generates a strongly
continuous semigroup. Moreover, Q is also the generator of a contraction
semigroup. Hence, by the Trotter product formula, so is An = A0 +nQ, and
all the assumptions of Theorem 2.2 are satisfied.

Both theorems are examples of degenerate convergence of semigroups
(see [4, 5, 7, 8, 9]). In particular, for x = [x], x ∈ X, (7) is true for t = 0 as
well and the limit is almost uniform in t ∈ [0,∞) while for the remaining x
it is almost uniform in t ∈ (0,∞).

Although the following example is inspired by the “Single gene, no feed-
back” section of [22] (see in particular equations (4), (5) and (21) there), it
is meant to be merely an illustration of our Theorem 2.2. In particular, we
do not claim it represents any biologically meaningful reality.

Example (Poisson processes with changing colors). Let αi = (αi,p)p≥1,

i = 0, . . . , N , be positive, convergent sequences with
∑N

i=0 αi = 1, and
ci, i = 0, . . . , N , be positive constants. (In other words, we are in S = N.)
The state space of the sequence {Xn(t), t ≥ 0}, n ≥ 1, of processes to be
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described is N × {0, . . . , N} with the first coordinate denoting the state of
a regular Poisson process, and the second its changing color. The process
Xn(t), t ≥ 0, starting at (p, i) waits there for an exponential time with pa-
rameter ci + n(1 − αi(p)) to jump, with probability ci/(ci + n(1− αi(p)))
to (p+ 1, i) or, with probability nαj(p)/(ci + n(1− αi(p))), to (p, j), j 6= i.
Equivalently, Xn(t), t ≥ 0, is a “mixture” of two processes: the first of them,
at the ith copy of N, is a Poisson process with intensity ci; the other is com-
posed of independent p-indexed color change Markov chains with values in
{(p, 0), . . . , (p,N)} and intensity matrix nQ where Q is given by (2) with
αi = αi(p). This mixture is a Feller process and its generator (after suitable
identification of isomorphic objects) is

An(xi)i=0,...,N = (ciPxi)i=0,...,N + nQ(xi)i=0,...,N ,

where (xi)i=0,...,N belongs to the space B, the Cartesian product of N + 1
copies of c0 = c0(N), and P is the operator in c0 given by P (ξp)p≥1 =
(ξp+1 − ξp)p≥1.

For large n, the probability of Poisson-type transition (p, i) 7→ (p+ 1, i)
is small (provided αi(p) 6= 1), while transitions (p, i) 7→ (p, j) occur rela-
tively often. As a result, before a Poisson-type transition occurs, the color
change process reaches its equilibrium, so that we are at (p, j) with prob-
ability αj(p). Hence, in the limit, the intensity of Poisson-type transition
becomes state dependent and equals

∑N
i=0 ciαi(p). The same is true in the

case where αi(p) = 1, when the process, after waiting for an exponential
time with parameter ci jumps right away to (p + 1, i). In other words, the
processes {Xn(t), t ≥ 0}, n ≥ 1, approximate the process in N with genera-
tor

A(ξp)p≥1 =
( N∑

i=0

ciαi(p)ξp+1 − ξp
)

p≥1
,

i.e. a pure birth process with intensities averaged over equilibrium states.
Theorem 2.2 makes these intuitions precise.

3. Proof of Theorem 2.2. Let P : Y→ Y be given by Px = [conv x].
Then P = Q + I, where I is the identity on Y, P is idempotent (P2 = P)
and Y is a direct sum of two subspaces

Y0 = RangeP = KerQ = {[x] : x ∈ X},
Y1 = KerP = RangeQ = {x ∈ Y : conv x = 0}.

3.1. Proof of D(Aex) ⊂ Y0. Let Aex be the extended limit of the gen-
erators An, which is a relation in Y × Y (see [6, 17, 23, 36]). An element
x belongs to D(Aex) iff there exists a sequence xn ∈ D(An), n ≥ 1, such
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that limn→∞ xn = x and the limit limn→∞Anxn exists. In what follows,
by Aexx = z we mean (x, z) ∈ Aex. If limn→∞(A0xn + nQxn) = y and
limn→∞ xn = x, then limn→∞[A0n

−1xn + Qxn] = 0 and Qxn converges.
Hence, A0n

−1xn converges, whence, as limn→∞ n
−1xn = 0, it converges

to zero, A0 being closed. Thus, limn→∞Qxn = Qx = 0, proving that
x ∈ KerQ.

3.2. Proof of Aex[x] = A0[x] + Qz for x ∈ D and z ∈ Y. Given x ∈ D
and z ∈ Y, we define zn =

√
n(
√
n−A0)−1z, and yn = [x] + n−1zn, n ≥ 1.

Then zn ∈ D(A0), and limn→∞ zn = z. Moreover, by the resolvent equation,

(8) ‖A0zn‖ =
√
n‖
√
n(
√
n−A0)−1z− z‖ ≤

√
n(M + 1)‖z‖,

where M is a constant such that ‖T0(t)‖ ≤ M for t ≥ 0. Therefore, yn ∈
D(An), limn→∞ yn = [x] and Anyn = A0[x] + A0n

−1zn + Qzn tends to
A0[x] + Qz. This proves that [x] is in the domain of the extended limit of
An and A0[x] +Qz is one of the possible values of A at [x].

3.3. Proof of limn→∞ Tn(t)[x] = [T (t)x], x ∈ X. Fix λ > 0. For x ∈ D
and w ∈ Y, taking z = A0[x]−w in Subsection 3.2 we see that [λx−Ax]+Qw
is a possible value of λI − Aex at [x]. Since D is a core for A, and A is
the generator of a semigroup, the range of λI − A as restricted to D is
dense in X. Hence the range of λI − Aex is dense in Y, or, which is the
same [6, 7, 17], the resolvents of {Tn(t), t ≥ 0} converge strongly on Y.
By Subsection 3.1, the range of the limit pseudo-resolvent, being equal to
D(Aex), is contained in Y0. On the other hand, by Subsection 3.2, this range
contains {x ∈ Y : x = [x], x ∈ D} and so its closure equals Y0, for D is
dense in X.

Thus, by the Sova–Kurtz version of the Trotter–Kato theorem [6, 17,
23, 36], limn→∞ Tn(t)[x] exists for x ∈ X, almost uniformly in t ∈ [0,∞),
defining a semigroup on Y0, and the generator of this limit semigroup is
the part Ap of Aex in Y0. Since Ap is single-valued and D is a core for
A, and one of possible values of Ap at [x] is [Ax], we see that the limit
semigroup is the isometrically isomorphic copy of {T (t), t ≥ 0} in Y0, as
desired.

3.4. Proof of limn→∞ Tn(t)x = 0, x ∈ Y1. The idea of the proof is
to compare the sequence {Tn(t), t ≥ 0}, n ≥ 0, with a sequence of semi-
groups {Un(t), t ≥ 0}, n ≥ 0, and check convergence of the latter, together
with convergence of their difference on Y1. Let operators Gn with domains
D(Gn) = D(An) be given by Gn = A0−nI; each Gn generates a strongly con-
tinuous semigroup given by Un(t) = e−ntT0(t).We have (Gn−An)x = −nPx
for x ∈ D(An), and limn→∞ ‖Un(t)‖ = 0 for t > 0. Also, for x ∈ D(An) =
D(Gn),
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Un(t)x− Tn(t)x = Tn(t− s)Un(s)x|s=t
s=0 =

t�

0

d

ds
(Tn(t− s)Un(s))x ds

=
t�

0

Tn(t− s)(Gn −An)Un(s)x ds

= −n
t�

0

e−nsTn(t− s)PT0(s)x ds.

Since D(An) is dense in Y and all the operators involved in the left-most
and right-most expressions above are bounded, these expressions are equal
for all x ∈ Y. Therefore, ‖Un(t)x− Tn(t)x‖ ≤ const ·

	t
0 ne

−ns‖PT0(s)x‖ ds.
Now, lims→0 PT0(s)x = Px = 0 for x ∈ Y1. Thus, the result follows by
the well-known fact that the measures on [0,∞) with densities s 7→ ne−ns

converge weakly, as n→∞, to the Dirac measure at 0.

3.5. Proof of (7). We have

lim
n→∞

Tn(t)x = lim
n→∞

Tn(t)(x− Px) + lim
n→∞

Tn(t)Px = 0 + [T (t) conv x].

4. Examples of convex combinations of Feller generators in
applied sciences

4.1. A binomial type convex combination in a model of gene expression.
Gene expression is the process in which a gene’s DNA sequence is converted
into the structures and functions of a cell (most often: proteins or RNA).
The system of differential equations

(9)

dx

dt
= γ − x,

dy

dt
= r(x− y),

where r > 0 is a given constant and γ is a stochastic process with values in
{0, 1, . . . , N} to be described in more detail below, was used as a model of
gene expression by Lipniacki et al. in [10, 19, 25, 26, 29]. The idea of the
model is as follows. The existence of a particular protein in the cell is an
indicator of the existence and activity of a gene there; there are N copies
of the gene and γ(t) of them are active at time t. The protein level y is
regulated by the number of active gene copies via the level x of mRNA
(messenger RNA): if all the gene copies are inactive (γ = 0), x decreases
exponentially due to the natural process of decay, and the protein level y
follows x with efficiency r; at activation of one of the gene copies (γ ≥ 1),
the mRNA strives to reach level x = γ, and y follows x in a similar fashion
as before. On the other hand, a copy of the gene is activated or deactivated
with intensities aqa(x, y) and bqd(x, y), where a and b are positive constants,
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and qa and qd are positive functions on the square S = [0, N ]2; the subscript
“a” stands for “activation”, and “d” for “deactivation”. Since the copies are
activated and deactivated independently, γ is a {0, . . . , N}-valued process
such that, given γ = i, its intensity of increase by 1 is (N − i)aqa(x, y)
and intensity of decrease by 1 is ibqd(x, y). Between activation/deactivation
jumps, the process is deterministic. The triple (x(t), y(t), γ(t)), t ≥ 0, is
a Markov process, a particular case of piecewise deterministic processes of
M. H. A. Davis [12, 13, 14] (see [10] for additional information).

If a and b tend to infinity in such a way that a/b tends to a positive
constant c, the jumps occur infinitely often, and it may be expected that γ
reaches statistical equilibrium and may be replaced in (9) by its conditional
expected value (given x and y):

(10)

dx

dt
= Nα(x, y)− x,

dy

dt
= r(x− y),

where α = cqa/(cqa + qd). This passage to the limit corresponds to the clas-
sical case of frequent transitions (see [1, 35], cf. [11, 22] and [37]).

To see that this result involves a semigroup generated by a convex com-
bination of Feller generators, let Y be the Cartesian product of N +1 copies
of C = C(S), and C1 be the space of continuously differentiable functions
on S. Also, let
(11) Aa,bf = (Aifi)i=0,...,N +Qf , fi ∈ D(Ai), i = 0, . . . , N,

where Ai, i ∈ {0, . . . , N}, is the closure in C of the map C1 3 f 7→ g ∈ C
where

g(x, y) = Aif(x, y) = (i− x)∂f
∂x

(x, y) + r(x− y)∂f
∂y

(x, y),

and

(12) Q(fi)i=0,...,N

= (ibqdfi−1 + (−(N − i)aqa − ibqd)fi + (N − i)aqafi+1)i=0,...,N ,

with f−1 := fN+1 := 0. The operator (11) is the generator of a semigroup
{Ta,b(t), t ≥ 0} in Y, related to (9), and the hypothesis may be expressed as

lim
a,b→∞, a/b→c>0

Ta,b(t)f = [T (t) conv f ], t > 0,

where conv(fi)i=0,...,N =
∑N

i=0

(
N
i

)
αiβN−ifi, β = 1 − α, and the semigroup

{T (t), t ≥ 0} in C is generated by the closure A of the map C1 3 f 7→ g ∈ C
where

g(x, y) = Af(x, y) = (Nα(x, y)− x)∂f
∂x

(x, y) + r(x− y)∂f
∂y

(x, y).
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ForN = 1, this hypothesis is proved in [7]; the general proof will be published
elsewhere.

Now, as announced, A is a convex combination of Ais:

Af =
N∑

i=0

(
N

i

)
αiβN−iAif, f ∈ C1 (with C1 being a core for A)

since
∑N

i=0 i
(
N
i

)
αiβN−i, the expectation of the binomial distribution, equals

Nα. This result is intuitively clear: the binomial distribution is the unique
invariant probability measure for the chain governed by Q given in (12). It
must be, since all gene copies are activated/deactivated independently with
probability of a particular gene being active equal to α = α(x, y).

4.2. Fast operator fluctuations in a model of gene regulation. One of the
ways cells regulate gene expression is by binding so-called regulatory proteins
(either activating or repressing) to a regulatory sequence in the gene. This
mechanism is particularly well developed in prokaryote where the regulatory
sequence is termed the operator. The system of equations

dxi(t)
dt

= Fi(γ(t))− xi(t), i = 1, 2,(13)

where F1(0) = F1(1) = F2(0) = F2(2) = 1 and F1(2) = F2(1) = 0, describes
one of possible realizations of such a biological situation (see [22, section
“Regulated systems II: mutual repressors”]). Here, two genes share the same
operator and their products (proteins) act as mutual repressors: xi ∈ [0, 1],
i = 1, 2 is the level of the ith protein, and γ ∈ {0, 1, 2} denotes the state
of the operator, 0 referring to the unoccupied state, 1 to being occupied
by a dimer of the first protein, and 2 to being occupied by a dimer of the
second one. If none of the proteins is bound to the operator (γ = 0), both
are being produced at a common, constant rate. γ(t) jumps from 0 to 1
with intensity κx2

1 and from 0 to 2 with intensity κx2
2 with κ a given con-

stant, since proteins may bind to the operator merely in the dimer form, and
dimers are assumed to be formed and then bound to the operator at the rate
proportional to the square of monomer level. When one of the proteins is
bound to the operator, production of the other is repressed, and the existing
molecules gradually degrade. However, with constant intensity, dimers leave
the operator, thus triggering production of the protein previously repressed:
γ jumps from states 1 and 2 to 0 with intensity κb where b is a certain
positive constant. Hence, the cycle is repeated with possible change of roles
between proteins.

The Kolmogorov equation for the resulting process (x1(t), x2(t), γ(t)),
t ≥ 0, is (cf. [22, eqs. (C1)–(C3) in Appendix C]):
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(14)

∂f0

∂t
= (1− x1)

∂f0

∂x1
+ (1− x2)

∂f0

∂x2
− κ(x2

1 + x2
2)f0 + κx2

1f1 + κx2
2f2,

∂f1

∂t
= (1− x1)

∂f1

∂x1
+ (−x2)

∂f1

∂x2
+ κbf0 − κbf1,

∂f2

∂t
= (−x1)

∂f2

∂x1
+ (1− x2)

∂f2

∂x2
+ κbf0 − κbf2,

where for fixed t, f0, f1, f2 belong to C([0, 1]2). In other words, we are deal-
ing with equation (1) with S = [0, 1]2, N = 2, with integer n replaced by
real κ,

(15) Q(fi)i=0,1,2 = (−(x2
1 + x2

2)f0 + x2
1f1 + x2

2f2, bf0 − bf1, bf0 − bf2),

and

Aif(x1, x2) = (F1(i)− x1)
∂f

∂x1
+ (F2(i)− x2)

∂f

∂x2
, i = 0, 1, 2, f ∈ C1;

C1, the subspace of continuously differentiable functions, is a core for all of
these three operators.

The constant κ describes the speed at which the operator fluctuates (see
[22, eqs. (2) and (33)]). Hence, as κ → ∞, the operator reaches its (con-
ditional) statistical equilibrium with probabilities of being at 0, 1 and 2
equal to α0 = bw−1, α1 = x2

1w
−1 and α2 = x2

2w
−1, respectively, where

w = b+ x2
1 + x2

2. Hence, (13) becomes

dxi(t)
dt

=
b+ x2

i

b+ x2
1 + x2

2

− xi(t), i = 1, 2.

a reproduction of (46) and (47) in [22]. In other words, the generator of the
limit process is the following convex combination of Ai:

Af =
2∑

i=0

αiAi = (α0 + α1 − x1)
∂f

∂x1
+ (α0 + α2 − x2)

∂f

∂x2

=
(

b+ x2
1

b+ x2
1 + x2

2

− x1

)
∂f

∂x1
+
(

b+ x2
2

b+ x2
1 + x2

2

− x2

)
∂f

∂x2
.

4.3. A singular perturbation in a model of fish dynamics. Paper [2] (cf.
[3, 27, 32]) presents a model of dynamics of a fish population with both age
and vertical structures. The fish habitat is divided into N spatial patches
and the fish densities ni in the ith patch satisfy the following system of
equations:
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(16)

∂ni(t, a)
∂t

+
∂ni(t, a)
∂a

= −µi(a)ni(t, a) + ε−1
N∑

j=1

kij(a)nj(t, a),

ni(t, 0) =
∞�

0

bi(a)ni(t, a) da, i = 1, . . . , N,

ni(0, a) = φi(a), i = 1, . . . , N,

where t stands for time, a stands for age, φi is the initial population dis-
tribution in patch i, and µi and bi are age-specific and patch-specific mor-
tality and birth rates. In the absence of the terms ε−1

∑N
j=1 kij(a)nj(t, a)

each of the patches could be treated separately, and the population densities
there would satisfy the McKendrick equation [28, 31] (also called Sharpe–
Lotka–McKendrick equation [38, 39], or Lotka–McKendrick equation [20]).
The matrix k(a) = (kij(a)) is composed of intensities of movements between
patches that occur on a daily basis: the sum of entries in each column of the
matrix is zero. The factor ε−1 (with ε� 1) corresponds to the fact that the
age-related processes and vertical migrations (between the patches) occur at
different time scales, a day being the fast time scale as compared to the fish
life time.

The main question addressed in [2] is whether in modelling such popula-
tions one may disregard the vertical migration and work with a model that
has been aggregated, or averaged over the whole water column. To this end,
the authors assume that the matrix k is irreducible, and hence possesses the
unique normalized right eigenvector v(a) = (vi(a))i=1,...,N corresponding to
the simple dominant eigenvalue [34]. Moreover, they consider the case where
the population distribution over the patches does not change in time and
agrees with the stable population distribution dictated by the matrix k:

ni(t, a)
n(t, a)

= vi(a), i = 1, . . . , N, a ≥ 0,

where n =
∑N

i=1 ni. This means tacitly assuming that migrations governed
by k occur so fast, compared to ageing processes, that the population distri-
bution over the patches reaches the (age-specific) equilibrium much before
the ageing process intervenes; this corresponds to letting ε → 0 in (16).
In such a simplified, aggregated model, the population density satisfies the
McKendrick equation with averaged birth and mortality rates:

(17)

∂n(t, a)
∂t

+
∂n(t, a)
∂a

= −µa(a)n(t, a),

n(t, 0) =
∞�

0

ba(a)n(t, a) da,

n(0, a) = φa(a),
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where “a” stands for “aggregated”, µa =
∑N

i=1 viµi and ba =
∑N

i=1 vibi. Here,
the weights vi indicate the underlying, hidden spatial structure.

Equation (16) is related to a semigroup {Tε(t), t ≥ 0} of operators in Y,
the Cartesian product of N copies of L1 (with norm ‖(φi)i=1,...,N‖Y =∑N

i=1 ‖φi‖L1), where L1 is the space of Lebesgue integrable functions on
[0,∞). The generator of this semigroup isAε = A+ε−1K whereA(φi)i=1,...,N

= (Aiφi)i=1,...,N , φi ∈ D(Ai), K(φi)i=1,...,N = (
∑N

j=1 kijφj)i=1,...,N , φi ∈ L1,

and Ai is the operator in L1 given by

Aiφ(a) = −φ′(a)− µi(a)φ(a)

with domain D(Ai) composed of the absolutely continuous functions φ such
that φ′ ∈ L1 and φ(0) =

	∞
0 bi(a)φ(a) da, i = 1, . . . , N.

On the other hand, (17) is related to the semigroup {S(t), t ≥ 0} in L1

generated by the operator Aa given by

Aaφ(a) = −φ′(a)− µa(a)φ(a)

with domain D(Aa) composed of the absolutely continuous functions φ such
that φ′ ∈ L1 and φ(0) =

	∞
0 ba(a)φ(a) da.

To see that we are actually dealing with a semigroup generated by a
convex combination of generators, we need to pass to the space C = C[0,∞]
of continuous functions on [0,∞) with limits at infinity. To this end, we
assume that the mortality and birth rates µi, bi, i = 1, . . . , N , belong to C.
Then (cf. [31]) the pre-dual Ai,∗ to Ai in C is given by

Ai,∗f(a) = f ′(a)− µi(a)f(a) + bi(a)f(0),

and a similar statement is true for Aa,∗. Notably, all of these operators share
the same domain C1 composed of the differentiable functions f ∈ C with
f ′ ∈ C. Moreover, Aa,∗ is a convex combination of Ai,∗ with (age-dependent)
αi = vi:

Aa,∗f =
N∑

i=1

αiAi,∗f, f ∈ C1.
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