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Characterization of low pass filters
in a multiresolution analysis

by

A. San Antoĺın (Madrid)

Abstract. We characterize the low pass filters associated with scaling functions of
a multiresolution analysis in a general context, where instead of the dyadic dilation one
considers the dilation given by a fixed linear invertible map A : Rn → Rn such that
A(Zn) ⊂ Zn and all (complex) eigenvalues of A have modulus greater than 1. This char-
acterization involves the notion of filter multiplier of such a multiresolution analysis. More-
over, the paper contains a characterization of the measurable functions which are filter
multipliers.

1. Introduction. A multiresolution analysis (MRA) is a general me-
thod introduced by Mallat [20] and Meyer [21] for constructing wavelets.
Afterwards, the concept of MRA was considered on L2(Rn), n ≥ 1, (see
[19], [10], [24], [25]) in a more general context, where instead of the dyadic
dilation one considers the dilation given by a fixed linear invertible map
A : Rn → Rn such that A(Zn) ⊂ Zn and all (complex) eigenvalues of A have
modulus greater than 1. Here and further we use the same notation for the
linear invertible map A and its matrix with respect to the canonical basis.
Given such a linear invertible map A one defines an A-MRA as a sequence
of closed subspaces Vj , j ∈ Z, of the Hilbert space L2(Rn) that satisfies the
following conditions:

(i) for all j ∈ Z, Vj ⊂ Vj+1;
(ii) for all j ∈ Z, f(x) ∈ Vj ⇔ f(Ax) ∈ Vj+1;

(iii)
⋃
j∈Z Vj = L2(Rn);

(iv) there exists a function φ ∈ V0, called a scaling function, such that
{φ(x− k) : k ∈ Zn} is an orthonormal basis for V0.
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Properties of scaling functions have been studied by several authors (see
[20], [15], [8], [10], [1], [7], [13], [18], [4]).

In this paper, the Fourier transform of a function f ∈ L1(Rn) ∩ L2(Rn)
is defined by

f̂(y) =
�

Rn
f(x)e−2πix·y dx.

If φ is a scaling function of an A-MRA, observe that d−1
A φ(A−1x) ∈

V−1 ⊂ V0, where dA = |detA|. By condition (iv) we express this function in
terms of the orthonormal basis {φ(x− k) : k ∈ Zn} as

d−1
A φ(A−1x) =

∑
k∈Zn

akφ(x− k),

where the convergence is in L2(Rn) and {ak}k∈Zn ∈ l2. Taking the Fourier
transform, we obtain

φ̂(A∗t) = H(t)φ̂(t) a.e. on Rn

where A∗ is the adjoint map of A and

H(t) =
∑
k∈Zn

ake
−2πik·t

is a Zn-periodic function which is called the low pass filter associated with
the scaling function φ. In this paper we are going to characterize the low
pass filters associated with scaling functions of an A-MRA.

Before formulating our results let us introduce some notation.
Let Tn = Rn/Zn. Writing F ∈ L2(Tn) we understand that F is defined on

the whole space Rn as a Zn-periodic function. With some abuse of notation
we also consider that Tn is the unit cube [0, 1)n.

We set Br(y) = {x ∈ Rn : |x− y| < r}, and write Br if y is the origin.
For E ⊂ Rn and a ∈ R we define aE = {x ∈ Rn : x = at for some t ∈ E}.
If x ∈ Rn then x +E = {x + y : y ∈ E}. The Lebesgue measure of E ⊂ Rn

is denoted by |E|n.
In [4] the following definitions were introduced.

Definition 1. We say that x ∈ Rn is a point of A-density for a set
E ⊂ Rn with |E|n > 0 if for any r > 0,

lim
j→∞

|E ∩ (A−jBr + x)|n
|A−jBr|n

= 1.

Definition 2. Let f : Rn → C be a measurable function. We say that
x ∈ Rn is a point of A-approximate continuity of f if there exists E ⊂ Rn

with |E|n > 0 such that x is a point of A-density for E and

lim
y→x
y∈E

f(y) = f(x).
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Definition 3. A measurable function f : Rn → C is said to be A-locally
nonzero at x ∈ Rn if for any ε, r > 0 there exists j ∈ N such that

|{y ∈ A−jBr + x : f(y) = 0}|n < ε|A−jBr|n.

Observe that if A = aI, where a > 1 and I is the identity map, the
definition of a point of A-approximate continuity coincides with the well
known definition of approximate continuity (cf. [22], [3]).

For a given φ ∈ L2(Rn), set

(1) Φφ(t) =
∑
k∈Zn

|φ̂(t + k)|2.

If A : Rn → Rn is a linear invertible map such that A(Zn) ⊂ Zn and all
(complex) eigenvalues of A have modulus greater than 1, recall that a coset
of A(Zn) is a set of the form

q +A(Zn) = {q +Ak : k ∈ Zn}

where q is any element of Zn which is sometimes referred to as a represen-
tative of the coset. Any pair of cosets are either identical or disjoint so that
the collection of all cosets, denoted by Zn/A(Zn), consists of disjoint cosets
whose union is Zn. We have card(Zn/A(Zn)) = card(Zn/A∗(Zn)) = dA ≥ 2
(see [10] and [25, p. 109]). A subset ∆A of Zn is said to be a full col-
lection of representatives of Zn/A(Zn) if it contains exactly dA elements
and ⋃

q∈∆A

(q +A(Zn)) = Zn.

Let us fix ∆A = {qi}dA−1
i=0 and ∆A∗ = {pi}dA−1

i=0 , where q0 = p0 = 0.
GivenH ∈ L∞(Tn), the continuous linear operator P : L1(Tn)→ L1(Tn)

with

Pf(t) =
dA−1∑
i=0

|H((A∗)−1(t + pi))|2f((A∗)−1(t + pi))

is well defined. This operator was first introduced by M. Bownik [2] as a
generalization of the analogous operator introduced by W. Lawton [17] for
dyadic dilations.

For the study of functions H ∈ L∞(Tn) which give rise to a scaling
function of an A-MRA suppose that the infinite product

(2)
∞∏
j=1

|H((A∗)−jt)|



102 A. San Antoĺın

converges almost everywhere on Rn. We are going to look for a scaling
function φ of an A-MRA which satisfies the condition

|φ̂(t)| =
∞∏
j=1

|H((A∗)−jt)|.

Hence, according to the properties of the scaling functions of an A-MRA (see
Theorem A below), we should also suppose that |φ̂| is A∗-locally nonzero
at the origin. In order not to repeat those conditions let us introduce the
class HA of all functions H ∈ L∞(Tn) such that the infinite product (2)
converges almost everywhere on Rn and is A∗-locally nonzero at the origin.

Moreover, let us introduce the class ΠA of all measurable functions f
on Rn such that 0 ≤ f(t) ≤ 1 a.e. on Rn and the origin is a point of
A∗-approximate continuity of f if we set f(0) = 1.

We prove the following.

Theorem 1. Let H ∈ HA. Then the following conditions are equivalent :

(A) The function |H| is a low pass filter associated with a scaling func-
tion θ of an A-MRA where θ̂(t) :=

∏∞
j=1 |H((A∗)−jt)|.

(B) The only function f ∈ L1(Tn)∩ΠA invariant under the operator P
is the function f ≡ 1.

To give a complete characterization of all low pass filters associated with
scaling functions, we need the notion of a filter multiplier which was intro-
duced in [26] for the one-dimensional case.

Definition 4. We say that a measurable function m is a filter multiplier
if whenever H is a low pass filter associated with a scaling function of an
A-MRA, then mH is a low pass filter associated with a scaling function of
some A-MRA.

In the above definition we do not use the term A-filter multiplier because
as will be seen in Theorem 2, the class of filter multipliers is the same for
all linear invertible maps A : Rn → Rn such that all eigenvalues of A have
modulus greater than 1 and A(Zn) ⊂ Zn. The following result generalizes a
similar assertion for the one-dimensional case (see [26]).

Theorem 2. A measurable function m is a filter multiplier if and only
if m is a Zn-periodic function and |m(t)| = 1 a.e. on Rn.

Remark 1. According to Theorem 2, a measurable function H is a low
pass filter of an A-MRA if and only if |H| is a low pass filter of some A-MRA.
Indeed, in the proof of Theorem 2 it will be shown that if H ∈ L∞(Tn) is
such that |H| is a low pass filter associated with a scaling function θ of an
A-MRA, then H is a low pass filter associated with a scaling function ϕ of
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some A-MRA defined by ϕ̂ = µθ̂ where µ is any measurable function defined
on Rn which satisfies

|µ(t)| = 1 a.e. on Rn and mH(t) = µ(A∗t)µ(t)

where

mH(t) =
{
H(t)/|H(t)| if |H(t)| 6= 0,
1 if |H(t)| = 0.

Historically, several sufficient conditions are known such that for a given
function H, the infinite product φ̂(t) =

∏∞
j=1H(2−jt) exists a.e. on R and

φ is a scaling function of an MRA on L2(R).
A. Cohen [5] gave the first necessary and sufficient conditions for a

trigonometric polynomial H to be a low pass filter of an MRA on L2(R).
Cohen’s conditions may be viewed as geometric restrictions on H. After-
wards, Cohen’s approach was developed by E. Hernández and G. Weiss [13],
M. Papadakis, H. Sikić and G. Weiss [23] and R. F. Gundy [11]. About the
same time as Cohen’s condition appeared, W. Lawton [16] gave another suf-
ficient condition of a different nature when H is a trigonometric polynomial.
The necessity of Lawton’s condition was settled in 1990 by Cohen [6] and
Lawton [17] independently (see [8, pp. 182–193]).

For our general case when the MRA is defined on L2(Rn), n ≥ 1, and for
dilations given by a map A as described above, a generalization of Cohen’s
conditions for low pass filters associated with characteristic scaling functions
was proved by K. Gröchenig and W. R. Madych [10] and W. R. Madych
[19]. Afterwards, a generalization of Cohen’s and Lawton’s conditions was
obtained by M. Bownik [2].

The problem of when a given function H ∈ L∞(Tn) is a low pass filter
for an MRA was posed in the book by E. Hernández and G. Weiss [13].

Characterizations of low pass filters for an MRA on L2(R) are already
known: see the papers by M. Papadakis, H. Sikić and G. Weiss [23] and by
V. Dobrić, R. F. Gundy and P. Hitczenko [9]. Afterwards, R. F. Gundy [12]
addressed the same question when condition (iv) in the definition of MRA
is relaxed by assuming that {φ(x− k) : k ∈ Z} is a Riesz basis for V0.

Note that the conditions presented here follow the strategy of Lawton
and are new even in the classical case, i.e., for an MRA on L2(R) and the
dyadic dilations.

The key tool for the proof of Theorem 1 is the characterization of the
scaling functions given in [4] which we formulate in Section 2. In that sec-
tion we also give some additional well known properties of low pass filters.
In Section 3 results relating to A-approximate continuity are presented. Sec-
tion 4 is dedicated to the study of properties of the low pass filters. Finally,
the proofs of Theorems 1 and 2 are given in Sections 5 and 6 respectively.



104 A. San Antoĺın

2. Auxiliary results. The following characterization of scaling func-
tions in a multiresolution analysis was given in [4].

Theorem A. Let φ ∈ L2(Rn). Then the following conditions are equi-
valent:

(A) The function φ is a scaling function of an A-MRA.
(B) (α) The function φ̂ is A∗-locally nonzero at the origin;

(β) Φφ(t) = 1 a.e. on Tn;
(γ) There exists a Zn-periodic function H ∈ L∞(Tn) with |H(t)| ≤ 1

a.e. on Rn such that

φ̂(A∗t) = H(t)φ̂(t) a.e. on Rn.

(C) Conditions (α∗), (β) and (γ) hold, where

(α∗) If we set |φ̂(0)| = 1, the origin is a point of A∗-approximate
continuity of |φ̂|.

For low pass filters associated with a scaling function of an A-MRA the
following proposition is true (cf. [20], [21], [8], [13], [2]).

Proposition B. Let H be a low pass filter associated with a scaling
function of an A-MRA. Then

(3)
dA−1∑
i=0

|H(t + (A∗)−1pi)|2 = 1 a.e. on Rn.

The following proposition was proved in [2] (cf. [8]).

Proposition C. Let H ∈ L∞(Tn) be a function such that (3) holds.
If the infinite product

∏∞
j=1 |H((A∗)−jt)| converges almost everywhere, then

θ̂(t) :=
∏∞
j=1 |H((A∗)−jt)| belongs to L2(Rn) and ‖θ̂‖L2(Rn) ≤ 1.

In the proof of Theorem 1, we will need the following technical result
from [4]. Note that the equality (ii) in the following lemma does not appear
in the original result but it is a direct consequence of the proof of (i).

Lemma D. Let g ∈ L2(Tn), let A : Rn → Rn be a fixed linear invertible
map such that A(Zn) ⊂ Zn and let Â : Tn → Tn be the induced endomor-
phism. Then

(i)
	
Tn g(Ât) dt =

	
Tn g(t) dt.

(ii)
	
[0,1]n g(t) dt = d−1

A

	
[0,1]n

∑dA−1
i=0 g(A−1t +A−1pi) dt.

The following lemma is proved in [2] (cf. [8], [13]).

Lemma E. Let H ∈ L∞(Tn) be such that (3) holds. For every N ∈ N
let
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ΓN (t) =
N∏
j=1

|H((A∗)−jt)|χ[−1/2,1/2]n((A∗)−Nt), t ∈ Rn.

Then ∑
k∈Z
|ΓN (t + k)|2 = 1 a.e. on Rn.

To give a characterization of the filter multipliers, we will need the fol-
lowing lemma proved by Gröchenig and Madych [10] (see also [19]).

Lemma F. Let A : Rn → Rn be a linear invertible map such that
A(Zn) ⊂ Zn and all (complex) eigenvalues of A have modulus greater than 1.
Then any integrable solution of

(4) φ(x) =
∑

q∈∆A

φ(Ax− q)

is unique up to multiplication by a constant and is compactly supported with
the compact support

Q =
{

x ∈ Rn : x =
∞∑
j=1

A−jbj , bj ∈ ∆A

}
.

If φh is a compactly supported function which satisfies (4), then by the
well known Paley–Wiener–Schwartz Theorem (see [14, p. 181]) we know that
|{t ∈ Rn : φ̂h(t) = 0}|n = 0. Thus if we take ϕ̂ = φ̂h(Φφh)−1/2, where Φφh
is defined by (1), then ϕ will be a scaling function of an A-MRA (see [1,
Section 2]) and the following claim is true:

Claim 1. Let A : Rn → Rn be a linear invertible map such that A(Zn) ⊂
Zn and all (complex) eigenvalues of A have modulus greater than 1. Then
there exists a scaling function, ϕ, of an A-MRA such that the support of the
low pass filter H associated with ϕ coincides a.e. with Rn, i.e.

|{t ∈ Rn : H(t) = 0}|n = 0.

3. Some auxiliary results on A-approximate continuity. First of
all, we are going to study some properties related to the concept of a point
of A-approximate continuity which will be used in the proof of Theorem 1.

Proposition 1. Let A : Rn → Rn be a linear invertible map such that
all (complex ) eigenvalues of A have modulus greater than 1. Let f : Rn → C
be a measurable function such that for a point y ∈ Rn we have

lim
j→∞

f(A−jx + y) = f(y) a.e. on Rn.

Then y is a point of A-approximate continuity of f .
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Proof. We can assume that y = 0 and f(0) = 0. Fix ε > 0. For any
j,N ∈ N we define

F εj = {x ∈ B1 : |f(A−jx)| < ε}, EεN =
⋂
j≥N

F εj .

By Egorov’s Theorem it follows that

lim
N→∞

|EεN |n = |B1|n.

Furthermore, obviously EεN ⊂ F εN and F εN ⊂ B1. Then

1 = lim inf
N→∞

|EεN |n
|B1|n

≤ lim inf
N→∞

|F εN |n
|B1|n

= lim inf
N→∞

|{x ∈ A−NB1 : |f(x)| < ε}|n
|A−NB1|n

≤ 1.

Hence

lim
N→∞

|{x ∈ A−NB1 : |f(x)| < ε}|n
|A−NB1|n

= 1,

which means that the origin is a point of A-approximate continuity of f
when f(0) = 0.

The following counterexample shows that, in general, the converse of
Proposition 1 is not true.

Proposition 2. There exists a measurable set E ⊂ R with |E| > 0 such
that the origin belongs to E and is a point of approximate continuity of the
function χE but limj→∞ χE(2−jx) does not exist for any x ∈ R \ {0}.

Proof. For any j ∈ {0, 1, 2, . . . } and any k ∈ {0, . . . , 2j − 1}, let

Λ
(j)
k =

(
2j + k

2j
,
2j + k + 1

2j

]
.

We put

Λm = Λ
(j)
k for m = 2j + k, and E1 = [0,∞) \

∞⋃
m=1

2−mΛm.

Then
E = E1 ∪ (−E1).

We claim that limj→∞ χE(2−jx) exists for no x ∈ R \ {0}. If x ∈ (1, 2], then
there exists an increasing sequence {mν}∞ν=1 of natural numbers such that
x ∈ Λmν for all ν ∈ N. Suppose that x /∈ Λm if m 6= mν (ν ∈ N). According
to the definition of E,

χE(2−mνx) = 0 for all ν ∈ N,
χE(2−mx) = 1 if m 6= mν .

Hence limj→∞ χE(2−jx) does not exist.
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Next, we observe that for any x > 0, one can find l ∈ Z such that
2lx ∈ (1, 2]. Thus the above argument can be employed for the sequence

l +mν : ν = il, il + 1, . . .

where il is the smallest natural number such that l +mν > 0 if ν = il. The
case x < 0 follows from the case x > 0 by observing that E is a symmetric
set with respect to the origin.

On the other hand, to prove that the origin is a point of approximate
continuity of χE , it is sufficient to prove that it is a point of density for E.
Let l ∈ N. Then

|2lEc ∩ (−1, 1)| = 2|2lEc1 ∩ (0, 1)| = 2
∣∣∣2l( ∞⋃

m=1

2−mΛm
)
∩ (0, 1)

∣∣∣
= 2
∣∣∣( ∞⋃

m=1

2l−mΛm
)
∩ (0, 1)

∣∣∣ = 2
∣∣∣ ∞⋃
m=l+1

2l−mΛm
∣∣∣,

where the last equality is true because Λm ⊂ [1, 2] for m ∈ N.
If we write l+ 1 = 2j0 + k0 where j0 ∈ N and k0 ∈ {0, . . . , 2j0 − 1}, then

|2lEc1 ∩ (0, 1)| =
∣∣∣( 2j0−1⋃

k=k0

2k0−1−kΛ
(j0)
k

)
∪
( ∞⋃
j=j0+1

2j−1⋃
k=0

22j0+k0−1−2j−kΛ
(j)
k

)∣∣∣
≤

2j0−1∑
k=k0

2k0−1−k|Λ(j0)
0 |+

∞∑
j=j0+1

22j0+k0−1−2j
2j−1∑
k=0

2−k|Λ(j)
0 |

≤ |Λ(j0)
0 |+

∞∑
j=j0+1

22j0+1−1−2j |Λ(j0)
0 | ≤ 2|Λ(j0)

0 | = 2−j0+1.

Hence,
lim
l→∞
|2lEc ∩ (−1, 1)| = 0,

i.e., the origin is a point of density for E.

In spite of the above negative result, the following proposition holds.

Proposition 3. Let A : Rn → Rn be a linear invertible map such that
all (complex ) eigenvalues of A have modulus greater than 1. Let f : Rn → C
be a measurable function and y ∈ Rn a point of A-approximate continuity
of f . Then there exists an increasing sequence {jk}∞k=1 ⊂ N such that

lim
k→∞

f(A−jkx + y) = f(y) a.e. on Rn.

Proof. We can assume that y = 0 and f(0) = 0. It is easy to observe
that the sequence of functions {f(A−jx)}∞j=1 tends to zero in measure on
any ball Br. Hence applying Egorov’s Theorem for any r ∈ N, we can find



108 A. San Antoĺın

subsequences {j(r)k }k∈N ⊂ {j
(r−1)
k }k∈N of natural numbers such that

lim
k→∞

f(A−j
(r)
k x) = 0 a.e. on Br.

Using Cantor’s diagonal method of selection we obtain

lim
k→∞

f(A−j
(k)
k x) = 0 a.e. on Rn.

Proposition 4. Let A : Rn → Rn be a linear invertible map such that
all (complex ) eigenvalues of A have modulus greater than 1. Let f : Rn → C
be a measurable function that is A-locally nonzero at the origin. Then there
exists a strictly increasing sequence {jk}∞k=1 ⊂ N such that for a.e. x in Rn

there exists k0 ∈ N such that f(A−jkx) 6= 0 for k ≥ k0.

Proof. As f is A-locally nonzero at the origin, for k = 1, 2, . . . and
εk = 2−k|Bk|−1

n there exist jk ∈ N with jk > jk−1 such that

(5) |{x ∈ A−jkBk : f(x) = 0}|n < 2−k|Bk|−1
n |A−jkBk|n,

or equivalently, after a corresponding change of variable,

(6) |{x ∈ Bk : f(A−jkx) = 0}|n < 2−k.

Observe that indeed jk+1 > jk, because if

inf
0≤j≤jk

|{x ∈ A−jBk : f(x) = 0}|n
|A−jBk|n

= 0,

then the support of f contains (almost everywhere) an open neighbourhood
of the origin, so we can choose jk+1 > jk. On the other hand, if

inf
0≤j≤jk

|{x ∈ A−jBk : f(x) = 0}|n
|A−jBk|n

= C > 0,

we can take an arbitrary real number ε, 0 < ε < inf{C, 2−k−1|Bk+1|−1
n },

and then there exist jk+1 > jk satisfying (5).
We now establish that for almost every x ∈ Rn, there exist k0 ∈ N such

that if k ≥ k0,

(7) f(A−jkx) 6= 0.

Given N ∈ N, let

FN =
∞⋃
k=N

{x ∈ Bk : f(A−jkx) = 0}, E =
⋂
N≥1

FN .

Since F1 ⊃ F2 ⊃ · · · , it follows that limN→∞ |FN |n = |E|n. On the other
hand, from (6) it is clear that

|FN |n ≤
∞∑
k=N

2−k = 2−N+1,

so limN→∞ |FN |n = 0, and hence |E|n = 0.



Characterization of low pass filters 109

It remains to verify that (7) holds for all points in Rn\E. Let y ∈ Rn\E.
Then y /∈ FN0 for some N0 ∈ N. In other words,

y /∈ {x ∈ Bk : f(A−jkx) = 0}

for all k ≥ N0, and consequently f(A−jky) 6= 0 if k ≥ N0.

4. Properties of low pass filters. The following proposition holds.

Proposition 5. Let H be a low pass filter associated with a scaling
function of an A-MRA. Then the origin is a point of A∗-approximate conti-
nuity of |H| if we set |H(0)| = 1, and any point (A∗)−1pi, i = 1, . . . , dA−1,
is a point of A∗-approximate continuity of |H| if we set |H((A∗)−1pi)| = 0.

For the proof one only needs to use a refinement equation φ̂(A∗t) =
H(t)φ̂(t) a.e. and the A∗-approximate continuity of |φ̂| at the origin if we
set |φ̂(0)| = 1 together with Proposition B.

We also have the following proposition.

Proposition 6. Let H be a low pass filter associated with a scaling
function φ of an A-MRA. Then

|φ̂(t)| =
∞∏
j=1

|H((A∗)−jt)| a.e. in Rn.

Proof. Given N ∈ N, from the definition of low pass filter we have

φ̂(t) =
[ N∏
j=1

H((A∗)−jt)
]
φ̂((A∗)−Nt) a.e. in Rn.

On the other hand, according to condition (α∗) of Theorem A, the origin is
a point of A∗-approximate continuity of |φ̂| if we set |φ̂(0)| = 1. Hence, by
Proposition 3 there exists an increasing sequence {jN}∞N=1 ⊂ N such that

lim
N→∞

|φ̂((A∗)−jN t)| = 1 a.e. on Rn.

Moreover, as |φ̂(A∗t)| ≤ |φ̂(t)| a.e. in Rn, we obtain

lim
N→∞

|φ̂((A∗)−Nt)| = 1 a.e. in Rn.

Hence,

lim
N→∞

N∏
j=1

|H((A∗)−jt)| = lim
N→∞

|φ̂(t)|
|φ̂((A∗)−Nt)|

= |φ̂(t)| a.e. in Rn.

A version of the following proposition for n = 1 and for the dyadic
dilation appears in [23].
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Proposition 7. Let H ∈ L∞(Tn) be such that (3) holds and let θ̂(t) =∏∞
j=1 |H((A∗)−jt)| a.e. on Rn. Then

(i) for each N ∈ Z, θ̂((A∗)−Nt) ≤ θ̂((A∗)−N−1t) a.e. on Rn;
(ii) the limits in the following inequalities exist a.e. on Rn and

0 ≤ lim
N→∞

θ̂((A∗)Nt) ≤ θ̂(t) ≤ lim
N→∞

θ̂((A∗)−Nt) ≤ 1;

(iii) limN→∞ θ̂((A∗)−Nt) is either 0 or 1 a.e. on Rn. Moreover , the first
case occurs if and only if θ̂((A∗)−Nt) = 0 for each N ∈ Z.

Proof. (i) is an immediate consequence of the definition of θ̂ and the fact
that |H(t)| ≤ 1 a.e. on Rn.

(ii) follows from the fact that 0 ≤ θ̂(t) ≤ 1 a.e. on Rn and from the
monotonicity expressed in (i).

To show (iii) observe that by (ii), limN→∞ θ̂((A∗)−Nt) exists for all t ∈
Rn\G where G ⊂ Rn is a measurable set such that |G|n = 0. Moreover, if we
set F = {t ∈ Rn : |H((A∗)Nt)| > 1 for some N ∈ Z}, then from hypothesis,
|F |n = 0.

Given t ∈ Rn \G, it is obvious that if θ̂(A∗Nt) = 0 for all N ∈ Z, then
limN→∞ θ̂((A∗)−Nt) = 0. On the other hand, given t ∈ Rn \(G∪F ), if there
exists an N0 ∈ Z such that θ̂(A∗−N0t) 6= 0 we have

0 < θ̂((A∗)−N0t) =
∞∏
j=1

|H((A∗)−j−N0t)| =
∞∏

j=N0+1

|H((A∗)−jt)|.

Thus
N∏

j=N0+1

|H((A∗)−jt)| > 0 ∀N ≥ N0 + 1.

Hence, when N ≥ N0 + 1 we have

θ̂((A∗)−N0t) =
N∏

j=N0+1

|H((A∗)−jt)|θ̂((A∗)−Nt) > 0,

and consequently, as {
∏N
j=N0+1 |H((A∗)−jt)|}∞N=N0+1 is a nonincreasing se-

quence such that

lim
N→∞

N∏
j=N0+1

|H((A∗)−jt)| = θ̂((A∗)−N0t),

we obtain

lim
N→∞

θ̂((A∗)−Nt) = lim
N→∞

θ̂((A∗)−N0t)∏N
j=N0+1 |H((A∗)−jt)|

= 1.
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The following corollary is a consequence of Proposition 7.

Corollary 1. Let H ∈ L∞(Tn) be such that (3) holds and let θ̂(t) =∏∞
j=1 |H((A∗)−jt)| a.e. on Rn. Then either θ̂ is not A∗-locally nonzero at

the origin or the origin is a point of A∗-approximate continuity of θ̂ if we
set θ̂(0) = 1.

Proof. It is enough to prove that if θ̂ is A∗-locally nonzero at the origin
then the origin is a point of A∗-approximate continuity of θ̂ if we set θ̂(0) = 1.
According to our hypothesis, by Proposition 4 there exists a measurable set
G ⊂ Rn with |G|n = 0 and an increasing sequence {Nk}∞k=1 ⊂ N such that
for every t ∈ Rn\G there exists k0 ∈ N such that if k ≥ k0, then θ̂((A∗)−Nkt)
6= 0. Thus from condition (iii) of Proposition 7, limN→∞ |θ̂(A−Nt)| = 1 for
all t ∈ Rn \G. Hence, an application of Proposition 1 finishes the proof.

5. Proof of Theorem 1. Let us begin with the proof of the implication
(A)⇒(B). That f ≡ 1 is invariant under P is an immediate consequence of
Proposition B.

Suppose that f ∈ L1(Tn) ∩ ΠA is a fixed point of the operator P . We
will show that �

[0,1]n

f(t) dt ≥ 1.

This condition together with f ∈ ΠA will show that f ≡ 1.
Using the equality Pf = f , we obtain�

[0,1]n

f(t) dt =
�

[0,1]n

P (f)(t) dt

=
�

[0,1]n

dA−1∑
i=0

|H((A∗)−1(t + pi))|2f((A∗)−1(t + pi)) dt

= dA
�

[0,1]n

|H(t)|2f(t) dt = dA
�

[−1/2,1/2]n

|H(t)|2f(t) dt,

where the third equality follows from Lemma D(ii), and the last equality is
true because H and f are Zn-periodic functions.

Putting A∗t = v, we obtain�

[0,1]n

f(t) dt =
�

Rn
|H((A∗)−1v)|2f((A∗)−1v)χ[−1/2,1/2]n((A∗)−1v) dv

=
�

Rn
|H((A∗)−1t)|2Pf((A∗)−1t)χ[−1/2,1/2]n((A∗)−1t) dt,

since Pf = f .
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Repeating the above calculations and using the condition A∗(Zn) ⊂ Zn,
we obtain

�

[0,1]n

f(t) dt =
�

Rn

N∏
j=1

|H((A∗)−jt)|2f((A∗)−Nt)χ[−1/2,1/2]n((A∗)−Nt) dt.

Let

ΓNf(t) =
N∏
j=1

|H((A∗)−jt)|2f((A∗)−Nt)χ[−1/2,1/2]n((A∗)−Nt) for N ∈ N.

Since the origin is a point of A∗-approximate continuity of f , it is a point
of A∗-approximate continuity of χ[−1/2,1/2]nf . Hence, according to Proposi-
tion 3, there exists an increasing sequence {lN}∞N=1 ⊂ N such that

(8) lim
N→∞

ΓlN f(t) =
∞∏
j=1

|H((A∗)−jt)|2 a.e. on Rn.

By Fatou’s lemma and (8),�

[0,1]n

f(t) dt = lim
N→∞

�

Rn
ΓlN f(t) dt ≥

�

Rn
lim
N→∞

ΓlN f(t) dt

=
�

Rn

∞∏
j=1

|H((A∗)−jt)|2 dt =
�

Rn
|θ̂(t)|2 dt = 1.

To prove (B)⇒(A), first observe that we can redefine H in a set of null
measure so that (3) holds for all t ∈ Rn. Indeed, if G ⊂ Tn with |G|n = 0 is
the exceptional set where (3) does not hold, then G =

⋃dA−1
i=0 (G+(A∗)−1pi).

We set |H(t)| = 1/
√
dA for t ∈ G. By Proposition C, we have θ̂ ∈ L2(Rn).

We now show that the function Φθ defined by (1) is a fixed point for P .
We have

Φθ(t) =
∑
k∈Zn

|θ̂(t + k)|2 =
dA−1∑
i=0

∑
k∈pi+A∗Zn

|θ̂(t + k)|2

=
dA−1∑
i=0

∑
q∈Zn

|θ̂(t + pi +A∗q)|2.

Hence, from the definition of θ̂, we obtain

Φθ(t) =
dA−1∑
i=0

∑
q∈Zn

|H((A∗)−1t+(A∗)−1pi+q)|2|θ̂((A∗)−1t+(A∗)−1pi+q)|2

=
dA−1∑
i=0

|H((A∗)−1t + (A∗)−1pi)|2Φθ((A∗)−1t + (A∗)−1pi) = P (Φθ)(t)

a.e. on Rn, because H is Zn-periodic.
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If we prove that Φθ ∈ L1(Tn) ∩ ΠA, then Φθ(t) = 1 a.e. on Tn by
condition (B) of Theorem 1. Hence by Theorem A, θ is a scaling function of
an A-MRA with associated low pass filter H, and the proof of Theorem 1
will be finished.

Obviously, 0 ≤ Φθ(t) a.e. on Rn and Φθ is a Zn-periodic function.
We define, for every N ∈ N, a function ΓN : Rn → [0, 1] by

ΓN (t) =
N∏
j=1

|H((A∗)−jt)|χ[−1/2,1/2]n((A∗)−Nt), t ∈ Rn.

For any t ∈ Rn, there exists an N0 ∈ N such that t ∈ A∗N [−1/2, 1/2]n

for all N ≥ N0. The sequence of numbers {ΓN (t)}∞N=N0
is nonincreasing,

and also the sequence of functions {ΓN (t)}∞N=1 converges everywhere and
the limit coincides with the function θ̂(t) a.e. on Rn.

Hence

ess sup
t∈[−1/2,1/2]n

Φθ(t) = lim
N→∞

ess sup
t∈[−1/2,1/2]n

∑
k∈Zn

k∈[−N,N ]n

|θ̂(t + k)|2

≤ lim
N→∞

ess sup
t∈[−1/2,1/2]n

∑
k∈Zn

k∈[−N,N ]n

|ΓLN (t + k)|2

≤ lim
N→∞

ess sup
t∈[−1/2,1/2]n

∑
k∈Zn

|ΓLN (t + k)|2 = 1

by Lemma E, where LN ∈ N is such that t + k ∈ A∗LN [−1/2, 1/2]n for all
t ∈ [−1/2, 1/2]n and all k ∈ [−N,N ]n.

It remains to prove that the origin is a point of A∗-approximate continu-
ity of Φθ if we set Φθ(0) = 1. By hypothesis, θ̂ is A∗-locally nonzero at the
origin, thus according to Corollary 1, the origin is a point of A∗-approximate
continuity of θ̂ if we set θ̂(0) = 1. Hence, the inequalities θ̂(t) ≤ Φθ(t) ≤ 1
yield the required assertion.

6. Proof of Theorem 2. Let A : Rn → Rn be a linear invertible map
such that A(Zn) ⊂ Zn and all (complex) eigenvalues of A have modulus
greater than 1. Suppose that m is a Zn-periodic function and |m(t)| = 1
a.e. on Rn. We claim that there exists a measurable function µ : Rn → C
such that |µ(t)| = 1 a.e. on Rn and

(9) m(t) = µ(A∗t)µ(t).

We set F = B1 \
⋃∞
j=1(A∗)−jB1, and observe that |F |n > 0. We know that

dA is a natural number, hence dA ≥ 2 and
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∣∣∣ ∞⋃
j=1

(A∗)−jB1

∣∣∣
n
<
∞∑
j=1

d−jA |B1|n =
1

dA − 1
|B1|n ≤ |B1|n,

because any set (A∗)−jB1 contains a neighbourhood of the origin.
Next, observe that

(10) A∗jF ∩A∗iF = ∅ if j, i ∈ Z and i 6= j.

If x ∈ Rn \ {0}, as all (complex) eigenvalues of A have modulus greater
than 1, there exists N ∈Z such that x∈(A∗)−NB1 and x /∈

⋃∞
j=N+1(A∗)−jB1.

Thus x ∈ (A∗)−NB1 \
⋃∞
j=N+1(A∗)−jB1 = (A∗)−NF , so

⋃∞
j=−∞A

∗jF =
Rn \ {0}.

Now we are prepared to construct a measurable function µ such that
|µ(t)| = 1 a.e. on Rn and (9) holds. First, we define a measurable function
µ on F such that |µ(t)| = 1 if t ∈ F . From (10), if x ∈ A∗F , we put

µ(x) = m((A∗)−1x)µ((A∗)−1x),

and thus (9) is satisfied for t ∈ F . Afterwards, step by step we can define µ
on the sets FN =

⋃N
j=0A

∗jF , so that (9) is valid on FN .
In an analogous way, if t ∈ (A∗)−1F we can define

µ(t) = µ(A∗t)m(t),

and then (9) will be true for t ∈ (A∗)−1F . Then again step by step we can
define µ on the sets EN =

⋃N
j=1(A∗)−jF , so that (9) holds on EN , and thus

finish the construction.
Let H be a low pass filter associated with the scaling function φ of an

A-MRA. We claim that H̃ = mH is the low pass filter associated with the

scaling function φ̃ where ̂̃φ = µφ̂. Let us check the conditions of Theorem A
for φ̃. It is clear that (α) and (β) are true. Moreover,̂̃

φ(A∗t) = µ(A∗t)φ̂(A∗t) = µ(A∗t)H(t)φ̂(t)

= µ(A∗t)µ(t)H(t)µ(t)φ̂(t) = m(t)H(t) ̂̃φ(t) = H̃(t) ̂̃φ(t),

and thus (γ) holds for φ̃.
To prove the necessity, we suppose that m is a filter multiplier. Take

a low pass filter Hh which is almost everywhere nonzero; it exists by Claim 1.
Since mkHh is also a low pass filter for any k ∈ N, it must satisfy condi-
tion (3). Consequently, by letting k →∞, we see that |m(t)| ≤ 1 a.e. on Rn.
Otherwise, |mkHh| would be larger than 1 for some big k on a set of positive
measure, which is impossible. Likewise, |m| cannot be smaller than 1 on a
set of positive measure, since this would contradict (3) for mHh.



Characterization of low pass filters 115

Since Hh(t) 6= 0 a.e. on Rn, and H := mHh is a low pass filter of an
A-MRA, the function m(t) = H(t)/Hh(t) is well defined a.e. on Rn as a
Zn-periodic function.
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