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Asymptotic behaviour of averages of k-dimensional
marginals of measures on R”

by

JESUS BASTERO and JULIO BERNUES (Zaragoza)

Abstract. We study the asymptotic behaviour, as n — oo, of the Lebesgue measure
of the set {x € K : |Pg(z)| < t} for a random k-dimensional subspace £ C R™ and an
isotropic convex body K C R". For k growing slowly to infinity, we prove it to be close to
the suitably normalised Gaussian measure in R* of a ¢-dilate of the Euclidean unit ball.
Some of the results hold for a wider class of probabilities on R".

1. Preliminaries and notation. Let E¥ be a k-dimensional subspace
of R")1 < k < n, and denote by Pg the orthogonal projection onto E.
For any Borel probability P on R", its marginal probability on F is defined
as Pp(A) := P(A+ E+) = P{z € R" : Pg(x) € A} for A C E. A Borel
probability P is isotropic if {5, xdP(x) = 0 and its covariance matrix is a
multiple of the identity. A convex body K of volume 1 is isotropic if the
uniform measure on K is. In this case, the above multiple of the identity is
denoted by L%(.

In [KI2] the author solved the so called central limit problem for convex
bodies (posed in [ABP], [BV] for k¥ = 1 and considered in [BK], [BHVV],
[KL], [MM], [Mi], [Wo]). He showed that every isotropic convex body K
(and more generally, every isotropic log-concave probability measure) has
the property that most of its k-dimensional marginal distributions are ap-
prozimately Gaussian, with respect to the total variation metric, provided
that k£ < logn/loglogn.

In a more general probabilistic setting, the k-dimensional version of the
problem goes back to [W] (see also [DF], [Bo], [Su]). In [NR], the authors
studied proximity of k-marginals to the Gaussian measure with respect to
the (weaker) T-distance, for a class of isotropic probabilities satisfying some
concentration hypothesis. In [M], Gaussian approximation of k-marginals
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with respect to the Wasserstein distance is studied for isotropic probabilities
with geometric symmetries.

A key tool in all those results is a kind of concentration property of the
Euclidean norm with respect to the probability P.

Let K be an isotropic convex body and consider the distribution function

(1.1) Fx(t,E) :=|{z € K : |Pp(z)| <t}], t>0,

where |-| denotes both the Euclidean norm and the Lebesgue measure on R”.
The function Fik (¢, E) is the marginal measure (of the uniform measure on
K) on E of the t-dilate of the Euclidean unit ball. Denote by I'k(t) the
k-dimensional Gaussian measure (centred with variance L%) of {s € R¥ :
|s| <t}

We are interested in studying the closeness of Fi (¢, E) and I'%(t). The
results in [K12] give in particular some estimates of |Fi (¢, E) — I'&(t)|. It was
pointed out to the authors by V. Milman that it is of interest to consider
the (stronger) comparison |Fg (¢, E)/Tk(t) — 1| in the spirit of [So] and we
will address this question. With a concentration assumption on K (see (3.3)
below) we will show

THEOREM 3.11. Let K C R™ be an isotropic convexr body satisfying
condition (3.3), and tg > 0. Then for every 0 < ¢ < 1 and 1 < k <
cielogn/(loglogn)? we have
FK (t7 E)

ri(t)
where ¢1 depends only on the constants appearing in (3.3), and cy depends
only on ty.

I/{E € Gp it sup

t>tg

— 1‘ < 5} >1-— exp(—62n0'37)

We follow a fairly standard procedure: first we show that the average of
Fk(t,E) on the grassmannian G,, j is close to the Gaussian measure. Then,
by the concentration of measure phenomena on G, i, we show that for most
subspaces E, Fi(t, E) is close to its average.

It turns out that the average of Fi(t, F) can be written in a way that
admits generalisation to any probability P. In the second and in the last sec-
tions of the paper we study properties of this averaging, including proximity
to the Gaussian measure in the uniform distance.

The paper is organised as follows:

In Section 2 we introduce an average of k-dimensional marginals for any
probability P on R", compute the (radial) density ¢k(s), s € RF, of its
absolutely continuous part (Proposition 2.1), and explain its geometrical
meaning (Proposition 2.3). For P the uniform measure on K, the relation
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with our problem is given by the formula
(1.2) Fit):= | Fxt,B)dv(E)= | o(s)ds
G,k {Isl<t}
where
Oh(s)= | [(s1& 4+ s+ {&, . &) N Klng dU,
O(n)
with integration with respect to the Haar probability on the orthogonal
group O(n) and U = (& ... &) € O(n). Moreover, each Fg(t,E) is a
certain average on O(F) of marginal densities (see Remark 2.4).

In Section 3.1, we investigate the closeness of the average density 4,0’;((8)
to a suitably normalised Gaussian density 75 (s) and obtain estimates for

Pi(s) 1'

k
Vic(5)
(Theorem 3.5(1)). At this stage, it is still possible to state the result for
general probabilities P satisfying (3.3) with no extra effort and we do so
(Theorem 3.1). We extend the ideas in [So] (where k = 1) to estimates with
s far from the origin. The study of estimates for s near the origin leads us
to consider the parameter Mp (see definition below).

A simple integration yields relations between the average of Fi(t, E)

and F[k((t), that is, an estimate for

Ros
I'g(t)

(Theorem 3.5(2)). In Section 3.2, the concentration of measure phenomenon
on Gy will be the key ingredient to show that for “most” subspaces E,
Fk(t,E) is close to its average F%(t). For that purpose we estimate the
modulus of continuity of Fi(t, F).

All the results in this section, valid for the uniform probability on iso-
tropic convex bodies, can be stated and hold true for log-concave probabil-
ities P.

Finally, in Section 4 we return to the study of the average density ¢&(s).
For a class of probability measures P, we estimate

sup |op(s) —28(s)| and  sup|Fg(t) — TE(t)]
sERF t>0
(Theorem 4.2) and show that such differences tend to 0 (as n — oo0) provided
that k = O(v/Iogn/(loglogn)'/2%9) for some 6 > 0. We extend the ideas in
[BK] and solve the difficulties appearing in that paper for s = 0.

When £k increases very fast to infinity, & = n — ¢ with ¢ fixed, or k =
(1 —=Xn, 0 < A < 1, we cannot expect a Gaussian behaviour. We obtain
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upper bounds for the average marginal density (Proposition 4.7), which, for
some cases, are shown to be sharp. Such upper bounds are also needed in
the first part of the section (Lemma 4.5).

Next we introduce some notation and definitions. We denote by D,, the
Fuclidean ball in R™ and by w, its Lebesgue measure. The area measure
of the unit sphere S"~1 is |S" 1| = nw,,. The letters ¢, C, ¢, ... will denote
absolute numerical constants whose value may change from line to line.

The elements of the orthogonal group O(n) are denoted by U= (&3 ... &)
so the columns (&;) form an orthonormal basis in R", and dU is the Haar
probability on O(n). The Haar probability on S"~! is denoted by oy, _1.

Let P be a Borel probability on R". We introduce the following param-
eters:

1
M2 = M2(P) := -

P{tD
S 2|2 dP(x), Mp :=sup {tDn}
Rn t>0 ‘tDTl‘

and

02 n< §pn |2]* dP(2) B 1) _ Var(|z|?)
e (Ygn |2|? dP(2))? nM;(P)’

When P is the uniform measure on K we change the notation accordingly,
that is, op to ok and so on.

REMARK 1.1. op is a concentration parameter. Chebyshev’s inequality
implies (see [ABP])
2
P{z € R":||z|> — nM3(P)| > enMZ(P)} < —E-.
n2e

For P the uniform measure on an isotropic convex body K, the parameter
ok is conjectured to be bounded by an absolute constant (the Variance
Hypothesis).

When P has density f, Mp is the Hardy—Littlewood maximal function of
f at the origin. It is finite when, for instance, the origin is a regular Lebesgue
point of f (Lebesgue differentiation theorem holds), or when f is bounded,
in which case Mp < ||f||~ (the supremum norm of f). Also observe that
Mp < oo implies P({0}) = 0.

REMARK 1.2. For Mp and M»(P) finite the parameter MQ(IP’)M];/TL plays
an important role. In the particular case of IP being the uniform measure of
an isotropic convex body K, this constant is L (= M2(PP) and Mp = 1). If P
has density f that is an even log-concave function, the constant Mo (P)Mé/ "
is the isotropy constant of the function since Mp = f(0) (see [B]).

The following fact due to Hensley [H], whose proof follows from [B,
Lemma 6], will be extensively used along the paper:
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LEMMA 1.3. There exists an absolute constant ¢ > 0 such that for any
probability P on R™, MQ(IP‘)MEID/TL >c
We finish this section with some

1.1. Technical preliminaries. Let P be a Borel probability on R” with
Mp < oo and My = Ms(PP) < co. Define

1 g2 2
7§(S)ZW€ SERMY s e RE, O TE(t) = S v (s)ds, t>0.
jsi<t

In the next three lemmas we state some useful inequalities. Given g, h:
[0,00) — R, write g ~ h if cih(x) < g(z) < cah(x) for all z > 0.

LEMMA 1.4. The following estimates are well known:

. Tr —X L i
(i) I'z+1)=2x% \/27rac<1+12x+0<x2>>,
15" = nw,, = 2 won < < wl/m 2me
(i) ST Ty e T A
‘Sn7k71| nk/2
5] < C(Qw)k/2 for k = o(n).
LEMMA 1.5.
. tkwk —t2/2M2 k tkwk
<IFt)< ——Y% _ y>o,
® (V2r M)k © B0 < (AL
(i) TE(t) > 1= 2826~ 0/4M5 -y >0,
(iii) TEt+06) < (1+6/)FF@®), Vo, t>o0.
Proof. (i) is straightforward; as for (ii),
—t2/4M2
1— k) = k(o) ds < € —[s|2/4M3 go < ok/2 —t2/4M22;

F= § bords< e | e s <2

and (iii) follows from
Lt +9) 14 Se<lsi<+o 5 (s) ds
Flfl’?(t) S|s|§t ’y{ﬁ(s) ds
((t + 6)F — th)e—t*/2M3 (t+ 6)k — ¢
SR T T

LEMMA 1.6. Let n > k + 3. There exists an absolute C > 0 such that

o\ (P—k—2)/2
(i) ‘ (1 _ “) e

<C Vu € [0,n/2],

n n —
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. |Sn—k:—1| (27r)k/2 kz
_ < _
i |(Smr Zr ) -1 <t

0\ (n—k~2)/2 P
e“<1—“’> —1‘§8<:+%> Vu € [0,v/n/4],

n

(iii)

provided that ku/n +u?/n < 1/8.

Proof. The proof of (i) is the same as in [BK]. As for (ii), it is a con-
sequence of the formula |S"~!| = 27/2/I'(n/2) and the asymptotic for-
mula for the Gamma function in Lemma 1.4. To prove (iii), write y =
u+ ”‘Tk_?log(l — 27") We use the inequality |e¥ — 1| < 2|y| for |y| < 1 and
Taylor’s formula with Lagrange’s error term log(l — ) = —x — 22 /2(1 — £)?
for 0 < ¢ < x <1 with z = 2u/n to obtain

u 2\ ("2 n—k—2 2u
e[ 1—— —1§2u+Tlog 1-—
n

n

n—k—2(2u 4y k+2 (n —k —2)u?
T <n+2n2<1—5>2>'§2< n T 2 >

<9 3ku+ nu? <3 kfu_i_ui2

- n (n—+/n/2)2) — n  n) "

2. Average of k-dimensional marginals. Let P be a Borel probabil-
ity on R™. For every k € N with 1 < k < n we define the following average
of k-marginals:

A4@P)B)= | PUB+R"%)dU, BCR
O(n)

<2

Then Ay (P) is a Borel probability on R* invariant under the action of the
orthogonal group in R¥. Clearly, Ay (A, (P)) = Ap(P).
The following proposition was proved in [BV], [BK] and [So] for k = 1.

PROPOSITION 2.1. Let P be a Borel probability on R™. Then, for all
1 < k < n and any Borel set B C R*, we have

|Sn_k_1‘ S - ﬁ (n—k—2)/2 d]P’(:I:) p
57T E
{lz[>]s|}

|z
where &g is the Dirac measure at 0. The density function of the absolutely
continuous part is denoted by s € RF — ©k(s).

Proof. Since Ap(An(P)) = Ax(P) and the inner integrand is radial it is
enough to prove the formula for probabilities P that are invariant under or-
thogonal transformations. First we consider the case P = g,,_;. It is enough
to prove the equality for dilates of the Euclidean ball, that is, to show that

A(P)(B) = P({0})(B) + |
B
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S (_\s\2><"—’“—2>/2dan_1<x>ds

Ag(on-1)(rDy) = |

|51 || |[*
Dy, {lz|>]s[}
Bl 2\ (n—k—2)/2
= o) S (1—1s/%) XDy (8) ds.
rDy,
If » > 1, then
s 2\ (n—k—2)/2
n— =l=—c = - .
Ap(on_1)(rDy) =1 =T | (@—1sP) ds
Dy

If » < 1, after passing to polar coordinates, the right hand side equals

n—k—1 k—1| "
‘S |Sn||1“g | S(]- o t2)(nfk72)/2tk71 dt.

0

On the other hand,

Ak(dn_l)(T’Dk)
= on_1(rDy x R"™%)

n—k—1 k 1
_ wi|S ! (7” (1—r2) k)2 S k=1 (1 _ g2)k/2 dt>.

Wn n
1—r2

Now, the derivatives of the two expressions are equal and we have the
result. Observe that, by rescaling, the formula also holds for the Haar prob-
abilities on AS™ 1, A > 0.

In the general case, we use the fact that any probability P invariant
under orthogonal transformations is, up to P({0}), the product measure
of a positive measure on (0,00) and the Haar measure on S" !, and so
it can be approximated by convex combinations of Haar probabilities on
AS™ 1 X > 0. For A = 0, the associated probability is 6y. =

REMARK 2.2. If P is a probability with density f, that is, P(C) =
§o f(x)dz, then Ay(P)(B) =, ¢k (s)ds where

ehs)= | | flsia+ -+ sa€a)dsprr ... dsydU
O(n) Rn—Fk

and s = (s1,..., Sk)-
In the particular case of P(C') = |K N C| for a Borel set K C R" of
volume 1 we have Ag(P)(B) = |, % (s) ds where

Oh(s)= | [(s1& 4+ s+ {&, . &) N Klpg dU.
O(n)

This integral, an average of sections by n — k-dimensional subspaces at
distance |s| from the origin, is the density function of a certain average of
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k-dimensional marginals of K (further applications of this formula appear
in [BBR)).

The following proposition gives a more geometrical interpretation of that
function.

PRroPOSITION 2.3. Let K C R"™ be a Borel set of volume 1. Then for any
1<k<n ands e RF we have

S =1 (1 s+ E) N Kok dv(E)) dow 1 (6)
Sn=1 " G(OL n—k)
where G(6+, n—k) is the Grassmann manifold of n—k-dimensional subspaces
of the hyperplane 0+, and dv its Haar measure.

That is, consider the sphere |s|S™"~!; for any § € S"~! we first average
over all the (n — k)-dimensional sections of K at distance |s| from the origin
in direction @, that is, inside |s|@ +#+; and then we average over the sphere.

Proof. Since ¢k (s) is radial,

Phe(s) =\ 1(sl& + {6 &) N Klpop dU.
O(n)
Next we consider the following consequence of the conditional expec-

tation theorem as it appears in [Ko, Lemma 1]: for any (say) continuous
function F on O(n),

| Fyav = | | dUn_y, | F(U)dUydv(E)
O(n) G(1.k) Eppr e En€EL SRS
where dU,,_j and dUj, are the Haar measures on O(n — k) and O(k). We

apply this formula for £ = 1 and any continuous function and we have in
particular

J Fle . &nau=§ (| F&&.....&)d01)do,1(0)

O(n) St OE)

where O(&1) is the orthogonal group in the hyperplane &;-, and dU; its Haar
measure (this formula can also be proved for any (say) continuous function
F directly, by using the uniqueness of the Haar measure on O(n)). Applying
again Koldobsky’s formula in the whole space £ and n — k for the function

F(&,&,....&) = |(Islér + {&, .., &) N Klh—, we eventually get the
result. m

REMARK 2.4. Let E be a k-dimensional subspace of R". We show some
relations between the function F (¢, F) := [{x € K : |Pg(x)| < t}| (formula
(1.1)) and the average marginal density % (s).
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Fix an orthonormal basis {{1,...,&} C R™ of E. By Fubini’s theorem
we have

dSl ce dsk.
n—~k

Fi(t,E) = | ‘(Xk:sgﬁEL) NK

si<t  i=1

We now integrate when U = (& ... &) runs over the orthogonal group
O(E), which allows us to express F (¢, E') as a convenient average of marginal
densities:

Pt )= | (| ](fjsigﬁEi)mK kdsl...dsk>dU
o(E) |sl<t =1 "
= ( i ‘(zk:sigﬁEi)mKn_kdU)dsl...dsk

lsl<t O(E) i=1
= | ( ’(|S|§1+EL)HK‘n7kdU> dsy ... dsy,
ls|<t  O(E)
(by the invariance under the orthogonal group)
= § (T 10610+ B N Ko dop(0)) dsi .. dsy
[s|<t Sg

(by using Lemma 1 in [Ko])
t
= |k S r* L fe(r, E) dr
0
(by passing to polar coordinates in F)

where S = 8"~ ' N E, o is its Haar probability and

fK(raE>: S |(r9+EL)mK|n—kd0—E(0)7 r > 0.
SE

Finally, observe that we also obtain formula (1.2),
Fr@t)= | FxtE)dv(E)= | ¢h(s)ds.
G,k {Isl<t}

Our last lemma provides bounds for fx(r, E) and Fg(t, E) that will be
useful in the next section.

LEMMA 2.5. Let K C R" be an isotropic convex body and E € Gy .
Set L, =sup{Ly : M C R, isotropic}. There exists an absolute constant
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c1 > 0 such that

k
(i) fr(r,B) < e fi(r E) < (ka’f) vr >’ >0,
K
.. Clt
Fx(t,E) >1—coexp| ————= Ve > 0.
(i) (6 B) =1 xp< = ﬂ)

Proof. (i) A result by Fradelizi [F| states that
(10 + EY) N K|y < e¥|(0 + BN N K|y, Yr>1">0,

and the first inequality follows. The second inequality is a consequence of
the previous one (for 7 = 0) and a result by Ball, Milman and Pajor B],
[MP] which states that [E+ N K|, < (c2Lg)*/ L%

(ii) It is a consequence of a more general result: if 7' : R” — R" is a
linear map such that dim 7' (R™) = k, then

Clt
Lk|T|lus

where || T||us denotes the Hilbert—Schmidt norm. Indeed, Borell’s inequality
(see [MS]) states

|{x€K:|T(as)]§t}|21—CQexp<— > vVt >0

T
HxEK: | 7(=)] il >t}’§02exp(—clt) Yt > 0.
2 /2
({x [T]? d)
We can suppose that T = Z§=1 uj ® ej, where {uj}é?:1 are k vectors in R"
and {e; };?:1 is an orthonormal basis in the subspace T'(R™). Then

dem—gzw, 5 dx—Zruj\2§\<“ﬂ|,x>\ do = LT

K j=1

In our case simply take T' = Pg.

3. Estimating the quotient. Our aim is to estimate the quantity
|Fx(t, E)/TE(t) — 1] for a random k-dimensional subspace £ C R". Some of
the steps hold true for more general probabilities P and we will state them
in full generality. The following hypothesis will be imposed on P throughout
the section.

CONCENTRATION HYPOTHESIS ([So]):
(3.3) P{z € R" : | |z| — v/n M| > ty/n My} < Aexp(—Bnt?)
for all 0 <t <1 and for some constants «, 3, A, B > 0.

3.1. Gaussian approximation of the average density and distribution.
We first consider Gaussian approximation of the average density % (s).
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THEOREM 3.1. Let P be a probability on R™ satisfying (3 3) and suppose
that My, Mp < oo. Define h(n) = n™ntea/B1/2} gnd let h(n) be such that
h(n) < ¢(B,B8)h(n) with ¢ = ¢(B, ) = min{1/8, (B/2)™™LY/ If | <
ch(n)/log(1 + MgMP/ ), then

sup
|s|<\/h(n) Ma
for some constant ¢c; = c1(a, A, 3, B) > 0.

Proof. Recall that, by Proposition 2.1, ¢k(s) = S{|m|>|s|}9|s|(|3’3|)dP(fE)v

where (n—k—2)/2
|Snfk71‘ 1 $2\ \n=h—
gt(r)zwﬁ l—ﬁ s T2t>0

Consider the image probability of P under the map x +— |x|, that is, the
probability on [0,00) also denoted by P with distribution function P{z €
R™ : |z| < r}. With this notation,
ph(s) = | g(r)dB(r).
[Is],00)
In order to estimate the asymptotic behaviour of goI’;(s) as n — 00 we write
(3.4) ©i(s) = g5/ (Vn Ma)P{|z| > |s|} + S (915 (1) = g15|(v/n M))dP(r).
(Isl00)
Write g5 () — gjs ‘(fMg) SfM g|3|< u)du. By using Fubini’s theorem in
(3.4), it is easy to see that

©5(s) — g5 (VR M)

h(s) | o, )
25 (s) 1‘“ (n)

\/n Ma
= — g2V M)P{2V/n My < [z} — | gl (r)P{|z| < r}dr

Is

2/n My
+ | gyP{el > rydr+ | g (r)dP(r).
Vvn Ms [2/7 Ma,00)

The summands above are estimated with the help of the following three
technical lemmas which extend the ideas in [So] to a general k for |s| far
from the origin. The behaviour at the origin (discussed in Lemma 3.4) is
estimated via the parameter Mp.

LEMMA 3.2. If |s| < \/n/2 My, then

S 9)s/(7)

dP(r) < A ex p<|5’2 Bno‘)
] LA = LLiu.
2R Masoo) 95| (V1 Ma) 2 M;
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and

9)s| (2\/’5M2)
9|s| (\/ﬁMQ)

Proof. Use the elementary inequalities (1 —z)™! < e?* for 0 < z < 1/2
and 1l —x<e Tforz>0.n

A Ells
P{2v/n My < |z|} < lexp<]\422 — Bn® ).

LEMMA 3.3. If (|s|2/MZ)>18:1} < Bne /2, then

WM gl ) 2\ 4
At P> S e b i

Proof. By straightforward computations and the inequalities (1 — 2)~*

<e¥for0<z<1/2and1—x2 < e % for z >0,

/
195/ ()] (n = 2)|s]* = kr?| o~ (n—k—2)[s[?/2r2 _(n—k—2)]s[/2n03
95/ (V1 M) ~ r3 '

For r € [\/n M2, 2\/n My],
_ 2 _ L2 2
R P

r3 r M2’

On the other hand,
(n—k—=2)s]2 (n—k—4)|s? (n—k —4)|s|? nM2
- <l PO (02
2nM3 2r2 2n M3 r2

Upon using such bounds, the change of variables r = (1 4+ u)/n Ms and
the inequality 1 —1/(1 + u)? < 2u for u > 0 yield

2R gl ()] S
S LP{M >rldr < cSe‘Sl WMLz > (1 + u)v/n My} du.

Now use the concentration hypothesis (3.3). The proof finishes by es-
timating the remaining integral with the aid of the following Claim (with
K =|s|>/M3 and L = Bn®); see [So, Lemma 9].

CLAIM. Let K,L > 0 be such that K™} < /2. Then

1
Sexp(Ku — LuP)du < Z(g; .

0
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LEMMA 3.4. There exists ¢ > 0 such that if |s| < \/n/2 My, k < n/2
and (8k log(cMgMEID/n))maX{l’ﬁ} < Bn®/2, then

\/ﬁMz

‘9|/s|("”)’ |s|? Ac(p) 1
|§| m]?{|x| <r}dr< maX{W,kz}W + o

2
Proof. Define \ := (cMgMEID/n)_Q, with ¢ > 0 to be chosen later, and
split the integral into two parts

v/n Mz max{|s|,A\v/n M2}
| + | =1 + L.
max{|s|,A\v/n M2} |s]

By Hensley’s Lemma 1.3 we choose ¢ so that A < 1. It is easy to see that
|95 ()] < ol = 2)Is]® — kr’|
915 (VnMz) ~ rhts
The change of variables r = \/n Mau and the inequality
-9 2 _ k M2 2 2
(n = 2)lsP = kndM3u?| _ max{ s

(vn Ma)".

k}, 0<u<l,

Ve ME’
yield
1
Els P{lz] < vn Myu}
I < 2maX{W, k S o du.
2

max{|s|, /A Ma}/ /7 Mo

Set a = max{|s|, \v/n M} /y/n My. We have 0 < a < 1. By the change of
variables u = 1 — v and the concentration hypothesis (3.3),

2 1—a
L < 2Amax{‘]\84|2,k} S exp(—(k + 3)log(1 — v) — Bn®v?) dv.
2 0

Finally, use the inequalities

~1
—log(1 —v) < —2¢

v < log<3> v < 2log(cLp) v, wve0,1—al,
a

—a
and the Claim above.

For the second integral Is we can suppose |s| < Ay/n Ms. Proceeding as
before, we have

n—)s|2 — k2
S ( Q;ng k] (v/n M) P{|z| < r} dr.

By the inequality |(n —2)|s|? — kr?| < nr?, the definition of Mp and k < n/2



14 J. Bastero and J. Bernués

we have

M7 Ma
I < 2n(vn M) Mpw, | vl dr < 4(Lpw)/" R A",

s

since \"% < A\"/2_ Finally, the sequence w}/ "/n is bounded by an absolute
constant and we can choose ¢ > 0 in the definition of A so that I <27, u

End of proof of Theorem 3.1. Notice that the hypotheses of the lemmas
are satisfied and therefore
El§

k
p(s) ‘ A ( )
—— 1| < exp| — — Bn®
‘gs(\/’ﬁMg) 2k—1 M2

(A, B, ) El§ 1
+ ’na/ﬂ max @,k +27

Finally, use the inequality
ep(s) 1' g1s) (V' M) ‘ %10) g5 (VnMy) 1’
) 1T () g (VM) e (8) '

By Lemma 1.6(ii), (iii) for u = |s|>/2M2, we have g|5|(\/ﬁMg)/7{}§(s) <
and

-+

o5 (s) = h(n) 1
’yg(s) —1’ §01<exp(h(n)—Bn )—i—m—i- )

o[ o i) = (G + 50

which finishes the proof. =

For P the uniform measure on an isotropic convex body K we obtain as
a corollary

THEOREM 3.5. Let K C R" be an isotropic convex body satisfying the
concentration hypothesis (3.3). For some c¢,c; depending on the constants
n (3.3),

(1) If k < cbh(n)/log(1 + L), then
¢l () h(n) _ >
P ) ey 1= [oteyio]

(2) If k < ch(n)/log?n, then

sup
>0
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Proof. Statement (1) is a consequence Theorem 3.1, since in our case
Mp =1, My = Lg.
Part (2) follows from (1). Indeed, by Lemmas 2.5(ii) and 1.5(ii),

[Fr(t, B) = I ()] = |(1 = Fx(t, B)) — (1 = Ig(t)]
< e—CQt/LK\/E+ 2k/26—t2/4L§{'

Therefore, in the range t > CvVk Ly logn (for suitable C' > 0) we trivially
have |Fi (¢, E) — I'k(t)| < 2/n for every k-dimensional subspace E. For that
range of ¢, Lemma 1.5(ii) gives I'%.(t) > ¢y > 0 and so

KO )<
(1)

C1

n .

Finally, observe that ¢t < CVk Lk log n implies t < LK\/%(n), and so by
integrating (1) and formula (1.2) we have the result. m

EXAMPLE. It is proved in [So| that the uniform probability on the unit
ball of £}, p > 1, satisfies the concentration hypothesis (3.3) for a =
tmin{p,2} and B = min{p,2}. So, h(n) = /n and by taking h(n) =
o(h(n)), Theorem 3.5(1) implies that sup‘s‘g]cp’;((s)/fyf((s) —1] — 0 as
n — oo for I = [0,0(n*/*)] and k = o(n'/?) (since in this case Ly is uni-
formly bounded by a constant depending only on p).

If we study the behaviour at ¢ = 0 of Theorem 3.1(2), we obtain the
following strong form of reverse Holder inequality in the spirit of [V].

COROLLARY 3.6. Let K CR™ be an isotropic convex body satisfying (3.3).
If k = o(h(n) /log?n), then

1/k
<S|x’2d$)1/2<x|iﬁ) —1 asn— .
K

K
Proof. By Remark 2.4 and L’Hopital’s rule,
F E E
im K]E.t) ) — hm fK(ta ) - — = ( /QWLK)k‘El ﬂK|n—k;
t—0t+ FK(t) t—0t (\/271' LK)*ke_t /2L%
Therefore,

FE(t
lim f,j( ) _ (Ver L) | |ENK|_kdv.
t—0+ FK(t) a .

But this is equal to

ko Skl dx
Var Ll R L () = (Vam L)t ST e
(Vam L) SR Wll) = (Var L) Sgamr
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by the dual Kubota formula, where Wk(K ) denotes the kth dual mixed
volume of K (see [BBR]). Since L% = 1 (. |z|?dz, we have

L PR _ @mh s (S 2| dx)m(S dx).
K K

i
t—0+ TE(t) nk/2  |Sn—1| ||k

By Lemma 1.6(ii) and Theorem 3.5(2), the result follows. =

3.2. Gaussian behaviour of a typical subspace. The main tool of this
subsection is the concentration of measure phenomenon in the space G, x
equipped with its Haar probability and the distance || Pg, — Pg, ||lus, E1, E2 €
Gk, where Pg is the orthogonal projection onto . Recall that the modulus
of continuity of a continuous f: G, — R is

wla)=  sw  f(E) - (B2l a>0.

|Pg, —PEg,llns<a

THEOREM 3.7 (Concentration of measure). Denote by v the Haar proba-
bility on G, .. Let f: Gy, — R be continuous. There exist absolute constants
c1,c2 > 0 such that for every a > 0,

V{E € Gy : |f(BE) —E(f(E))| > w(a)} < 1 exp(—cana?).
Proof. For G, ), equipped with the distance
d(F1, E9)

= min {(Z luj — vy )1/2 : (u4), (vj) orthonormal bases of Ej, Eg}

for E1, By € Gy, the inequality above is stated in [MS].

To finish the proof we show ||Pg, — Pg,||lus < V2d(FE1, Es). Indeed, for
any orthonormal bases (u;), (v;) of Eq, Es we write Pg, = Z?Zl uj @u; and
Pg, = Zf_l v; ® v; and by definition

k k
1Ps, — P, |Ifis = 2k — 22“]7”% <2 Z (uj,vj) )322‘%_%2
,j=1 Jj=1 j=
_UJ‘

since 1 — (uj,vj)? < 2(1 — (uj,v;)) = |u;

We will compute the modulus of continuity of E — Fi (¢, E)/IT'%(t):

LEMMA 3.8. Let 0 < e <1 and K C R" be an isotropic convex body. Let
0<t<cavkLg logn. Then for every FE1,Ey € Gy and some universal
constant ¢ > 0 we have

Fr(t,E1) Fgk(t, E)
IOV ION
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provided that | Pg, — Pg,|lus < a where

(et 5/4
E’“(L) ift <2vVk Ly,
k K

cke?
LY (logn)k—1
Proof. Let 0 < ¢ (< t) to be fixed later. By the triangle inequality,
FK(t, Eg) — FK(t, El) < FK(t + 6, El) — FK(t, El)
+{z € K:[(Pp, — Pg,)(z)| = 6}
Let us estimate each summand. By Remark 2.4,
t+4
Fic(t 406, B) — Fi(t, Ex) = [S*' | 7 fic(r, E1) dr
t

a =

otherwise.

o LR
S‘Sk 1|CkL7}f%
K

(by Lemma 2.5(i)). By the mean value theorem, (t+8)F —t* < k(t+6)*16 <
k2k—1tk=15 so

((t+6)F —t%)

Ek
Fr(t+ 6, B1) — Fi(t, Ey) < |S57t|ck =k k=1,
Lk
Now we compute the second summand. Repeating the arguments in
Lemma 2.5(ii) with "= Pg, — Pg,, we have

015
v € K :|(Pg, — Pr,)(x)| > 6} <2exp( — ‘
{ |(Pp, — Pr,)(x)| > 0}] < P( LK||pE1—PE2||Hs)

Put the estimates together, exchange E; and Es and conclude that

Fr(t, Er)  Fk(t Ep) < |Sk_1|0k££tk715+ 2 exp<_ 015>
i ok |C e 0 e i)

If t > 2vk L, Lemma 1.5(ii) gives I'f-(t) > ¢/. Take

= (< t).

(3.5)

5= LKE
|Sk=1|ck Lk (cVklogn
Substituting in formula (3.5) together with |S¥~1| < ck /k*/? (Lemma 1.4(ii)),
Ly, < c1k'* ([K12]) and L > ¢3, we have
Fi(t, E1)  Fk(t E»)

(1) TE(t)
€ —C3¢& .
S5 te if ||Pr, — P < a.
-9 Xp<C’6'£]k9(logn)k—la) ” Eq EQHHS <

Set a = c3e?/ckLF (logn)k~1 so the second summand reads exp(—1/¢) < £/2.
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If t < 2vk Lk, Lemma 1.5(i) implies I'%(t) > e~ 2*tkwy,/ (V21 Li)*. We
substitute this estimate in formula (3.5) to obtain

§  cFLh 5
§ck££¥—|—c Kexp( ¢ >

Fr(t,Er)  Fg(t, Es) _
wktk LKCL

() rE(t)

We take § = cet/cFLF so that the first summand is less than £/2. With
this choice of 4, if we also write u = t/2Lg € [0,vk], the second summand

becomes
c’f eu
exp| ——— .
wpuk L’Igcé a

Finally, set a = ceB/ 454 / 012%9/ 8££ for some appropriately chosen ¢ > 1 and
substitute in the previous formula to get

k 9/8
ct k°%c
o exp(—(gu)wl) =: h(u).

The maximum value of h is attained at ug so that h'(ug) = 0, that is,

C4\/E C]fEk —k
= - and h(uo) = W e

€
uQ Sil

Next, we apply Theorem 3.7. Recall that cih(n)/h(n) is the error term
in Theorem 3.5.

LEMMA 3.9. Let 0 < ¢ < 1, 0 < t < easvkLglogn, K C R" an
isotropic convex body satisfying the concentration hypothesis (3.3), and k <
ch(n)/log?n. Then

h(n)
h(n)

F(t, E)
IE()

V{E €Gnyi: ’ — 1’ >e+c } < exp(—CQazn)

where

k 5/4
¢ (”) ift <2VEk Lg,

LR\ Lk
a= F ko2
_ herwise.
E’,g(logn)’f*1 ot
Proof. Theorem 3.5 states that
F¥ h
[ ]
FK(t) h(n)

Hence,
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V{E;’W_llmﬂﬁn)}

I(t) h(n)
| Fk(t,E)  FE()
< I/{E : ‘ Flk((t) — Fg(t)‘ > 8} <c exp(—CQnaQ),

since Lemma 3.8 reads w(a) <¢. m

In our last result of this section we pass from Lemma 3.9, valid for any
fixed ¢, to a statement that holds for all ¢ simultaneously.

LEMMA 3.10. Let 0 <e <1/2,tyg >0, K C R" an isotropic convex body
satisfying (3.3) and k < ch(n)/log? n. Suppose cih(n)/h(n) < 1/2. Then

EeGpy: ‘ —1| < 2e+2¢ Ve >tgp > 1—Nexp(—cA®n
g 1) )’ (Fed™)
where
evkn'/*logn\ “H/¢ & £/ 1
< = e > 0
N < ( i ) and A kk/45 mln{n5/16, (logn)kl}‘

Proof. By the arguments in the proof of Theorem 3.5(2), we only need
to compute the probability for t € [tg, T] with T = Cvk L logn.
Pick 0 <ty < t; <--- <ty =T in the following way:

%
ti=t0H<1+8Zj>Ntoicls/k, i=1,...,N.

j=1
Write 1 = 2¢ + 2¢1h(n)/h(n), 0 < n < 2. By Lemma 3.9,
N

Frg(t,, B
I/{E : ’KI(C“) - 1' > 7 for some z} < Zexp(—czna?)
I'i(t;) 2 pa
where
k 5/4
t.
Zk<8> if t < 2VE Ly,
a; =
l che? otherwise
—_— rwise.
LF(logn)k-1
If t € [ti,tiy1], the fact that
F
T (t)

implies that either
Fic(tiv1, B) > (L+nIg(t:) or Fr(ti, B) < (1 =)k (tip)-
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Taking into account the choice of ¢;, Lemma 1.5(iii) (with ¢t = ¢;, § = t;11—1;)

reads

k(4. RN k

FKk(tz+1) < (tz+1> < <1+ 5 > < 65/8 <14+ n

TE(t) ti 8k(j+ 1) 4
and so, by the elementary inequalities (1 + 7)(1 + n/4)"! > 1 + /2 and
(1-n)(1+n/4) <1—n/2 we find that either

Fie(tion, B) > (14 0/2) (b)) or Fie(ti, B) < (1—n/2) Tk (k).

Thus,

Fg(t,E
V{E €Gnp: ‘K(’) — 1‘ > 7 for some t € [to,T]}
) k
Ig(t)
Fgl(t;, B
<Gpi: ‘I(’gl’) - 1‘ > 7 for some z} < 1N exp(—conA?)
I (ts) 2

where A = min;<;<y a;. By definition,
C\/ELK logn =T= tN ~ toNClE/k.
That is,

c1k/e 4
N ~ —c\/ELKlogn " , A= —cg £? min to ” ,71 — 7
to Lk/4 Lk (log n)k—1

1/4

Eventually, we use L < Cn'/?, and the result follows. =

THEOREM 3.11. Let K C R"™ be an isotropic convexr body satisfying
condition (3.3), and tg > 0. Then for every 0 < ¢ < 1 and 1 < k <
cielogn/(loglogn)? we have

Ig(t)
where ¢1 depends only on the constants appearing in (3.3) and ca depends
only on tgy.

Z/{E € Gy @ sup

t>to

- 1‘ < 6} > 1 — exp(—con®?7)

Proof. By hypothesis,
k c1logn

- <

(loglogn)?
e ~ (loglogn)? '

and e >

c1logn

We can clearly choose E(n) to fulfill the hypothesis of Lemma 3.10 and
moreover ¢ can be adjusted in order that
h(n log log n)?
, hln) _ Goglogn)?
h(n) c1logn
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Now, direct computations (log N < cg logn and — log A%< % log n+cs lol;ﬁ)gn)
show that
log N — enA? < —02n0'37,

and the result follows. =

REMARK 3.12. The expression > 1 — exp(—can®3") only points out that
the probability tends “very fast” to 1. The exponent 0.37 is simply a choice
of a number close to 1 — 5/8 = 0.375. (Actually, by changing the exponent
5/4 to, say, 1.001 in Lemma 3.8 we could reach 0.49...).

REMARK 3.13. The method of proof seems to have the limitation given
by Lemma 1.5 (fx (r, E) < e¥|E-NK]|) so that from this fact one has A > c¥.
This means that, in order to make exp(—A2n) tend to 0 “fast”, k < logn
is necessary. It is in this sense that our result is sharp for the method up to
log log n factors.

Using the results in [ABBP] one can show that for random subspaces
E € Gy one has an improvement of Lemma 1.5, fx(r, E) < ckL;(k (thus
getting rid of Lj). Hence, it is possible to improve Lemma 3.8 for these
subspaces and still be able to use a concentration of measure argument to
improve Lemmas 3.9 and 3.10. This will result in an improvement by a
log logn factor.

4. Asymptotic results on the average density and distribution

4.1. Gaussian approximation of the average density and distribution. In
this section we show that, for a range of k£ and a class of probabilities P,
the average density is uniformly close to the Gaussian density. Furthermore,
if P has exponential tails on half spaces (see definition below), we can also
approximate the average distribution. Recall that Fp(t,E) = P{z € R" :
|Pu()| < t}.

DEFINITION 4.1. Let ¢ > 0. Denote by P.,, the set of Borel probabilities
such that op, Mo, MH})/” <e

THEOREM 4.2. Let k < ¢ v/logn/(loglogn)'/?t0 for some § > 0. Then
there exists ¢; > 0 (depending only on ¢ and §) such that for all P € P,
c’fk‘]‘/’/2

k Ak L
(1) SSGUIRBC lep(s) — 1B (s)] < nl/(k+3)"

Furthermore, if P satisfies P{x € R™ : |(0,z)| > t} < capexp(—cst/Ma) for
some co,c3 >0 and allt >0 and 6 € S*1, then

k1.k/2
(2) sup | FE(t) — I (1) < 4%

k
Jub = 1/(k+3) (logn)

for some ¢4 > 0 depending only on the constants.
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Proof. Observe, by straightforward computation, that the bound on &
ensures that the error terms in (1) and (2) tend to 0 as n — oo.

The proof of (1) will be done in three steps. Step 3 takes care of very
large values of |s|, Step 2 of values of |s| near (and including) the origin, and
Step 1 of the remaining case. Fix ¢g > 0 small enough that will be chosen
below. It is used to separate these three steps.

STEP 1. Let k = o(n). There exists a constant C > 0 such that for
0<|s| < co\/ﬁ/M];,/” and every Borel probability P we have

M. 1
ko Ak < C)k/2 opi2 .
|SOIP’(S) ’YIP’(S” = c \/ﬁ|$|k+1 + nME]f/"

Proof of Step 1. By formula (3.4),
0B (s) =15 (5) = (95 (vn Ma) — 7§(5)) + g5 (V' Ma2)P{|z| < 3]}
+ S (g\s|(r) - g|s|(\/ﬁM2)) d]P)(T‘)

[Is],00)
We compute the second and third summands with the aid of the following
lemmas:

LEMMA 4.3. Let k = o(n). There exists an absolute constant C > 0 such
that

, _1 Ckk/?

(i) igltj ge(r) < * W?

. , 1 Ck(k+3)/2
< .

(i) Sg;lgt(r)\ S TRt 2re)k2

Proof. By Lemma 1.4, |S*~F=1|/|S"1| < Cn*/?/(27)*/2. Proceed as in
[BK]. =

LEMMA 4.4. Let k = o(n). There exists C > 0 such that for all s € R¥
with 0 < |s| < \/n Ma,

. kk/Q e
(1) g‘s‘(\/ﬁM2)P{|l’| < |8|} < WMIP’wn|S| ka
3 CE*2 op M.
(if) I (9() = g9 (VI M) dP(r) < === 222
{r3lsl) vinlsi
Proof. (i) By Lemma 4.3,
C kM2
My) < — %0
g\s\(\/ﬁ 2) = ‘S‘k (27T6)k/2

and, by definition of Mp, P{|z| < |s|} < Mpwy|s|™.
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(ii) By the mean value theorem,

V19 (12]) = 91 (v Ma) | dP(z) < sup |gly (r)] | | ]2 = v/n Mo| dP(z).
CEE) =kl R"

Now use Lemma 4.3 and the inequality {5, | |z|—+/n Ma| dP(z) < opMs (see
[BK]). =

Observe that, by suitably choosing ¢y we have: (a) |s| < co\/ﬁ/Mﬂln/n
implies |s| < y/n My, by Hensley’s Lemma 1.3, and (b) the second error
term in the above lemma absorbs the first one.

It remains to estimate the first summand, |v&(s) — 9)s|(v/n Mz)| where

‘Sn—k—1| 1 |8’2 (n—k—2)/2
91V A2) = |Sn=1| " pk/2 0k ( - nMg) '
Write |s|2 = 2M2u. Then 0 < |s| < /n My is equivalent to 0 < u < n/2,
and so for such values of u we need to estimate
1 |Sn—k—1| (27T)k:/2 - 2£ (n—k—2)/2 -
2m)E2ME | [SPT] k2 :
By Lemma 1.3 we have 1/(27)*/2M¥ < C’kM]ff/n. Finally, add the value
|Sn—k—1| (27r)k/2
|Sn71| nk/2
and use Lemma 1.6 to conclude the proof of Step 1.
STEP 2. Let P € P.,, and k = o(n). Then

Ckk,k:/Q
[ohls) — (o)l < Ao

n

—Uu

+

for all |s| < co\/ﬁ/MI;/n (c1 depending only on c).

Proof of Step 2. By Lemma 1.3 we also have Mo, MI;/” >c2 > 0.

Let (sp) be a sequence such that /n |s,[Ft1 = n!/(k+3)

|5n| = n1/2(643) For |s| > |s,| we have

M- 1
Eroy Ak < CO)k/2 opM2 < cKpk/2,—1/(k+3)
lep(s) —E(s)| < C NlGE + nMéf/n Saktn

, or equivalently,

If 0 < |s| < |spl|, write

k k k k k k k k
lp(s) — B (5)] < l@p(s) — wB(sn)| + l@B(sn) =B (sn)| + [1E(sn) — 1B (s)].
The second summand was estimated above. As for the third one, the in-

equality |[e™* — e Y| < |z| for x > y > 0 implies

‘3n|2 le

(27T)k/2M£€+2 = pl/(k+3)°

78 (s) — ¥E(sn)| < 5
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For the first summand, we use the following lemma:
LEMMA 4.5. Let n > 2k. There exist cg,c1 > 0 such that for all s € RF
with |s] < co\/ﬁ/MI;/n,
[eB(s) — PBO)] < e (M2 M |s|"* + M2 2).

This finishes the proof of Step 2 since the estimate of the remaining first
summand readily follows from

0B (s) — @B (sn)| < 1B (sn) — B(0)] + |B(5) — B (0)]-
Proof of Lemma 4.5. By definition, |<p]P(s) ©k(0)] equals
Bl | dP(x)

D | [*
{l=|<]s[}
lsnfkfl‘ 1 ’8’2 (n—k—2)/2
{lz|>|s[}
We estimate the first summand. By Fubini’s theorem,
oo lslF oo
dP
| el <l el > = |+
{lz|<|s} 0 0 1/[s|*

The first integral is equal to Sé”s‘k P{|x| < |s|} dt and by definition of Mp,
this is bounded by |s|" % Mpwy,.
The second integral is equal to

| P/t >t}at< | Mpwt™/*dt = Mpw, Lk sk
1]sl¥ 1]sl "

Therefore, by Lemma 1.4,
|Sn—h=1| S dP(x) < enk/?
571 ofF = G

Mpwr, n k\s\”_k < FnP2 Mpw,|s| k.
{[z1<]sl} "
Next we compute the second summand. Use in the integrand the ele-
mentary inequality |a? —bP| < pla—b| for a,b € [0,1] withp = (n — k — 2)/2
to conclude that the second summand is bounded by
|Snk=1|n — k-2 S |s|? (n —k —2)|87 k1
‘Sn—1| 2 | |k+2 2|Sn—k—3‘

dP(z) = |s1%5%(0).
{lz[>]s[}
By Proposition 4.7 below we have, for |s| < ¢(w, Mp)~1/" ~ coﬁ/Mé/n,

k+2)/n Wn k—2 k-+2
A2(0) < e M+ < g2
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Finally,
’Snfkfl‘
|Sn—k=3|

n—k—2
F( nzk ) < e
r(#*)
by Lemma 1.4, and putting the estimates together, we see that the second
summand is bounded by cf |5|2Mﬂgk+2)/ " which finishes the proof of the

lemma. =

STEP 3. For every probability P with Mﬁln/n <eg, |s| > co\/ﬁ/MI;,/n and
k < n/logn,

(n—Fk—2) m(n — k)

ckkk/2
[oh(s) ~2EGs)| < Sk

where ¢ > 0 depends only on c.

Proof of Step 3. By Lemma 1.3, My > ¢o > 0 (depending on ¢) and
trivially
8 (s) < of exp(—czn) < ¢f /2.
On the other hand, by Lemma 4.3,
Lk/2 ck Lk/2

(2me)k/2|s|k = nk/2

pE(s) < max gi(2)P{z : [a] = |s|} <
|s|<||
This finishes the proof of (1).

Now we prove (2). Let t < Cvk My logn (for suitable C' > 0). By apply-
ing S|s|<t ds to the result in (1) and using the identity (1.2) and Lemma 1.4
we have

A R
nl/(k+3) - pl/(k+3)

|Fie(t) — IE(t)] < logn)*.

In the range t > C'vk Mylogn, we proceed as in Theorem 3.5(2). Observe
that if we write Pg(x) = Zle@c, u;yu; for some orthonormal basis (u;) of
E then

k
E 2 2
— — . < .

and so, by hypothesis, 1—Fp(t, E) < ok exp(—cst/Vk My). By this estimate
and Lemma 1.5(ii),
|Fe(t, B) — TE()| = |(1 = Fe(t, E)) — (1 = TE(1))]
< Czke—th/MQ\/E + 2k/2€—t2/4M22’
and we conclude, as in Theorem 3.5(2), that [Fp(t, E) — I}F(t)| < 2/n for
every k-dimensional subspace E. =

REMARK 4.6. The hypotheses on Mp, My and op are necessary due
to the behaviour at s = 0. Indeed, consider the probability given by P =
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%Gn,l + %En,l where 7,_; is the Haar probability on 28™~!. Straightfor-

ward computations show that My ~ en~1/2, MI;/" ~cnt/?, op ~ ¢y/n and
|k (0) — 4E(0)| ~ en®/2, and so this difference tends to +o0o as n — oc.

ExAMPLES. We now give some examples with op, My, Mé/ " uniformly
bounded.

1. Let P be the uniform measure on K, the unit ball in the space £},
p > 0. Clearly Mp = 1. The parameters My (= L) and ok are uniformly
bounded in n, as shown in [ABP] for p > 1; by similar arguments this also
holds for 0 < p < 1.

2. Let P be a Borel probability on R with finite fourth moment. Consider
the product measure P =P ® --- @ P on R" and suppose Mz = 1. A simple

computation shown that Mz (P) = M3(P) and o5 = op.

3. Consider the density function on R™ given by f(|x|) where f: R —
[0, 00) is an even log-concave function. Then Mp = f(0) and, by Lemma 2.6
in [Kl1], op, M2 are bounded by an absolute constant. (This can also be
deduced from the results in [Bo].)

4. Let f(x) = exp(—aP|x|P), 0 < p < 1, be a density function on R™.
Then Mp =1 and op, Ms are bounded by constants depending only on p.

4.2. Upper bounds for a fast growth of k. A Gaussian behaviour for large
k is not expected: Consider the case K = wy, 1 "D,,. We have

Phels) = {wn_kwﬂ”)/“(l —lsPuwr™ @02 for [s| <wn ",

otherwise.
e If K =n — ¢ with ¢ fixed, then the equivalence

Wk w?lz/n—l ~ n€/2(2ﬂ_6)—€/2

implies (,zf}{e(s)vfe/2 — wy(2me) 42,
o If k=(1—M)n with 0 < A <1, we have

Wnp WML A(2m) M2 A2 (1=X)/2
which implies @%7’\)”(5))\/\”/Qn(l—k)/2 N )\(27r)>\/2€—7re)\|5|2‘
For general probabilities we find the following upper bounds of ¢f(s).

PROPOSITION 4.7. Let P be a probability measure on R™ with Mp < oco.
Then there exist numerical constants ¢,C' > 0 so that:

(i) If 1 <k <n-—2, then

_ k ||k
k < k/n Wn—k K
Ph(s) < OMy i \ 1™ o (b7

whenever |s| < (k/n)Y =k (w, Mp)~1/"™,
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(ii) If k=n —1 and P has bounded density f, then

75 (5) < Clflloo
whenever |s| < cv/n || f|loo n

Proof. (i) Case 1 <k <n —2. Recall

N B |S”_k_1‘ ‘8|2 (n—k—2)/2 dP(z)
ep(s) = W S 1-

P o
{IsI<l=l}

STEY dRG)

EE
{Is|<[=[}

Let A > |s| to be chosen later. Then

n—k—1 T T

S | |* |[*
[s|<|z|<A A<z
§ | gn—k-1| ( S dP(z) N 1>
— -1 k k)
IS N pcara 17 A

Fix I > 1 and let N, be a natural number such that A/INst1 < |s| < A/INs.
Since {,, dP(z) < Mpt"w, for all t > 0, we have

dP(z
| ey i

|s|<|z|<A m=0 A/[m+1<|z|<A/I™

<Z<Im+1> | dp(a)

|z|<A/T™

st

n Ns m
1

Ak E:Imk <m> wy Mp=I* A" 0, Mp <In—k>
m=0

< IFAY R, Mp( 1 Ly Ly

> wWpip| 1 — -k 1‘@

<I(1- 1 _1A"_kwM 1— Isl "

= Ik nr IA '

We choose I = (n/k)"/ "=k to get

dP(z) N ANCAC IsI\" " &
< n 1—(— .
S<|§B<A Jof* _”_’“(k) el AJ
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We now optimise by taking A = (k/n)""=%)(w, Mp)~'/" whenever |s| <
(k/n)Y(=k)(w, Mp)~1/", and we arrive at the result taking also into account
that |S™ Y = mwp,.

(ii) Case k =n — 1. We have
2 S f(z)dx

—1
op (8) = o
Sn 1 n—2 2 2
| |mmm“‘ jof* = ls]

2
Is|<|z|<|s|+A  |s|+A<|z]

2 1
< = (1" Y 1 f e/ (s] + A)Z = |52 + )
o (5 e VT A7 P 4 e

Assume |s| < A. Then

2
|5

A:< n—1 )Un
V315" flloo
and then

SDn—l(s) < 2 (|Sn—1| Hf” \/g)l—l/n ((n _ 1)1/71 + < 1 )1—1/n>
P = |5n1| b n—1
< 2v3 | floo

whenever [s| < Cy/n | f||;}/ " for some absolute constant C' > 0. m

op M (s) <

o 1
(15 110 VB A + s )

We optimise by taking

REMARK 4.8. Our result (i) gives (assume Mp = 1 for simplicity) an
upper bound in the range |s| < (k/n)l/("_k)wgl/n (< ¢y/n). By looking at
the trivial estimate given by

k 1
ei(s) < (1 - n>w”kwnl\s\k

we conclude that in the range |s| > Cln /™ (~ Cy/n),

1—k/n wnp_g
Ck wl—k/n'

The computations at the beginning of this section show that for k =
(1—=MNnork=mn—4£ 2 </ the function ¢f(s) is bounded in the range
|s| > C\/n by cie~“". Therefore, in both cases the distribution of ¢&(s)
is concentrated on |s| < ¢y/n (with constants depending only on A or /¢
respectively).
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COROLLARY 4.9. Under the hypothesis of Proposition 4.7 we have in
particular:

() if k = (1= Nn, then o8V ()M200-N/2 < C(N)ME™ for all
s € R* and for some constant C(\) > 0 depending on ),

(ii) if k =n — ¢ with £ > 2 fized, then gpﬁfé(s)n_‘g/2 < C’(E)MI;_Z/" for
all s € R* and for some constant C(£) > 0 depending on .

By comparing with the case of the Euclidean ball, we see that the bounds
are sharp for all s in case (ii) and also in the range |s| < 1 (say) for all values
of k.

REMARK 4.10. We can improve the numerical constants for central sec-
tions of star-shaped bodies: Let 1 < &k < n — 2 and let K C R" be a
star-shaped body of volume |K| = 1. Let rD,, be the Euclidean ball of

volume 1 (of radius r = wy, Y ™). Then

Pic(s) < ¢5(0) < 9k, (0) = wy g™/ ¥s € RE.

Indeed,
90’;((3) B |S”_k_1] S (1 - |8|2>(nk2)/2 di
- n—1 2 k
S kogepey N 1! g
|Sn=k=1| o do i Wn—k =
= NG | o= pi(0) = o Wi(K)
K

where W,(K) denotes the kth dual mixed volume of K (see [BBR]). Now,
by the dual Minkowski inequality, W (K) < wh/™ since |K| = 1, and the
result follows.

Addendum. Since this paper was submitted for publication, several
papers concerning the results in this paper have appeared, especially [KI13]
(where, in particular, Klartag proves that every isotropic convex body sat-
isfies the Concentration Hypothesis with o = 0.33, 3 = 3.33), [FGP], [Kl4],
[EK]. The authors have also obtained new results in a joint work [ABBP],
and using the methods developed there (the computation of the Lipschitz
constant for the parallel section function), the dependence on ¢y in Theorem
3.11 can be deleted.

We thank the referee for encouraging us to improve an earlier version of
the main Theorem 3.11.
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