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A double commutant theorem for purely large
C*-subalgebras of real rank zero corona algebras

by

P. W. NaG (Lafayette, LA)

Abstract. Let A be a unital separable simple nuclear C*-algebra such that M(ARK)
has real rank zero. Suppose that C is a separable simple liftable and purely large uni-
tal C*-subalgebra of M(A ® K)/(A ® K). Then the relative double commutant of C in
MARK)/(A®K) is equal to C.

1. Introduction. A basic result in the theory of von Neumann algebras
is von Neumann’s double commutant theorem, which says that if Ag is a
unital C*-subalgebra of B(H), then the double commutant of Ay is equal
to the weak operator closure of Aj [11]. (We note that in our terminology,
a unital C*-subalgebra of B(H) contains the unit of B(H). Hence, such an
algebra acts nondegenerately on H.)

In [13], [14] (see also [1]), Voiculescu proved an interesting C*-algebraic
version of von Neumann’s result for the case of the Calkin algebra.
Specifically, he showed that if Ay is a separable unital C*-subalgebra of
B(H)/K(H), then the relative double commutant of Ay in B(H)/K(H) is
equal to Ay itself.

Attempts have been made to generalize Voiculescu’s theorem to more
general corona algebras than the Calkin algebra. Generalizations to the case
of hereditary C*-subalgebras (which need not be separable) of a corona al-
gebra have been. Specifically, in [6], Kucerovsky showed that if B is a stable
separable C*-algebra with a “purely large” type property (more precisely,
for every positive element ¢ € M(B) — B, the hereditary C*-subalgebra cBc
contains a full stable hereditary C*-subalgebra of B) then for every nonuni-
tal, hereditary, o-unital C*-subalgebra C of the corona algebra M(B)/B,
the relative double commutant of C in M(B)/B is equal to the unitization
of C. In [5], Elliott and Kucerovsky showed that if B is a o-unital simple
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stable C*-algebra, and if C is a singly generated hereditary C*-subalgebra
of M(B)/B, then the relative double commutant of C in M(B)/B is equal
to the unitization of C.

In this paper, we also extensively use the theory of absorbing extensions
as in [6], [4] and [5], but we approach the problem in a different manner and
do not require the initial algebra to be a hereditary C*-subalgebra of the
corona algebra. However, we do require that the initial algebra be a purely
large C*-subalgebra.

For a C*-algebra B, let m : M(B) — M(B)/B be the natural quotient
map.

DEFINITION 1.1. Let A be a unital separable simple C*-algebra.

(1) Let D be a separable simple unital C*-subalgebra of M(A ® K).
Then D is said to be purely large if for every nonzero positive element
a € D, the hereditary C*-subalgebra a(.A ® K)a contains a full stable
hereditary C*-subalgebra of A ® K.

(2) Let C be a unital separable simple C*-algebra, and let ¢ : C —
M(A ® K) be a unital x-homomorphism (which is necessarily in-
jective). Then ¢ is said to be purely large if ¢(C) is a purely large
C*-subalgebra of M(A® K).

(3) Let C be a separable simple unital C*-subalgebra of the quotient
MASK)/(A2K). Let i : C = M(A®K)/(A® K) be the natural
inclusion map. Then C is said to be liftable and purely large if there
exists a purely large unital *-homomorphism ¢ : ¢ — M(A ® K)
such that i = w o ¢.

(We note that, in the literature, the notion of purely large is defined with-
out the condition of simplicity: see, for example, [4]. However, adding this
condition makes the definition and the paper in general less complicated.)

Our main result is the following:

THEOREM 1.2. Suppose that A is a unital separable simple nuclear C*-
algebra such that M(A®K) has real rank zero. Suppose that C is a simple se-
parable liftable and purely large unital C*-subalgebra of M(ARK)/(ARK).
Then the relative double commutant of C in M(A® K)/(A® K) is equal
to C.

As a corollary, we get the following result:

THEOREM 1.3. Let A be a unital separable simple nuclear C*-algebra
with K1(A) =0 such that either

(1) A has real rank zero, stable rank one and weak unperforation, or
(2) A is purely infinite.
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Let C be a simple separable unital C*-subalgebra of M(A®RK)/(ARK), and
i:C—> MAURK)/(ARK) the natural inclusion map. Suppose that there
exists a unital x-homomorphism ¢ : C — M(A ® K) such that i = 7o ¢.
Then the relative double commutant of C in M(A®K)/(A® K) is equal to
C itself.

In this paper, we will use the following notation: Suppose that A is a
unital separable simple C*-algebra and suppose that C is a C*-subalgebra
of M(A® K)/(A ® K). Then C’ will denote the relative commutant of C
in M(A® K)/(A® K). In other words, C' := {d € M(A® K)/(A®K) :
dc = ed, Ye € C}. Thus, C” will be the relative commutant of C’ in
MA@ K)/(A® K); ie., C" is the relative double commutant of C in
MARK)/(A®K).

2. Main theorem

LEMMA 2.1. Let A be a unital separable C*-algebra. Then there is no
sequence {an}52; of norm one elements in A Q@ K ® KC such that for all
a € M(.A@IC)@lM(,C),

laan, — anal| =0 asn — oco.

Proof. Firstly, let {e; j }1<i j<oo be a system of matrix units for . Hence,
{14 ®eij}i<ij<co is a system of matrix units for 14 ® K. Since there will
be no confusion, we will identify e; ; with 14 ® e; ; for all 4, j. For all n > 1,
let e, := > " ery. Hence, {f,, = @" e, }22, is an approximate identity for
AR K® K.

Suppose, to the contrary, that {a,}o°; is a sequence in A® KL @ K
such that ||a,| = 1 for all n > 1 and ||apa — aa,|| — 0 as n — oo for all
a € MA®K)® Ly We may assume that each a, is positive, and
that {r,}>°, is an increasing sequence of positive integers such that a, €
A® K @M, for every n.

CrAam 1. For every m > 1, there exist integers m,m’ with m,m’ > n
such that

||am’ - fmam’me > 1/37
Suppose, to the contrary, that n > 1 is such that for all m,m’ > n,
||am/ - fmam’me < 1/3
Then, for all m’ > n,
||am/ - fnam’an < 1/3

In other words, for all m’ > n,

(%) N fnam (Lypaskek) = fo) + Amaskek) — fo)am fn
+ (Amaekek) = fo)am (Imusker) — fa)ll < 1/3.
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Therefore, since each a; has norm one, we must have, for all m’ > n,

() [ frntm full = 2/3.

Let v' be a partial isometry in A ® K with range projection e, and
initial projection contained in 144gx) — €n- Let v be the partial isometry
in M(A® K) ® 1y given by v:=v" @ 1) (so v has range projection
en @ 1) and initial projection contained in 1y agkek) — en @ Iak))-
Then we deduce from (x) that for all m’ > n,

(k) [vam [l = [[v(Ipmasker) — en @ Ly )an || < 1/3.
On the other hand, by (xx), for all m’ > n,

lamoll = llam (en @ Lyl = 2/3.
From this and (**%), we have |la,v — va,/|| > 1/3 for all m’ > n. This
contradicts our assumption that {a,,} °_; asymptotically commutes with
every element of M(A® K) ® 1 (k). This ends the proof of Claim 1.

We will use Claim 1 to derive a contradiction and thus prove the nonex-
istence of a sequence {a,}7>; (of positive norm one elements of A® K ® K)
which asymptotically commutes with every element of M(A® K) ® 1)

We now construct a partial isometry b € M(A® K) @ 1px). We do
this by constructing two sequences {b;}7°, {vi}72, of partial isometries in
ALK ® L such that byy1 = by + vy for all k, and by, — b in the strict
topology in M(A®K) @ 1y = M(A®K) as k — oo. In the process, we
also construct four subsequences {l;;}7°,, {mr}32, {nr}re, and {s5}72, of
positive integers. The construction will be by induction on & (i.e., in the kth
step, we construct vy, by, Ui, my, ng and sg).

Basis step k = 1. By Claim 1, let I; and m; be positive integers such
that

Ha‘ll - fmlallfmln 2 1/3'

Choose an integer ni > mq such that the following hold:
(1) lla, = fayai, foy |l < 1/100,

(+) (2) [I(fny = fmi)aw |l = llag, (fay = f)l 2 1/7,
3) [I(fny = fma)aw, (fry = fma)ll = 1/49.

Now let s1 > ny be a positive integer and b; € A ® K be a partial isometry
such that b} has initial projection e,, — e,,, and range projection contained
in €5, — en,. Take v1 = b1 := b} ® L)

Induction step: Suppose that by, vk, lx, mg, ni and s; have been con-
structed for £ < K. We now construct the corresponding quantities for
k = K + 1. Firstly, by Claim 1, choose positive integers lx 11, mg41 with
mK+1,lK+1 Z 1+ SK such that

HalK+1 - me+1a’lK+1me+1 H > 1/37
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Next choose an integer nx 1 > my1 such that the following hold:
(1) [lat, = Frserr @i frgees || < 1/(100)5F for all k < K +1,
(++> (2) H(an+1 - me+1>alK+1H = HalK-p-l(anJrl - meH)H > 1/77

(3) ||(an+1 - me+1)alK+1 (an+1 - me+1)|| > 1/49‘

Now let sgy1 > ni41 be a positive integer and U/K_H € A® K a partial
isometry with initial projection e, , — em,,, and range projection con-
tained in es |, —enp . Let vgqg = v | ® Lyxy and bg 41 2= b +vE 11
Note that by and vi 41 are orthogonal (i.e., have orthogonal initial projec-
tions and orthogonal range projections). Hence, as bx and vg 1 are partial
isometries, bx 41 is a partial isometry. This completes the inductive con-
struction.

We have thus constructed a sequence {by}3° ;. By construction, {b}32,
converges in the strict topology to an element b € M(A ® K).

CLAIM 2. For all k> 1, ||ba;, — a;, b|| > 1/100.

To prove Claim 2, it suffices to prove that for all £ > 1 and ¥’ > k,
(V) ku/alk - alkbk/H > 1/100.

To prove (V), fix k>1and k' > k. Let ¢ be the projection in A®RK® 1 (k)
given by t := (es, — em,;,) ® 1y(x)- Then
(VV)  lbway, — abil| = ([6(brrar, — ay b )t]| = [Jorart — tay, v |

> [logag, tl| — [[tay, vr]-

By the definition of vj, and (++4)(3), we have [jvgpay, t|| > 1/49. But by
the definition of vy and (++)(1), we have ||ta; vg|]| < 1/100*. From this
and (VV), we see that

b ar, — ar brr|| > 1/49 —1/100 > 1/100.
Since k and k' > k are arbitrary, we have proven statement (V) and hence

Claim 2.

Claim 2 implies that {a,}>2; does not asymptotically commute with ev-
ery element of M(A®K), which contradicts our assumption at the beginning
of the proof. This proves Lemma 2.1. u

We note that the above lemma implies the same statement, but with
A®K replacing A K@ K and with M(A®K) replacing M(ARK) @1 x)-
However, the proof of our main result involves reducing to the case of the
Calkin algebra B(H)/K and the stronger statement of the above lemma is
required.

For a unital C*-algebra A, we let 7: M(ARK) - M(ARK)/(A®K)
denote the natural quotient map. Also, for a C*-algebra D and for subsets
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S CDand T C D, we define dist(S,T) := inf{||s — t|| : s € S, t € T'}. For
a € D, we set dist(a,T) := dist({a},T).

LEMMA 2.2. Let A be a unital simple separable C*-algebra such that
M(A®K) has real rank zero. Suppose that ¢ € M(ARK) is such that 7(c)
commutes with every element of M(A®RK)/(A®K). Then c € Cl yqagk)+
A K.

Proof. Case 1: Suppose that ¢ is positive. Since M(A ® K) has real
rank zero, it follows by [15] that there exists a sequence {py, }22; of pairwise
orthogonal projections of A ® K and a sequence {\,}32 of positive real
numbers such that the following statements hold:

(1) >°0° pn converges in the strict topology in M(A® K).
(2) >°07, Anpn converges in the strict topology in M(A® K).
(3) b:=c—3 77, A\ppy is an element of A ® K.

Suppose, to the contrary, that ¢ € C1 yyagx) +A®K. Let r > 0 be such
that dist(7(c), 7(Clrqagi))) > 7- Then dist(c, C1 g ank) +ARK) > r > 0.
Choose an € > 0 such that r > 100e. It follows, then, that for all n, there
exist integers n’,n” > n such that |\, — A\pv| > 1 — €.

So let {N,}o2; and {M,} 2, be two subsequences of positive integers
such that for all n,

n<M,<Np,<My+1 and |y, —An,|>7T—¢.

Since M(A® K) has real rank zero, A® K has real rank zero. Hence, for
all n > 1, choose nonzero projections r,, s, € A ® K such that r, < pyy, ,
sn < pn, and r, is Murray-von Neumann equivalent to ¢, in A ® K.

For each n > 1, let w, € A ® K be a partial isometry with initial
projection 7, and range projection s,. Let v, := w, + (w,)*. Let v €
M(A ® K) be the partial isometry given by v := Y >°, v, where the
sum converges in the strict topology in M(A ® K). One can check that
| (v)mw(c)—m(c)m(v)|| > r—2e > 0. Hence, 7(v) does not commute with 7(c),
which contradicts our hypothesis on c.

Case 2: Suppose now that ¢ is an arbitrary element of M(A ® K).
Then using [15] and the polar decomposition of ¢, we can represent c as
c=3 0" Apxn + 0 where {\,}22, is a sequence of positive real numbers,
{z}5 is a sequence of partial isometries with pairwise orthogonal initial
projections and pairwise orthogonal range projections, b’ € A ® K and the
sum converges in the strict topology in M (A ® K). The proof is a technical
modification of the proof of Case 1. u

Let A be a unital C*-algebra. Let {e;;}i<ij<co be a system of matrix
units for K. Since no confusion will occur, for each i,j we will use e;; to
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denote both the element in K and 1(4ex) ® €ij € M(A® K @ K). For
each c € M(A® K ® K) and any 1, j, we let ¢; ; denote e; ;ce; ;.

LEMMA 2.3. Let A be a unital separable simple C*-algebra such that
M(A® K ® K) has real rank zero. Suppose that ¢ € M(A® K ® K) is
such that m(c) commutes with m(a ® 1yx)) for all a € M(A® K). Then
Cij € ClM(A@K) ®ei,j+A®]C®€i,j f07‘1 <i4,5 < o0.

Proof. Fix i,j with 1 < 4,5 < oco. Note that ¢;; € M(A®K) ® e 5,
and also 7 is a *-homomorphism. Let d; ; := ej¢;jej1 € M(ARK) @ ey .
Hence, for all a € M(A ® K),

m((a ® e1,1)d; ;)

=m((a®ern)ericejr) = m((a® Lyr))erice)1)

= m(erila® Lyx)eejn) = mler)m(a @ Lagcy)m(e)m(e)n)

= m(er)m(e)m(a ® L)) m(ejn) = mleri)m(cla @ Lyx)))m(e)n)

= m(ericla ® Ly )ejn) = m(eviceji(a @ er)) = m(dij(a®ern)).
(Here, we are using es; to mean both an element of K and Lpmask) @ ests
for all s,t.)

Hence, by Lemma 2.2, d; j € Clyqagk) ®e11 + ARK®er1. So, ¢ij =
eindijer; € Clyapk) ®@eij + AR K ®e;; as required. m

LEMMA 2.4. Let A be a unital separable simple C*-algebra such that
M(ARK @ K) has real rank zero. Suppose that ¢ € M(AR K & K) is such
that w(c) commutes with every element of m(M(A® K) @ 1yxy), so (by
Lemma 2.3)

Cij = Qijlpmask) ®eij + fij ®eij
for all i,j, where a; j € C and f;j € AR K. Then

g:= > ijlmas) @€ € Luasi) @ B(H).
1<4,5<00
(In particular, the infinite sum, viewed as being the limit of the net of
all sums over finitely many terms, converges in the strict topology on

MARKL®K).)

Proof. Let M = ||| > 0. It suffices to prove that for all N > 1,

12 1<ij<n Qiglmask) ® el < 2M.

Let € > 0 be given. Decreasing € > 0 if necessary, we may assume that
M > 100e. Since the f; ;s are all elements of A ® K, choose a nonzero
projection p € M(A® K) such that for 1 <i,j < N,

(%) pfij and fi jp have norm strictly less than £/(2N?).
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Now let Pe M(A®K®K) be the projection given by P:=> ",y P®ei.
Since ||c|| < M, we have ||PcP|| < M. Hence, o

H Y aip®ei;+ (pfigp) @ ey < M.
1<i,j<N
By (),
H > (pfigp) @i ‘ <e/2.
1<i,j<N
Hence,
H Z ai,jp®e¢7j ‘ < M+e<2M.
1<i,j<N
From this, it follows that
D> cijlamask) @ €y ‘ <2M

1<i,j<N
as required. m
LEMMA 2.5. Let A be a unital separable simple C*-algebra such that

M(ARK®K) has real rank zero. Let ¢ € M(A® K ® K) be such that m(c)
commutes with every element of T(M(A® K) ® 1)), so by Lemma 2.3

Cij = Qijlaask) @ eij+ fij @eij

for all i, j, where o j € C and f;; € A®K. Then 3 1o, ;o fij ®€ij €
AR K QK. (In particular, the infinite sum converges in the norm topology,
as a limit over the net of finite sums.)

Proof. By Lemma 2.4, g 1= 314, i o ®i,jla(ask) ® €5 is an element
of 1yq(ask) ® B(H). Hence,

fr=c—g= > fij®ei
1<4,j<00

is an element of M(A®K ®K) and has norm less than or equal to ||c||+||g]|-
(Here, as in Lemma 2.4, we view the sums as being the limits of (nets of)
finite sums in the strict topology on M(A® K ® K).)
Moreover, since m(c) and 7(g) both commute with every element of
TMARK) @ L),
(x)  7(f) =7(c) —7(g)
commutes with every element of (M (A ® K) ® 1 (x))-

Suppose, to the contrary, that f € AQK QK. Then there exists an r > 0
such that for every positive integer N > 1,

Hf— Z Jij®eij

1<i,j<N

>
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Hence, we can choose a subsequence {N,, }2° ;| of positive integers such that

foralln > 1, N, +1 < Npyq and f,, = ZNn+1§max{i,j}§Nn+1 fii ® e
has norm greater than r. But since 7(f) commutes with every element of
T(M(A®K) @ 1)) (see (x)), for all a € M(A® K) we have

[(a @ Ipac)) fro = frula @ Lagge))ll — O

as n — 0o. This contradicts Lemma 2.1. =

LEMMA 2.6. Let A be a unital simple separable C*-algebra such that
M(AR K ®K) has real rank zero. Then

TMA®K) @ Lpx))' € T(Lmeask) @ B(H)).
Proof. This follows from Lemmas 2.4 and 2.5. »

We note that the above lemma would not be true if we replaced
T(M(A ® K) @ 1pi)) by (A ® Lykek)). A counterexample can
be found where A is a unital simple separable infinite-dimensional AF-
algebra.

THEOREM 2.7. Let A be a unital separable simple nuclear C*-algebra
such that M(A ® K) has real rank zero. Suppose that C is a simple liftable
and purely large unital C*-subalgebra of M(ARK)/(ARK). Then C" =C.

Proof. Note that AKX =2 A K® K and M(ARK) =2 MAK®K).
So we may assume that we are working in M(A® K ® K).

Let i : C - M(ARK®K)/(A® K @ K) be the natural inclusion map.
Since C is a liftable and purely large C*-subalgebra, there exists a unital
s-homomorphism ¢ : C — M(A® K ® K) such that ¢(C) is a purely large
C*-subalgebra of M(A® K ® K) and i = 7 o ¢.

Let ¢ : C — B(H) be any unital *-homomorphism (which is automati-
cally faithful since C is simple). Let ¢ : C - M(A ® K ® K) be the unital
*-homomorphism given by ¢ := 1y (4gx)®1'. Then by [2, Theorem 15.12.4]
and [4], ¢ also has the purely large property. Hence, as A is nuclear, it fol-
lows, by [4], that there is a unitary v € M(ARK®K) such that 7(u)emr(u)* =
m(u)mop(c)m(u)* = morp(c) for all ¢ € C. Therefore, w(u)Cr(u)* = wo)(C).
Hence, m(u)C'm(u)* = mot)(C) and m(u)C"7(u)* = wo1)(C)”. Thus, to show
that C” = C, it suffices to prove that o ¢(C)" = 7o ¢(C).

Since o (C) C (1 pqazk) @B(H)), we have 1(M(A®K) @ 1 x)) €
mo1(C). Hence, by Lemma 2.6,

Toth(C)" CT(M(A®K) @ 1ai) € 7(1pmask) @ B(H)).

Consequently, by Voiculescu’s theorem ([13], [14] and [1]), we have wo1)(C)”
= mo1)(C) as required. m
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THEOREM 2.8. Suppose that A is a unital simple separable nuclear C*-

algebra with K1(A) = 0 such that either

(1) A has real rank zero, stable rank one and weak unperforation, or
(2) A is purely infinite.

Suppose that C € M(A® K)/(A® K) is a simple separable unital C*-
subalgebra such that there exists a wunital x*-homomorphism ¢ : C —
MA@ K) with mo ¢ = i, where i : C - M(A®K)/(A® K) is the

natural inclusion map. Then C" = C.

Proof. By [8], [9] and [16], the real rank of M(A ® K) is zero. By [7],

every simple unital separable C*-subalgebra of M(A ® K) is purely large.
Hence, the result follows from Theorem 2.7. =

[10]
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