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Isometries between spaces of
weighted holomorphic functions

by

Christopher Boyd (Dublin) and Pilar Rueda (Valencia)

Abstract. We study isometries between spaces of weighted holomorphic functions.
We show that such isometries have a canonical form determined by a group of homeo-
morphisms of a distinguished subset of the range and domain. A number of invariants
for these isometries are determined. For specific families of weights we classify the form
isometries can take.

1. Introduction. Over the past ten years the isomorphic structure of
spaces of weighted holomorphic functions has been largely determined. The
characterisation of weighted spaces of holomorphic functions up to isomor-
phism was initiated by Lusky in a series of papers [20]–[25]. In these papers
he showed that if v is a continuous, strictly positive, radial weight on the
unit disc ∆ with v converging to 0 on the boundary of ∆ then Hv0(∆) is
isomorphic to a subspace of c0. Moreover, Lusky [21] gives an example of
a radial weight v on ∆ such that Hv0(∆) is isomorphic to a proper sub-
space of c0 rather than c0 itself. Recently Bonet and Wolf [6] have shown
that if v is a continuous, strictly positive weight on a bounded open subset
of Cn which converges to 0 on the boundary of U then Hv0(U) is almost
isometrically isomorphic to a subspace of c0.

In [7] and [8] the authors undertook a detailed study of the Banach space
geometry of spaces of weighted holomorphic functions Hv(U) and Hv0(U).
There, it was observed that the geometric structure of these spaces was de-
termined by a distinguished subset of U which we call the v-boundary of U .
In this paper we see that the v-boundary provides us with a method of de-
termining the isometries between weighted spaces of holomorphic functions.
By isometry we shall always mean a surjective linear isometry.

Some definitions are perhaps in order. Let U be a bounded open subset
of Cn. A continuous weight v on U is a bounded, strictly positive real-valued
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function on U . We will use Hv(U) to denote the space of all holomorphic
functions f on U which have the property that

‖f‖v := sup
z∈U

v(z)|f(z)| <∞

endowed with the norm ‖ · ‖v. Consider all f in Hv(U) with the property
that |f(z)|v(z) converges to 0 as z converges to the boundary of U , i.e. given
ε > 0 there is a compact subset K of U such that v(z)|f(z)| < ε for z in
U \ K. The set of all such functions is a subspace of Hv(U) denoted by
Hv0(U).

We say that the weight v on a balanced domain is radial if v(λz) = v(z)
for all λ in Γ := {λ ∈ C : |λ| = 1}, and a weight v on the unit ball of
Cn is unitary if it is invariant under all unitary matrices. In [7] we showed
that the set of extreme points of the unit ball of Hv0(U)′ is contained in
{λv(z)δz : z ∈ U, λ ∈ Γ}. The v-boundary of U is defined as the set of all
z ∈ U such that v(z)δz is an extreme point of the unit ball of Hv0(U)′. Note
that v(x)δx is an extreme point of the unit ball of Hv0(U)′ if and only if
λv(x)δx is an extreme point for every λ in Γ . We use Bv(U) to denote the
v-boundary.

It is shown in [7] that Bv(U) is radial when v is radial and unitary when v
is unitary. Furthermore, the mapping µ : U→(Hv0(U)′, σ(Hv0(U)′,Hv0(U))),
µ(z) = v(z)δz is a homeomorphism onto its range that allows us to show
that Bv(U) is a Gδ subset of U . Here σ(Hv0(U)′,Hv0(U)) denotes the weak∗

topology on Hv0(U)′. We say that a weight v on U is complete if Bv(U) = U .
A sufficient criterion for a unitary weight v on the unit ball of Cn to be com-
plete is given in [8, Proposition 18].

In the first section we give three Banach–Stone theorems for spaces of
weighted holomorphic functions on bounded subsets of Cn. We show that the
isometries fromHv0(U) ontoHw0(V ) are determined by a homeomorphism φ
of Bw(V ) onto Bv(U). If U and V are strictly convex with B̊v(U) non-empty
we shall see that φ can be extended to a homeomorphism of V onto U and
that the isometries of Hv0(U) determine the isometries of Hv(U). In [7] we
proved that Hv0(U) has trivial centraliser when v is radial. This, along with
a result of Jarosz [16], allows us to characterise the isometries of spaces of
vector-valued weighted spaces of holomorphic functions. Given a weight v we
will see that the homeomorphisms φ which determine an isometry of Hv0(U)
form a group. This group is called the isometry group of the weight. Isome-
try groups can be calculated for specific families of weights with the help of
potential theory. Using a result of Henri Cartan we characterise the isome-
tries of H(v1×v2)0(U1 × U2). We characterise those weights on the unit disc
∆ whose isometry group contains all rotations, and completely determine
the weights on the unit disc which have isometry group equal to Aut(∆).
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2. Three Banach–Stone theorems. In this section we shall charac-
terise the isometries T of Hv0(U) onto Hw0(V ).

We note that it is relatively easy to construct “different” weights which
give isometric spaces of holomorphic functions. Let U be a bounded open
subset of Cn and consider g ∈ H∞(U). Then eRe g is a bounded strictly
positive harmonic function on U . Let v be a continuous strictly positive
weight on U which converges to 0 on the boundary of U and define w(z) by
w(z) := e−Re g(z)v(z). Then w is also a continuous strictly positive weight
on U which converges to 0 on the boundary of U . Furthermore, the multi-
plication operator Meg defined by (Meg(f))(z) = f(z)eg(z) is an isometric
isomorphism of Hv0(U) onto Hw0(U). We note that if U is balanced, v is
radial and g is non-constant then w will be a non-radial weight on U with
the property that Hv0(U) is isometrically isomorphic to Hw0(U).

Given a Banach space E we use ExtBE to denote the set of extreme
points of the unit ball of E.

Theorem 1 (A first Banach–Stone theorem). Let U , V be bounded open
subsets of Cn1 and Cn2 respectively. Let v : U → R and w : V → R be contin-
uous strictly positive weights converging to 0 on their respective boundaries.
If T : Hv0(U)→ Hw0(V ) is an isometric isomorphism, then there is a hom-
eomorphism φ : Bw(V )→ Bv(U) and hφ ∈ Hw0(V ) such that

T (f)(z) = hφ(z)f ◦ φ(z) for all f ∈ Hv0(U), z ∈ Bw(V ).

Moreover ,

|hφ| =
v ◦ φ
w

on Bw(V ).

Further , if B̊w(V ) is non-empty then φ : B̊w(V )→ B̊v(U) is a biholomorphic
mapping.

Proof. For z1, z2 in Bv(U) or Bw(V ) define the relation ∼ by z1 ∼ z2 if
z1 = z2 or if z1, z2 are both in ∂U or in ∂V . Let q1 : Bv(U)→ Bv(U)/∼ and
q2 : Bw(V ) → Bw(V )/∼ be the quotient maps. Given z in Bv(U) or Bw(V )
we shall use z̃ to denote q1(z) or q2(z) depending on whether z belongs to
Bv(U) or Bw(V ).

Consider the transpose T ∗ : Hw0(V )′ → Hv0(U)′ of T . Since T is an
isometric isomorphism, T ∗ is a weak∗-to-weak∗ homeomorphism and maps
Ext(BHw0 (V )′)

σ∗
onto Ext(BHv0 (U)′)

σ∗
. Then, by [7, Lemma 10], for each

z ∈ Bw(V ) there exist α(z) ∈ Γ and φ(z) ∈ Bv(U) such that

T ∗(w(z)δz) = α(z)v(φ(z))δφ(z).

Define the map φ̃ : q2(Bw(V ))→ q1(Bv(U)) by φ̃(z̃) := φ̃(z). Let us see that
φ̃ is well defined. Suppose z̃1 = z̃2.
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If z1 = z2 then α(z1)v(φ(z1))δφ(z1) = α(z2)v(φ(z2))δφ(z2), and by [7,

Lemma 9], φ̃(z1) = φ̃(z2).
On the other hand, if z1, z2 ∈ ∂V then w(z1)δz1 = w(z2)δz2 = 0. Since

T ∗ is linear,

α(z1)v(φ(z1))δφ(z1) = α(z2)v(φ(z2))δφ(z2) = 0,

and by [7, Lemma 9], φ(z1), φ(z2) ∈ ∂U .
Let us now prove that φ̃ is a homeomorphism. To prove that φ̃ is injective

suppose that φ̃(z1) = φ̃(z2).
If φ(z1) = φ(z2) then

1
α(z1)

T ∗(w(z1)δz1) = v(φ(z1))δφ(z1) = v(φ(z2))δφ(z2) =
1

α(z2)
T ∗(w(z2)δz2).

Since T ∗ is injective, 1
α(z1)w(z1)δz1 = 1

α(z2)w(z2)δz1 , and by [7, Lemma 9] we
have z̃1 = z̃2.

If φ(z1), φ(z2) ∈ ∂U then α(z1)v(φ(z1))δφ(z1) = α(z2)v(φ(z2))δφ(z2) = 0.
Since (T ∗)−1 is linear, w(z1)δz1 = w(z2)δz2 = 0, and by [7, Lemma 9] we
have z1, z2 ∈ ∂V .

We now prove that φ̃ is surjective. Take z2 ∈ Bv(U). Then

(T ∗)−1(v(z2)δz2) = β(z2)w(ψ(z2))δψ(z2)

for some β(z2) ∈ Γ and ψ(z2) ∈ Bv(U). Therefore

α(ψ(z2))v(φ(ψ(z2)))δφ(ψ(z2)) = T ∗(w(ψ(z2))δψ(z2)) =
1

β(z2)
v(z2)δz2 .

Hence, by [7, Lemma 9], either z2 = φ(ψ(z2)), or z2 and φ(ψ(z2)) are in ∂U .

In either case, z̃2 = φ̃(ψ̃(z2)).
Since Bw(V )/∼ is metrisable, to prove that φ̃ is continuous we need only

consider a sequence (z̃n)n converging to z̃0 in q2(Bw(V )). There are two
possibilities:

Case 1: There exists a subsequence (znk)k in Bw(V ) converging to z0

in Bw(V ). In that case, since |α(znk)| = 1 and φ(znk) is in the compact set
Bv(U) for all k, we can assume without loss of generality that (α(znk))k
converges to some α0, and (φ(znk))k converges to some u0 ∈ Bv(U). Then
T ∗(w(znk)δznk ) = α(znk)v(φ(znk))δφ(znk ) converges weak∗ to T ∗(w(z0)δz0) =
α(z0)v(φ(z0))δφ(z0) and to α0v(u0)δu0 . By [7, Lemma 9] we conclude that
ũ0 = φ̃(z̃0) and so φ̃(z̃nk) converges to φ̃(z̃0).

Case 2: There exists a subsequence (znk)k in ∂V . Then z̃nk = z̃0 and
hence φ̃(z̃nk)k trivially converges to φ̃(z̃0).
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Since q2(Bw(V )) is compact, we conclude that φ̃ is a homeomorphism.
As T is an isometric isomorphism, it follows that T ∗ maps Ext(BHw0 (V )′)

onto Ext(BHv0 (U)′) and therefore φ̃(q2(Bw(V ))) = q1(Bv(U)). Moreover,

φ̃|q2(Bw(V )) is an open map. To see this, let A be open in q2(Bw(V )). Then
there exists B open in Bw(V ) such that q2(B) ∩ q2(Bw(V )) = A. Hence

φ̃(A) = φ̃(q2(B) ∩ q2(Bw(V ))) = φ̃(q2(B)) ∩ φ̃(q2(Bw(V )))

= φ̃(q2(B)) ∩ q1(Bv(U)),

where the second equality follows from the fact that φ̃ is injective.
So φ̃|q2(Bw(V )) : q2(Bw(V ))→ q1(Bv(U)) is a homeomorphism. Thus

φ = (q1|Bv(U))
−1 ◦ φ̃ ◦ q2|Bw(V )

is a homeomorphism. As T ∗(w(z)δz) = α(z)v(φ(z))δφ(z) we have

T (f)(z) = α(z)
v ◦ φ(z)
w(z)

f ◦ φ(z)

for all z ∈ Bw(V ) and all f ∈ Hv0(U). Applying this equality to the constant
map f(z) ≡ 1 for all z ∈ V , we get

α(z)
v(φ(z))
w(z)

= T (1)(z) for z ∈ Bw(V ),

and so hφ(z) := T (1)(z) belongs to Hw0(V ). Suppose B̊v(U) is non-empty.
For each linear l : Cn → C we find that l ◦ φ(z) = hφ(z)−1T (l)(z) is holo-
morphic, which implies that φ(z) is holomorphic.

The above theorem may also be deduced from [2, Theorem 4.1].
When U is balanced and v is radial, the isometries of Hv0(U) determine

the isometries of Hv(U) as the following theorem illustrates.

Theorem 2 (A second Banach–Stone theorem). Let U be a balanced
bounded open subset of Cn, and let v be a continuous strictly positive radial
weight converging to 0 on the boundary of U . If T : Hv(U) → Hv(U) is a
isometric isomorphism, then there is a homeomorphism φ : Bv(U)→ Bv(U)
and hφ ∈ Hv0(U) such that

T (f)(z) = hφ(z)f ◦ φ(z) for all f ∈ Hv(U), z ∈ Bv(U).

Moreover ,

|hφ(z)| = v ◦ φ(z)
v(z)

on Bv(U),

hφ coincides with the function hφ obtained in Theorem 1 and T maps Hv0(U)
onto Hv0(U). Further , if B̊v(U) is non-empty , then φ : B̊v(U)→ B̊(U) is an
analytic automorphism.
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Proof. We observed in the proof of [7, Proposition 14] (see also [15, Ex-
amples III.1.4]) that Hv0(U) is an M-ideal in Hv(U). Hence, by [14, Propo-
sition 4.2], every isometry of Hv(U) is the bitranspose of an isometry of
Hv0(U) and hence the transpose of an isometry of Hv0(U)′. But we have
seen that isometries T ∗ of Hv0(U)′ all have the form

T ∗(v(z)δz) = α(z)v(φ(z))δφ(z)

for z ∈ Bv(U) where φ is a homeomorphism of Bv(U). From this observation
we deduce that every isometry of Hv(U) has the form T (f)(z) = hφ(z)f ◦
φ(z) for hφ : U → C. Finally, when we take f ≡ 1, as T maps Hv0(U) onto
Hv0(U) we see that hφ ∈ Hv0(U). From the proof of Theorem 1 it follows
that φ is an automorphism of B̊v(U) when B̊v(U) is non-empty.

We will show that for certain weights v the homeomorphism φ : Bw(V )→
Bv(U) can be extended to an automorphism of V onto U .

Theorem 3. Let U and V be bounded , strictly convex open subsets
of Cn. Let v : U → R and w : V → R be continuous strictly positive weights
which converge to 0 on their respective boundaries. Suppose in addition that
B̊w(V ) is non-empty. If T : Hv0(U)→ Hw0(V ) is an isometric isomorphism,
then there is a biholomorphic mapping φ : V → U and hφ ∈ Hw0(V ) such
that

T (f)(z) = hφ(z)f ◦ φ(z) for all f ∈ Hv0(U), z ∈ V.
Moreover ,

|hφ(z)| = v ◦ φ(z)
w(z)

for all z ∈ Bv(U).

Proof. Theorem 1 ensures the existence of a biholomorphic mapping
φ : B̊w(V )→ B̊v(U) and hφ ∈ Hw0(V ) such that

(∗) T (f)(z) = hφ(z)f ◦ φ(z) for all f ∈ Hv0(U), z ∈ B̊w(V ).

We will show that φ extends to a biholomorphic mapping from V onto
U . Without loss of generality we may suppose that supz∈U v(z) ≤ 1. Let
l : Cn → C be linear. By (∗) we have

l ◦ φ(z) = hφ(z)−1T (l)(z) for all z ∈ B̊w(V ).

Since the right-hand side of this equation is defined for all z in V \ {z :
hφ(z) = 0} and all linear l : Cn → C, we see that φ has a holomorphic
extension to V \ {z : hφ(z) = 0}, which we denote by φ̃. Let k be a pos-
itive integer and l be a linear functional on Cn with supz∈U |l(z)| ≤ 1. As
(lk)k∈N ⊂ Hv0(U) and each lk has norm at most 1, we see that ‖T (lk)‖w ≤ 1.
For z ∈ B̊w(V ) we have

T (lk)(z) = hφ(z)(l ◦ φ(z))k = hφ(z)(l ◦ φ̃(z))k.
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Since {z : hφ(z) = 0} is an analytic subset of V , [27, Proposition 4.1] implies
that V \ {z : hφ(z) = 0} is connected.

The principle of analytic continuation now implies that

T (lk)(z) = hφ(z)(l ◦ φ̃(z))k for all z ∈ V \ {z : hφ(z) = 0}.

Taking kth roots and letting k → ∞ we see that φ̃(V \ {z : hφ(z) = 0}) is
bounded. By Riemann’s continuation theorem [27, Proposition 4.2], φ̃ has
an analytic extension to V , which we also denote by φ̃.

We claim that φ̃ maps V into U . First we show that φ̃(V ) ⊂ U . Suppose
this is not the case. Then we can choose a continuous linear functional, l,
on U with norm at most 1 so that |l(φ̃(z))| > 1 for some z ∈ V . Continuity
allows us to suppose in addition that hφ(z) 6= 0. We have

T (lk)(z) = hφ(z)l(φ̃(z))k,

and thus
|T (lk)(z)|w(z) = |hφ(z)|w(z)|l(φ̃(z))|k,

for all k ∈ N and all z ∈ V . Taking kth roots and letting k tend to infinity
gives a contradiction and therefore |l(φ̃(z))| ≤ 1 for all linear l with ‖l‖U ≤ 1.
Hence φ̃(V ) ⊆ U . An application of Thorp and Whitley’s strong maximum
modulus theorem [32, Theorem 3.1] implies that we must have φ̃(V ) ⊆ U .

Let ψ̃ denote the extension of φ−1 to U obtained in the same way as
above. By the principle of analytic continuation we have

ψ̃ ◦ φ̃ = IdV and φ̃ ◦ ψ̃ = IdU .

Hence φ̃ is a biholomorphic mapping of V onto U . Using the principle of
analytic continuation once again we get T (f)(z) = hφ(z)f ◦ φ̃(z) for all
f ∈ Hv0(U) and z ∈ V .

When n = 1, the principle of analytic continuation may be replaced by
the identity principle, and the condition that the v-boundary of U has non-
empty interior can be replaced by the weaker condition that the v-boundary
of U has an accumulation point in U . This holds in particular when v and w
are radial. In such cases we get

Theorem 4. Let v, w : ∆ → R be continuous strictly positive weights
which converge to zero on the boundary of ∆ and such that Bv(∆) and Bw(∆)
have an accumulation point in ∆. If T : Hv0(∆)→ Hw0(∆) is an isometric
isomorphism, then there is an automorphism φ of ∆ and hφ ∈ Hw0(∆) such
that

T (f)(z) = hφ(z)f ◦ φ(z) for all f ∈ Hv0(∆), z ∈ ∆.

In particular, we have
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Corollary 5. Let v, w : ∆ → R be continuous strictly positive ra-
dial weights which decrease to zero on the boundary of ∆. If T : Hv0(∆) →
Hw0(∆) is an isometric isomorphism, then there is an automorphism φ of
∆ and hφ ∈ Hw0(∆) such that

T (f)(z) = hφ(z)f ◦ φ(z) for all f ∈ Hv0(∆), z ∈ ∆.

Further , if T : Hv(∆) → Hv(∆) is an isometry then T is also of the above
form.

The results in this section illustrate a fundamental difference between
the isomorphic and isometric theory of spaces of weighted holomorphic func-
tions. [21, Lemma 3.2] shows that the isomorphic structure of Hv0(∆), when
v is radial, is determined by how v behaves as it approaches the boundary
of ∆. This section shows that the isometric structure is determined by how
v behaves on the entire v-boundary.

3. A vector-valued Banach–Stone theorem. In this section we
present a vector-valued Banach–Stone theorem. First we recall some def-
initions from [3] and theorems from [7].

Definition 6. Let E be a Banach space and T : E → E be a continuous
linear operator. Then T is a multiplier if every extreme point of the unit
ball of E′ is an eigenvector of T ∗. That is,

T ∗(e) = aT (e)e

for some real or complex number aT (e) and every e ∈ ExtBE′ . We let
Mult(E) denote the set of all multipliers on E.

Definition 7. Let E be a Banach space. The centraliser of E, Z(E),
is the set of all T ∈ Mult(E) for which there is S in Mult(E) with S∗(e) =
aT (e)e for all e ∈ ExtBE′ .

We say that Z(E) is trivial if Z(E) = K.Id (K = R or C depending on
whether E is a real or complex Banach space).

Let E and F be Banach spaces and u be an element of the tensor product
E ⊗ F . We define the injective norm of u as

‖u‖ε = sup
{∣∣∣ k∑

i=1

φ(xi)ψ(yi)
∣∣∣ : u =

k∑
i=1

xi ⊗ yi, φ ∈ BE′ , ψ ∈ BF ′
}
.

We shall use E ⊗ε F to denote E ⊗ F endowed with the injective norm and
E ⊗̂ε F to denote the completion of E ⊗ε F with respect to this norm.

Given Banach spaces E and F we let EεF denote the space of all linear
maps from E′ into F which are continuous for the compact-open topology
on E′ and the norm topology on F . We endow this space with the topology
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of uniform convergence over the unit ball of E′. When E or F have the
approximation property then E ⊗̂ε F = EεF .

In [7] we proved that if U is a balanced bounded open subset of Cn and
v is a radial, strictly positive, continuous weight on U which converges to 0
on the boundary of U , then Hv0(U) has trivial centraliser. This result is
“central” to the following result.

Theorem 8. Let U be a balanced bounded open subset of Cn, and let
v be a continuous strictly positive radial weight on U which converges to 0
on the boundary of U such that B̊v(U) is non-empty. Let E be a Banach
space such that E′ is rotund. If T : Hv0(U ;E)→ Hv0(U ;E) is an isometric
isomorphism, then there is an automorphism φ : B̊v(U) → B̊v(U), hφ ∈
Hv0(U) and an isometry S : E → E such that

T (f)(z) = hφ(z)S(f ◦ φ(z)) for all f ∈ Hv0(U ;E), z ∈ B̊v(U).

Moreover ,

|hφ(z)| = v ◦ φ(z)
v(z)

for all z in B̊v(U).

Proof. If T is an isometry of Hv0(U ;E) it is also an isometry of the
underlying real space. By [8, Proposition 18] (see also [4]),Hv0(U)′ and hence
Hv0(U) has the approximation property. Therefore, T is a real isometry of

Hv0(U ;E) = Hv0(U)εE = Hv0(U) ⊗̂ε E.

By [7, Proposition 24], Hv0(U) has trivial centraliser. It therefore follows
from [16, Theorem 3] that T has one of the following two forms:

(a) There is a Banach space Z so thatHv0(U) is isometrically isomorphic
to Z ⊗̂ε E and

T (z ⊗ h⊗ k) = z ⊗ k ⊗ h for all z ∈ Z, h, k ∈ E.

(b) There are (real) isometries T1 of Hv0(U) and T2 of E such that

T (f ⊗ y) = T1(f)⊗ T2(y) for all f ∈ Hv0(U), y ∈ E.

Suppose that T is of the form given in (a). Then Hv0(U) = Z ⊗̂εE. Since
E′ is rotund, every point of the unit sphere of E′ is an extreme point. Fix
z′ ∈ ExtBZ′ and consider the set {z′⊗ y : y ∈ E′, ‖y‖ = 1}. It follows from
[31, Theorem 1.1] that ExtBHv0 (U)′ = ExtBZ′ ⊗ SE′ where SE′ is the unit
sphere of E′. Hence there is V ⊂ U such that {z′ ⊗ y : y ∈ E′, ‖y‖ = 1} =
{λv(z)δz : z ∈ V, λ ∈ Γ}. The mapping from E′ onto 〈z′〉 ⊗ E′ sending y
to z′ ⊗ y is an isometric isomorphism of E′ onto the subspace 〈z′〉 ⊗ E′ of
Hv0(U)′. Since E′ is rotund, 〈z′〉 ⊗ E′ is equal to {λv(z)δz : z ∈ V, λ ∈ C}.
But {λv(z)δz : z ∈ V, λ ∈ C} is not a vector space and the first possibility
is ruled out.
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This means that T must have the form given in (b). Let us take f in
Hv0(U) and λ ∈ C. Since T is complex linear we have

T1(λf)⊗ T2(y) = T (λf ⊗ y) = λT (f ⊗ y) = λT1(f)⊗ T2(y)

for all y ∈ E. Thus T1 is complex linear. A similar argument shows that T2

is also complex linear. The result now follows from the first Banach–Stone
theorem.

When U is strictly convex it is possible to combine Theorem 3 and
Theorem 8 to extend φ to all of U .

4. The isometry group. In Section 2 we proved that any isometry
of Hv0(U) is determined by a homeomorphism of Bv(U). Let Aut(Bv(U))
denote the homeomorphisms of Bv(U).

Remark 9. Let U be a bounded open subset of Cn and v be a continuous
strictly positive weight which converges to 0 on the boundary of U . Then the
set of φ ∈ Aut(Bv(U)) for which there is an isometry of Hv0(U) of the form
Tφ(f)(z) = hφ(z)f(φ(z)) is a subgroup of Aut(Bv(U)).

Proof. Let φ, ψ belong to this set. Then

T−1
ψ ◦ Tφ(f)(z) = hψ(ψ−1(z))−1hφ(ψ−1(z))f(φ(ψ−1(z)))

and the result is proved.

Definition 10. We denote by Λv(U) the subgroup of φ in Aut(Bv(U))
for which there is an isometry of Hv0(U) of the form

Tφ(f)(z) = hφ(z)f(φ(z)),

and call it the isometry group of v.

Proposition 11. Let U and V be bounded open subsets of Cn, and v
and w be continuous strictly positive weights on U and V respectively which
converge to 0 on the boundaries of their respective domains. If Hv0(U) and
Hw0(V ) are isometrically isomorphic then Λv(U) is isomorphic to Λw(V ) as
a topological group.

Proof. By our first Banach–Stone theorem (Theorem 1) we know that
any isometry from Hv0(U) onto Hw0(V ) has the form

Aφ(f)(z) = gφ(z)f(φ(z)) for all f ∈ Hv0(U), z ∈ Bw(V ),

with some homeomorphism φ of Bw(V ) onto Bv(U) and gφ ∈ Hw0(V ). Given
ψ ∈ Λw(V ) we denote the associated isometry by Tψ. Then A−1

φ ◦Tψ ◦Aφ is
an isometry of Hv0(U) and

A−1
φ ◦ Tψ ◦Aφ(f)(z)

= gφ(φ−1(z))−1hψ(φ−1(z))gφ(ψ ◦ φ−1(z))f(φ ◦ ψ ◦ φ−1(z))
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for all f ∈ Hv0(U) and z ∈ Bv(U). Hence φ ◦ ψ ◦ φ−1 ∈ Λv(U). As the
mapping ψ 7→ φ ◦ ψ ◦ φ−1 is a group isomorphism and a homeomorphism,
the result follows.

Let Ω be an open subset of Cn and u ∈ C2(Ω) be real-valued. We say
that u is pluriharmonic if

∂2u

∂zj∂zk
= 0

on Ω for j, k = 1, . . . , n. If f : Ω → C is holomorphic then u(z) = log |f(z)|
is pluriharmonic on Ω \ f−1(0).

The condition in the following theorem should be compared with that in
[19, Theorem 1] for isometries on the weighted Bergman space Bp

F (Ω).

Theorem 12. Let v be a complete, continuous, strictly positive weight
on a bounded simply connected open set U which converges to 0 on the
boundary of U . Then a homeomorphism φ ∈ Aut(U) belongs to Λv(U) if
and only if log((v ◦ φ)/v) is pluriharmonic.

Proof. First suppose that φ ∈ Λv(U). Then there is a holomorphic func-
tion hφ : U → C such that

Tφ(f)(z) := hφ(z)f ◦ φ(z)

is an isometry of Hv0(U). Further, |hφ| = (v ◦ φ)/v on U and hence
log((v ◦ φ)/v) is pluriharmonic.

Conversely, suppose that log((v ◦ φ)/v) is pluriharmonic. It follows from
[30, Theorem 4.4.9] and the remark following it that there is a holomorphic
function g : U → C such that v ◦ φ(z)/v(z) = |eg(z)|. Define S : Hv0(U) →
Hv0(U) by

S(f)(z) = eg(z)f ◦ φ(z).

Then

‖S(f)‖v = sup
z∈U

v(z)|eg(z)f ◦ φ(z)| = sup
z∈U

v ◦ φ(z)|f ◦ φ(z)| = ‖f‖v,

and therefore φ ∈ Λv(U).

5. Determining isometries between spaces of weighted holo-
morphic functions on ∆ with complete radial weights. For a twice
differentiable function u on an open subset of C, the Laplacian 4u of u is
defined by

4u = 4
∂2u

∂z∂z̄
.

In what follows we shall use the following two facts:
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1. If k : ∆→ C is a twice differentiable radial function of r then

4k =
∂2k

∂r2
+

1
r

∂k

∂r
.

2. If k : U → C is a twice differentiable function of z and φ is holomorphic
then

4(k ◦ φ)(a) = (4k)(φ(a))|φ′(a)|2.
(See the proof of [17, Corollary 2.5.7].)

Given α > 0, β ≥ 1 we shall use vα,β to denote the weight on ∆ given
by (1− |z|β)α. In [8, Examples 10] we proved that vα,β is complete.

Theorem 13. Let α > 0 and β ≥ 1.

(a) For β 6= 2, every isometry T of H(vα,β)0(∆) and of Hvα,β (∆) has the
form T (f)(z) = λf(eiθz) for some λ ∈ Γ and some θ ∈ R.

(b) Each isometry T of H(vα,2)0(∆) or H(vα,2)(∆) has the form T (f)(z)
= λφ′(z)αf(φ(z)) for some λ ∈ Γ and some automorphism φ of ∆.

Proof. (a) Suppose that T is an isometry of H(vα,β)0(∆) or Hvα,β (∆). By
Corollary 5,

T (f)(z) = hφ(z)f(φ(z))

for all f ∈ H(vα,β)0(∆) or all f ∈ Hvα,β (∆), and all z ∈ ∆. Then Theorem 12
tells us that

4 log vα,β(φ(z)) = 4 log vα,β(z)

or that

−αβ
2|φ(z)|β−2|φ′(z)|2

(1− |φ(z)|β)2
= − αβ

2|z|β−2

(1− |z|β)2
.

As the right-hand side is 0 when z = 0, we see that φ(0) = 0 and hence φ is
a rotation.

(b) It follows from Theorem 1 that there is an automorphism φ of ∆ and
an hφ in Hv0(∆) such that

Tφ(f)(z) = hφ(z)f ◦ φ(z)

for all z in ∆. Theorem 12 tells us that φ ∈ Λvα,2(∆) if and only if

4 log vα,2(φ(z)) = 4 log vα,2(z),

which reduces to

− 4α|φ′(z)|2

(1− |φ(z)|2)2
= − 4α

(1− |z|2)2
.

Using the Schwarz–Pick theorem we see that this equation is satisfied by all
φ in Aut(∆) and thus Λvα,2(∆) = Aut(∆). The Schwarz–Pick theorem also
gives

|φ′(z)|2 =
(1− |φ(z)|2)2

(1− |z|2)2
= |hφ(z)|2/α,
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where the final equality comes from Theorem 2. From the open mapping
theorem we see that hφ(z) = λφ′(z)α for some λ ∈ Γ , and the result is
proven.

Let us now determine when spaces of the form H(vα,β)0(∆) can be iso-
metrically isomorphic.

Theorem 14. Let α, α′ > 0 and β, β′ ≥ 1. Then H(vα,β)0(∆) is isomet-
rically isomorphic to H(vα′,β′ )0

(∆) if and only if α = α′ and β = β′.

Proof. Suppose that T is an isometry fromH(vα,β)0(∆) ontoH(vα′,β′ )0
(∆).

By the first Banach–Stone theorem,

T (f)(z) = hφ(z)f(φ(z)) for all f ∈ H(vα,β)0(∆), z ∈ ∆,

where hφ ∈ H(vα′,β′ )0
(∆) and φ is an automorphism of ∆. Furthermore,

|hφ(z)| =
vα,β(φ(z))
vα′,β′(z)

.

By the argument given in Theorem 13 we see that when β, β′ 6= 2 we obtain

(∗) −αβ
2|φ(z)|β−2|φ′(z)|2

(1− |φ(z)|β)2
= −α

′(β′)2|z|β′−2

(1− |z|β′)2
.

As the right-hand side is 0 when z = 0 we see that φ(0) = 0 and hence φ is
a rotation. Let z = reiθ. Then |φ(z)| = r and putting this into (∗) gives

αβ2 rβ−2

(1− rβ)2
= α′(β′)2 rβ

′−2

(1− rβ′)2

or in other words

αβ2(rβ−2 − 2rβ+β′−2 + r2β′+β−2) = α′(β′)2(rβ
′−2 − 2rβ

′+β−2 + r2β+β′−2)

for all r ∈ (0, 1). Equating leading powers of r we see that β = β′. Now
equate coefficient of powers of r to conclude that α = α′.

Next suppose that β = 2 6= β′. As Λvα,2(∆) is Aut(∆), and Λvα′,β′ (∆) is
the group of rotations of ∆, Proposition 11 implies that H(vα,β)0(∆) is not
isometrically isomorphic to H(vα,β′ )0

(∆).
Finally, suppose that β = β′ = 2 and H(vα,2)0(∆) is isometrically iso-

morphic to Hv(α′,2)0 (∆) via an isometry Tφ. Then

4(log(1− |φ(z)|2)α) = 4(log(1− |z|2)α
′
)

for all z ∈ ∆. By using the chain rule this gives

α|φ′(z)|2

(1− |φ(z)|2)2
=

α′

(1− |z|2)2
.

Applying the Schwarz–Pick theorem we deduce that α = α′, and the proof
is complete.
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This example also shows that the converse to Proposition 11 is false.
Consider v1,β = 1 − |z|β and v1,β′ = 1 − |z|β′ where β 6= β′ and both are
different from 2. As we have just seen, Λv1,β (∆) = Λv1,β′ (∆) is the group of
all rotations about the origin. However, H(v1,β)0(∆) and H(v1,β′ )0

(∆) are not
isometrically isomorphic.

Theorem 15. For β ≥ 1, let wβ(z) denote the radial weight on the unit
disc given by wβ(z) = e−1/(1−|z|β). Then

(a) for β 6= β′ there is no isometry from H(wβ)0(∆) onto H(wβ′ )0
(∆),

(b) every isometry T from H(wβ)0(∆) onto H(wβ)0(∆) and of Hwβ (∆)
onto Hwβ (∆) has the form T (f)(z) = λf(eiθz) for some λ ∈ C with
|λ| = 1 and some θ ∈ R.

Proof. Suppose that T is an isometry from H(wβ)0(∆) onto H(wβ′ )0
(∆).

By the first Banach–Stone theorem,

T (f)(z) = hφ(z)f(φ(z)) for all f ∈ H(wβ)0(∆), z ∈ ∆,

where hφ ∈ H(wβ′ )0
(∆). Furthermore,

|hφ(z)| =
wβ(φ(z))
wβ′(z)

.

By the same argument as used in Theorem 13 we find that when β, β′ > 2,

β2 (|φ(z)|2(β−1) + |φ(z)|β−2)|φ′(z)|2

(1− |φ(z)|β)3
= (β′)2 |z|2(β′−1) + |z|β′−2

(1− |z|β′)3
.

As the right-hand side is 0 when z = 0, we see that φ(0) = 0 and hence φ(z)
is a rotation. In particular, |φ(z)| = |z|. Letting z = reiθ we get

(1− rβ)3(β′)2(r2β′ + rβ
′
) = (1− rβ′)3β2(r2β + rβ).

Equating lowest powers on both sides we see that β = β′. An analogous
argument works for β, β′ < 2 and β < 2 < β′.

Next suppose that β > β′ = 2. In this case the equation

4 logwβ(φ(z)) = 4 logwβ′(z)

gives

β2 (|φ(z)|2(β−1) + |φ(z)|β−2)|φ′(z)|2

(1− |φ(z)|β)3
= 4

|z|2 + 1
(1− |z|2)3

.

As there is z0 ∈ ∆ such that φ(z0) = 0 but the right-hand side is never 0 we
see that the above equation cannot be solved and hence there is no isometry
from H(wβ)0(∆) onto H(w2)0(∆), β 6= 2.

Finally, suppose that β = β′ = 2. In this case the equation

4 logwβ(φ(z)) = 4 logwβ′(z)
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implies that

4
(|φ(z)|2 + 1)|φ′(z)|2

(1− |φ(z)|2)3
= 4

|z|2 + 1
(1− |z|2)3

.

This can be rewritten, using the Schwarz–Pick theorem, as

1− |φ(z)|2

1− |z|2
=

1 + |φ(z)|2

1 + |z|2
.

Solving this we get |φ(z)| = |z| for all z ∈ ∆, and hence φ is a rotation.

Theorem 16. Let v(z) denote either of the radial weights on ∆ given by
v1(z) = (1 − log(1 − |z|))β, β < 0, and v2(z) = arccos(|z|). Every isometry
from Hv0(∆) onto Hv0(∆) and from Hv(∆) onto Hv(∆) is induced by a
rotation of ∆.

Proof. This follows as above from the fact that

4 log(v1(|z|)) = β

(
1

(1− |z|)2(1− log(1− |z|))

− 1
(1− |z|)2(1− log(1− |z|))2

+
1

|z|(1− |z|)(1− log(1− |z|))

)
while

4 log(v2(|z|)) =

√
1− |z|2|z|+ arccos(|z|)

|z| arccos(|z|)2
√

1− |z|2(1− |z|2)
.

Isometry groups for weights in higher dimensions are calculated in [9].

6. Weights with isometry group Aut(∆). We have seen that the
continuous strictly positive complete radial weight vα,2(z) = (1 − |z|2)α on
the unit disc ∆ has the property that its isometry group Λv(∆) is equal to
Aut(∆). In this section we examine the converse of this result.

We recall that if U is a bounded open subset of Cn and v is a continuous
strictly positive weight which converges to 0 on the boundary of U , then z
in U is said to be a v-peak point if there is f in the unit ball of Hv0(U) with
v(z)f(z) = 1 and v(w)|f(w)| < 1 for all w in U \ {z}. In [8, Theorem 3]
we prove that z is a v-peak point if and only if v(z)δz is a weak∗-exposed
point of BHv0 (U)′ . Furthermore, by [8, Theorem 3], the set of weak∗-strongly
exposed points and the set of weak∗-exposed points of BHv0 (U)′ coincide.

Theorem 17. Let v be a continuous strictly positive twice differentiable
weight on ∆ which converges to 0 on the boundary of ∆. Then Λv(∆) =
Aut(∆) if and only if v(z) = ek(z)(1 − |z|2)α for some bounded real-valued
harmonic function k on ∆ and some α > 0.

Proof. Suppose that v(z) = ek(z)(1−|z|2)α for some bounded real-valued
harmonic function k on ∆ and some α > 0. Let g be a bounded analytic
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function with real part k. For φ ∈ Aut(∆) and f ∈ Hv0(∆) define Tφ(f) by

Tφ(f)(z) = φ′(z)αeg◦φ(z)−g(z)f ◦ φ(z).

Then

‖Tφ(f)‖v = sup
z∈∆

v(z)|φ′(z)αeg◦φ(z)−g(z)f ◦ φ(z)|

= sup
z∈∆

(1− |φ(z)|2)αek◦φ(z)|f ◦ φ(z)| = ‖f‖v,

and therefore Tφ is an isometry of Hv0(∆).
Conversely, suppose that Λv(∆) = Aut(∆). We first observe that since z

in U is a v-peak point if and only if v(z)δz is a weak∗-exposed point of the
unit ball of Hv0(U)′, the set of v-peak points is non-empty. Therefore we can
find z0 ∈ ∆ and f ∈ Hv0(∆) so that v(z0)f(z0) = 1 and v(z)|f(z)| < 1 for
all z ∈ ∆\{z0}. Given w0 ∈ ∆ we can find an automorphism φ of ∆ so that
w0 = φ(z0). Let g(z) = λhφ−1(z)f ◦ φ−1(z) where λ is a complex number of
modulus 1 chosen so that g(w0) is real. Then

v(w0)g(w0) = v(w0)
v(φ−1(w0))
v(w0)

f ◦ φ−1(w0) = v(z0)f(z0) = 1

and

v(w)|g(w)| = v(w)
v(φ−1(w))
v(w)

|f ◦ φ−1(w)| = v(z)|f(z)| < 1

for w ∈ ∆ \ {w0}. Therefore each point of ∆ is a v-peak point and so v is
complete.

We now observe that for any φ ∈ Aut(∆) and z ∈ ∆ we have

4(log ◦ v ◦ φ)(z) = 4(log ◦ v)(z).

From the “chain rule” for Laplacians we get
4(log ◦ v)(φ(z))
4(log ◦ v)(z)

=
1

|φ′(z)|2

for all φ ∈ Aut(∆). But taking the classical weight v1,2(z) = 1 − |z|2, we
also find that

4(log ◦ v1,2)(φ(z))
4(log ◦ v1,2)(z)

=
1

|φ′(z)|2

for all φ ∈ Aut(∆) and z ∈ ∆. Hence

4(log ◦ v)(φ(z))
4(log ◦ v1,2)(φ(z))

=
4(log ◦ v)(z)
4(log ◦ v1,2)(z)

for all φ ∈ Aut(∆) and z ∈ ∆. Since Aut(∆) acts transitively on ∆ we get

4(log ◦ v)(z)
4(log ◦ v1,2)(z)

= α
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for some α ∈ R and all z ∈ ∆. As log ◦ v1,2 is superharmonic and v tends
to 0 as z tends to the boundary of ∆, it follows that (1/α)log ◦ v is also
superharmonic. Applying Weyl’s lemma ([28, Lemma 3.7]) we deduce that
there is a harmonic function k : ∆→ R so that

log v(z) = log(v1,2(z)α) + k(z)

for all z in ∆. Hence
v(z) = ek(z)(1− |z|2)α

for all z ∈ ∆, some bounded real-valued harmonic function k on ∆ and some
α ∈ R. The boundary condition on v implies that α > 0.

Corollary 18. Let v be a continuous strictly positive twice differen-
tiable radial weight on ∆ which converges to 0 on the boundary of ∆. If
Λv(∆) = Aut(∆) then v(z) = λ(1 − |z|2)α for some λ ∈ R+ and some
α > 0.

Proof. The result follows from Theorem 17 and the fact that the only
radial harmonic functions are the constant functions.

7. The isometry cocycle. We note that given φ ∈ Λv(U) the function
hφ with the property that there is an isometry of Hv0(U) of the form

Tφ(f)(z) = hφ(z)f(φ(z))

is not unique. Indeed, λhφ will also give an isometry of Hv0(U) for any
λ ∈ Γ . However, since

|hφ(z)| = v ◦ φ(z)
v(z)

,

|hφ(z)| is uniquely determined by φ.
Given groups G1 and G2 with identities e1 and e2 respectively and an

action of G1 on a set S, a cocycle π from G1 × S to G2 is a function
π : G1 × S → G2 such that

(a) π(e1, s) = e2 for all s in S,
(b) π(gh, s) = π(g, hs)π(h, s) for all g, h in G1 and all s in S.

Cocycles π1 : G1×S → G2 and π2 : G1×S → G2 are said to be cohomologous
if there is a : S → G2 so that

π2(g, s) = a(s)π1(g, s)a(gs)−1 for all g ∈ G1, s ∈ S.

Proposition 19. Let U be a bounded open subset of Cn and v be a
continuous strictly positive weight which converges to 0 on the boundary
of U . The mapping πv : Λv(U)× Bv(U)→ (R+,×), πv(φ, z) = |hφ(z)|, is a
cocycle.
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Proof. Let φ, ψ belong to Λv(U). By Theorem 1, Tφ ◦ Tψ = Tη for some
η in Λv(U). For all f ∈ Hv0(U) and all z ∈ Bv(U) we have

(∗) hψ(z)hφ(ψ(z))f(φ ◦ ψ(z)) = hη(z)f(η(z)).

Taking f ≡ 1 we get

(∗∗) hψ(z)hφ(ψ(z)) = hη(z).

Now taking f(z) = zj for j = 1, . . . , n, using (∗) and (∗∗), we get

η = φ ◦ ψ.
Putting this into (∗∗) we obtain

|hφ◦ψ(z)| = |hψ(z)| |hφ(ψ(z))|
or equivalently

πv(φ ◦ ψ, z) = πv(ψ, z)πv(φ, ψ(z)).

Definition 20. We shall call πv the isometry cocycle of v.

Example 21.

(a) For vα,β(z) = (1−|z|β)α, α > 0, β ≥ 1, β 6= 2 and w(z) = e−1/(1−|z|β)

we have seen that Λv(∆) is the group of all rotations about the origin
and that πv(φ, z) = 1 for all φ ∈ Λv(U) and all z ∈ ∆.

(b) We have seen that Λvα,2(∆) = Aut(∆) and πvα,2(φ, z) = |φ′(z)|α.

Proposition 22. Let U and V be bounded open subsets of Cn, and v
and w be continuous strictly positive weights on U and V respectively which
converge to 0 on their respective boundaries. If Aφ is an isometric isomor-
phism from Hv0(U) onto Hw0(V ), Aφ(f)(z) = gφ(z)f(φ(z)), then the cocy-
cles πv(ψ, z) and πw(φ−1◦ψ◦φ, φ−1(z)) on Λv(U)×Bv(U) are cohomologous.

Proof. Let ψ ∈ Λv(U). Then Aφ ◦ Tψ ◦A−1
φ (f) is an isometry of Hw0(V )

and it follows as in the proof of Proposition 11 that

Aφ ◦ Tψ ◦A−1
φ (f)(w) = gφ(w)hψ(φ(w))gφ−1(ψ ◦ φ(w))f(φ−1 ◦ ψ ◦ φ(w))

for all f ∈ Hw0(V ) and w ∈ Bw(V ). Since the cocycle of Aφ ◦ Tψ ◦ A−1
φ is

πw(φ−1 ◦ ψ ◦ φ,w) we see that

πw(φ−1 ◦ ψ ◦ φ, φ−1(z)) = gφ(φ−1(z))πv(ψ, z)gφ(φ−1 ◦ ψ(z))−1.

Thus the cocycles are cohomologous.

The converse of Proposition 22 is false. To see this, let β≥1 and α, α′>0,
α 6= α′. Consider the weights vα,β and vα′,β; we claim that πvα,β and πvα′,β are
cohomologous. Indeed, when β 6= 2 we notice that πvα,β (φ, z) = πvα′,β (φ, z)
≡ 1 and hence are clearly cohomologous. When β = 2 we have

πvα,2(φ, z) =
(1− |φ(z)|2)α

(1− |z|2)α
and πvα′,2(φ, z) =

(1− |φ(z)|2)α
′

(1− |z|2)α′
.
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Taking a(z) = (1−|z|2)α
′−α gives us a cohomology between πvα,2 and πvα′,2 .

We summarise our invariants in the following table:

Isometry invariants

Invariant Symbol Tolerance

v-boundary Bv(U) homeomorphism

interior of v-boundary B̊v(U) conformality

isometry group Λv(U) topological isomorphism

isometry cocycle πv cohomology

8. Weights whose isometry groups contain all rotations. Let U
be an open subset of Cn and v be a continuous strictly positive weight
which converges to 0 on the boundary of U . We define w : U → R by
w(z) = 1/v(z). The closed unit ball of Hv0(U) is {f ∈ Hv0(U) : |f(z)| ≤
w(z) for all z ∈ U} whereas the closed unit ball of Hv(U) is {f ∈ Hv(U) :
|f(z)| ≤ w(z) for all z ∈ U}. We define w̃0 : U → R by

w̃0(z) = sup{|f(z)| : f ∈ BHv0 (U)}
and w̃ : U → R by

w̃(z) = sup{|f(z)| : f ∈ BHv(U)}.
Let ṽ0(z) = 1/w̃0(z) and ṽ(z) = 1/w̃(z). Then ṽ0 and ṽ are continuous
strictly positive weights which satisfy 0 < v ≤ ṽ ≤ ṽ0. Moreover, when
U = ∆ it follows from [5, Proposition 1.1] that ṽ also converges to 0 on the
boundary of ∆. The spaces Hv(U) and Hev(U) are isometrically isomorphic,
as are Hv0(U) and Hev0(U). We note that ṽ and ṽ0 are radial whenever U
is balanced and v is radial. Furthermore, Hadamard’s three circles theorem
implies that log w̃0 and log w̃ are convex functions of log |z|. When v is a
continuous decreasing radial weight on the unit disc, [28, Theorem 2.6.6]
tells us that log w̃0 and log w̃ are subharmonic.

Given a balanced domain U and θ in R we define Rθ : U → U by Rθ(z) =
eiθz.

Theorem 23. Let v : ∆ → R be a continuous strictly positive weight
which converges to 0 on the boundary of ∆ and such that Bv(∆) has an
accumulation point in ∆. For θ ∈ R the following are equivalent :

(a) 4 log ṽ0 ◦Rθ = 4 log ṽ0,
(b) Rθ ∈ Λv(∆),
(c) Rθ ∈ Λev0(∆).

Proof. Since Hv0(∆) is isometrically isomorphic to Hev0(∆) we see that
(b) and (c) are equivalent. Suppose that (b) holds. It follows from Theorem 1
that there is hθ ∈ Hv0(∆) such that there is an isometry, Tθ, of Hv0(∆) of
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the form

Tθ(f)(z) = hθ(z)f ◦Rθ(z) for all f ∈ Hv0(∆), z ∈ ∆.

For z ∈ ∆ we have

〈f, T ∗θ δz〉 = 〈Tθf, δz〉 = 〈hθf ◦Rθ, δz〉 = 〈f, hθ(z)δRθ(z)〉
for all f ∈ Hv0(∆). Since T ∗θ is an isometry we notice that

1/ṽ0(z) = ‖δz‖ = |hθ(z)| ‖δRθ(z)‖ = |hθ(z)| · 1/ṽ0(Rθ(z))

for all z ∈ ∆. Thus we see that

|hθ(z)| =
ṽ0(Rθ(z))
ṽ0(z)

for all z ∈ ∆.

Applying the Laplacian operator to the superharmonic functions log ṽ0 ◦Rθ
and log ṽ0 we get 4 log ṽ0 ◦Rθ = 4 log ṽ0.

Now suppose that (a) is true. Since log ṽ0 is superharmonic we can ap-
ply Weyl’s lemma ([28, Lemma 3.7]) to conclude that there is a harmonic
function kθ : ∆→ C so that

log ṽ0(Rθ(z)) = log ṽ0(z) + kθ(z) for all z ∈ ∆.

Then ṽ0(Rθ(z)) = ekθ(z)ṽ0(z). Let gθ : ∆ → C be a holomorphic function
such that kθ = Re gθ. Define Tθ : Hv0(∆)→ Hv0(∆) by

Tθ(f)(z) = egθ(z)f ◦Rθ(z) for z ∈ ∆.

Then

‖Tθ(f)‖v = sup
z∈∆

v(z)|egθ(z)f ◦Rθ(z)| = sup
z∈∆

ṽ0(z)ekθ(z)|f ◦Rθ(z)|

= sup
z∈∆

ṽ0 ◦Rθ(z)|f ◦Rθ(z)| = ‖f‖v,

proving that Tθ is an isometry of Hv0(∆) onto Hv0(∆) and therefore Rθ ∈
Λv(∆).

Corollary 24. Let v : ∆ → R be a continuous strictly positive weight
which converges to 0 on the boundary of ∆ and such that Bv(∆) has an
accumulation point in ∆. Then {Rθ : θ ∈ [0, 2π]} ⊂ Λv(∆) if and only if
4log ◦ ṽ0 is radial.

In practice, however, it is difficult to calculate ṽ0 when given an arbitrary
weight v. We therefore state the following corollary whose proof is based on
Theorem 23.

Corollary 25. Let v be a continuous strictly positive weight on ∆
which converges to 0 on the boundary of ∆. If Rθ ∈ Λv(∆) then 4 log v(eiθz)
= 4 log v(z) for all z ∈ Bv(∆). Moreover , if v is complete then the converse
holds. In particular , when v is complete, {Rθ : θ ∈ [0, 2π]} ⊆ Λv(∆) if and
only if 4log ◦ v is radial.
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We note the following lemma which is proved in an analogous way to
part of Theorem 23.

Lemma 26. Let v, w : ∆ → R be continuous strictly positive weights
which converge to 0 on the boundary of ∆ and such that Bv(∆) and Bw(∆)
have each an accumulation point in ∆. If T (f)(z) = hφ(z)f(φ(z)) defines
an isometric isomorphism between Hv0(∆) and Hw0(∆) then

|hφ(z)| = w̃0(φ(z))
ṽ0(z)

for all z ∈ ∆.

9. Determining isometries between spaces of weighted holomor-
phic functions on ∆ with incomplete or non-radial weights. Let us
determine the isometries of a space of weighted holomorphic functions where
the weight is incomplete.

Proposition 27. Let x0 ∈ (0, 1) and suppose that w : {z : |z| ∈ [x0, 1)}
→ R is a continuous strictly positive radial weight which converges to 0
as |z| tends to 1. Suppose that w(x) is twice differentiable on [x0, 1) with
w′(x)2 − w(x)w′′(x) > 0 for x ∈ [x0, 1) and w′(x0) < 0. Define v : ∆→ R+

by

v(z) =
{
w(x0) if |z| < x0,
w(|z|) if |z| ≥ x0.

Then every isometry from Hv0(∆) onto Hv0(∆) is, modulo multiplication by
λ ∈ Γ , composition with a rotation of ∆.

Proof. It is shown in [8, Example 11] that Bv(∆) = {z : |z| ∈ [x0, 1)}. By
the proof of the first Banach–Stone theorem we know that every isometry
T of Hv0(∆) has the form

T (f)(z) = hφ(z)f(φ(z)) for all f ∈ Hv0(∆), z ∈ Bv(∆),

where φ is a homeomorphism of Bv(∆) and hφ ∈ Hv0(∆). We observe that
φ must map B̊v(∆) onto B̊v(∆) and Bv(∆) \ B̊v(∆) onto Bv(∆) \ B̊v(∆).
Taking f(z) = z and restricting f to B̊v(∆) we see that φ is a biholomor-
phic mapping of B̊v(∆) onto itself. Since B̊v(∆) = {z : x0 < |z| < 1}, [1,
Proposition 1.1.32] implies that φ|B̊v(∆) is either z 7→ eiθz or z 7→ x0e

iθz−1.
However, since φ|B̊v(∆) extends continuously to {z : x0 ≤ |z| < 1} and φ

maps Bv(∆) \ B̊v(∆) onto Bv(∆) \ B̊v(∆), the second possibility is ruled
out and φ is a rotation. It now follows from Theorem 3 that T is, modulo
multiplication by λ ∈ Γ , composition with a rotation of ∆.

Let us construct a weight with a finite isometry group.

Example 28. Let v(z) := (1 − |z|2)(1 − xy) = v1,2(z)(1 − xy), z ∈ ∆.
Then Λv(∆) = {R0, Rπ}.
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Proof. Let us first see that the v-boundary contains the diagonal {x −
ix : x ∈ (0, 1)}. For 0 < r < 1 let Γr denote the circle with centre 0
and radius r. By the proof of [8, Proposition 11], given any function, f , of
the form f(z) = eαe

5iπ/4z, α > 0, v1,2(z)|f(z)| attains a unique maximum
over Γr at the intersection of Γr and the diagonal {x − ix : x ∈ (0, 1)}.
The function 1 − xy also attains its maximum over Γr at the intersection
Γr and the diagonal {x − ix : x ∈ (−1, 1)}. Hence (1 − xy)v1,2(z)|f(z)|
has a unique maximum over Γr at the intersection of Γr and the diagonal
{x− ix : x ∈ (0, 1)}. The restriction of the function (1− xy)v1,2(z)|f(z)| to
the diagonal {x − ix : x ∈ (0, 1)} takes the form (1 − x2 − 2x4)|f(x − ix)|.
Consider x0− ix0 with x0 ∈ (0, 1). An elementary calculation shows that we
can choose α so that (1 − x2 − 2x4)|f(z)| attains a unique maximum over
{x − ix : x ∈ (0, 1)}, and hence over ∆, at x0 − ix0. Thus each point of
{x− ix : x ∈ (0, 1)} is a v-peak point and hence belongs to the v-boundary.

Let φ ∈ Λv(∆). Using Theorem 4 we see that each φ ∈ Λv(∆) is an
automorphism of ∆. If we operate in the same way as in previous examples,
we get

4(log ◦ v)(z) = 4(log v ◦ φ(z)).

Since

4(log ◦ v)(z) = 4(log ◦ v1,2)(z) +4 log(1− xy)

= − 4
(1− |z|2)2

− |z|2

(1− xy)2

we deduce that log ◦ v is superharmonic. We have

4(log v(φ(z))) = 4(log ◦ v)(φ(z))|φ′(z)|2,

and letting u1(x, y) and u2(x, y) denote the real and imaginary part of φ
respectively, we get

− 4
(1− |z|2)2

− |z|2

(1− xy)2
=
(
− 4

(1− |φ(z)|2)2

− |φ(z)|2

(1− u1(x, y)u2(x, y))2

)
|φ′(z)|2

on Bv(∆). Letting z = 0 and using the fact that |φ′(0)| = 1− |φ(0)|2 by the
Schwarz–Pick theorem, we get

4 = 4 +
|φ(0)|2(1− |φ(0)|2)2

(1− u1(0, 0)u2(0, 0))2

and thus φ(0) = 0. Therefore φ is a rotation.
First observe that {R0, Rπ} ⊂ Λv(∆). We observe that the mapping

Hv0(∆) → Hv0(∆), f 7→ f , is an isometry. So R0 ∈ Λv(∆). Next consider
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the mapping Tπ : Hv0(∆)→ Hv0(∆), f 7→ f ◦Rπ. We have

‖Tπf‖v = ‖f ◦Rπ‖v = sup
z∈∆

v(z)|f ◦Rπ(z)| = sup
z∈∆

(1− xy)(1− |z|2)|f ◦Rπ(z)|

= sup
z∈∆

(1−Rπ(x)Rπ(y))(1− |Rπ(z)|2)|f ◦Rπ(z)| = ‖f‖v.

Therefore Rπ is also in Λv(∆).
By Corollary 25, if Rθ ∈ Λv(∆) then 4 log v(eiθz) = 4 log v(z) for all

z ∈ Bv(∆). Since

4 log v(eiθz) = 4 log v1,2(eiθz)− |z|2

(1− (x cos θ − y sin θ)(x sin θ + y cos θ))2

and 4 log v1,2(z) is radial, we deduce that if Rθ ∈ Λv(∆) then

xy = (x cos θ − y sin θ)(x sin θ + y cos θ)

= x2 sin θ cos θ + xy(cos2 θ − sin2 θ)− y2 sin θ cos θ

=
x2 − y2

2
sin(2θ) + xy cos(2θ)

for all x+ iy ∈ Bv(∆). Since the diagonal {x− ix : x ∈ (0, 1)} is contained
in Bv(∆) we get cos(2θ) = 1. This means that θ = kπ, k ∈ Z.

Example 29. Define v : (−1, 1)×(−1, 1)→ R by v(z) = (1−x4)(1−y4).
Then Λv((−1, 1)× (−1, 1)) = {Id, Rπ/2, Rπ, R3π/2}.

Proof. By [8, Proposition 12] the weight v is complete. By our first
Banach–Stone theorem (Theorem 1) every isometry T from Hv0((−1, 1) ×
(−1, 1)) onto Hv0((−1, 1)× (−1, 1)) has the form

T (f)(z) = hφ(z)f(φ(z))

for some automorphism φ of (−1, 1)×(−1, 1) and hφ ∈ Hv0((−1, 1)×(−1, 1)).
Furthermore,

|hφ(z)| = v(φ(z))
v(z)

.

Proceeding as before we get

4(log v)(φ(z))|φ′(z)|2 = 4(log v)(z).

Since

−4(log(1− x4)(1− y4)) =
12x2

1− x4
+

16x6

(1− x4)2
+

12y2

1− y4
+

16y6

(1− y4)2
,
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writing φ(z) as φ(z) = u1(x, y) + iu2(x, y) we find that

(1)
((

∂u1

∂x

)2

+
(
∂u2

∂x

)2)( 12u1(x, y)2

1− u1(x, y)4
+

16u1(x, y)6

(1− u1(x, y)4)2

+
12u2(x, y)2

1− u2(x, y)4
+

16u2(x, y)6

(1− u2(x, y)4)2

)
=

12x2

1− x4
+

16x6

(1− x4)2
+

12y2

1− y4
+

16y6

(1− y4)2
.

Since |φ′(z)| 6= 0, setting x = 0, y = 0 we see that u1(0, 0) = u2(0, 0) = 0.
That is, φ(0) = 0. Applying [12, p. 17] we obtain |φ′(0)| = 1.

Expanding u1(x, y) and u2(x, y) as a Taylor series in x and y about the
origin, using the Cauchy–Riemann equations and the fact that u1 and u2

are harmonic we see that

u1(x, y) = ax+ by + c(x2 − y2)− 2dxy +O(3),

u2(x, y) = −bx+ ay + d(x2 − y2) + 2cxy +O(3).

We claim that either a or b is 0. Suppose that this is not true. Observe
that x3 and y3 on the left-hand side of (1) can only occur when (∂u1/∂x)2

and (∂u1/∂y)2 are multiplied by 12u1(x, y)2 and 12u2(x, y)2. Equating pow-
ers of x3 and y3 on both sides we get

(2) ac− bd = 0, −ad− bc = 0.

Considering these as linear equations in c in d, since −a2−b2 6= 0, we deduce
that c and d are 0. This gives

u1(x, y) = ax+ by + ex3 + 3fx2y − 3exy2 − fy3 +O(4),

u2(x, y) = −bx+ ay − fx3 + 3ex2y + 3fxy2 − ey3 +O(4).

Equating coefficients of x4 (or y4) and x3y (or xy3) in (1) as above we see
that

(3) ae+ bf = 0, af − be = 0.

As before, this shows that both e and f are 0.
It follows that the terms which involve x6 and y6 on the left-hand side of

(1) can only arise from u1(x, y)6 and u2(x, y)6. But comparing coefficients
of x6 and y6 we get a6 + b6 = 1. Since a2 + b2 = 1 and a and b are both
non-zero, this is impossible. Hence either a or b is 0.

Suppose that b = 0. Then a = ±1. We claim that u1(x, y) = ±x and
u2(x, y) = ±y. (If a = 0, a similar argument will show that u1(x, y) = ±y
and u2(x, y) = ∓x.) Suppose that this is not true. Suppose u1(x, y) or
u2(x, y) contains terms of the form axk for k ≥ 2. Let k be the smallest
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integer with this property. Putting this into (1) we obtain

12x2
∞∑
n=0

x4n + 16x6
∞∑
n=1

nx4(n−1) + 12y2
∞∑
n=0

y4n

+ 16y6
∞∑
n=1

ny4(n−1) + a4x4k +O(6k)

= 12x2
∞∑
n=0

x4n + 16x6
∞∑
n=1

nx4(n−1) + 12y2
∞∑
n=0

y4n + 16y6
∞∑
n=1

ny4(n−1).

So u1(x, y) or u2(x, y) cannot contain terms of this form axk. An analo-
gous argument shows that u1(x, y) or u2(x, y) cannot contain a term of the
form ayk.

Finally, suppose that u1(x, y) contains a term of the form axnym for
n,m > 0. Let m be the smallest positive integer with this property. Since
u1(x, y) and u2(x, y) satisfy the Cauchy–Riemann equations it follows that
u2(x, y) contains a term of the form bxn+1ym−1. If m−1 = 0 this would con-
tradict the fact that u2(x, y) does not contain a term of the form bxk for any
k > 1. Hence m ≥ 2. Then ∂u2/∂y contains a term of the form bxn+1ym−2,
and therefore by the Cauchy–Riemann equations again, u1(x, y) contains a
term of the form cxn+2ym−2. If m = 2 this contradicts the previous para-
graph, while if m > 2 this contradicts our choice of m. Hence we have four
possibilities:

u1(x, y) = x, u2(x, y) = y,

u1(x, y) = − x, u2(x, y) = −y,
u1(x, y) = y, u2(x, y) = −x,
u1(x, y) = − y, u2(x, y) = x.

These give the identity and the rotations by π, π/2 and 3π/2 respectively.

Corollary 30. There is a weight w on the open unit disc ∆ with
Λw(∆) = {Id, Rπ/2, Rπ, R3π/2}.

Proof. By the Riemann mapping theorem, ∆ and (−1, 1) × (−1, 1) are
conformally equivalent. In fact, since Aut(∆) acts transitively on ∆, we can
assume that there is a conformal mapping φ : ∆ → (−1, 1) × (−1, 1) such
that φ(0) = 0. If we set w(z) = (1− (Reφ(z))4)(1− (Imφ(z))4), Example 29
gives us a weight w with four elements. Since φ(0) = 0 each of these elements
is a rotation and hence Λw(∆) = {Id, Rπ/2, Rπ, R3π/2}.

10. Isometries of weighted spaces of holomorphic functions on
polydisc domains. Let us now consider holomorphic functions on bal-
anced domains of the form U × V with radial Cartesian weights, that is,
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weights of the form v ×w where v is a radial weight on U and w is a radial
weight on V which converge to 0 on their respective boundaries. We have
previously seen in [8, Proposition 20] that Bv×w(U × V ) = Bv(U)×Bw(V ).
We shall use S2 to denote the permutation group of order 2.

Theorem 31. Let U and V be balanced bounded open subsets of Cn

and Cm respectively , and let v and w be continuous strictly positive radial
weights on U and V respectively which converge to zero on their respective
boundaries. Assume that both Bv(U) and Bw(V ) have non-empty interiors
and that U (resp. V ) contains no positive-dimensional analytic set in an
open subset of Cn (resp. Cm).

(a) If Hv0(U) is not isometrically isomorphic to Hw0(V ) then every
isometry T of the space H(v×w)0(U × V ) has the form

T (f)(z1, z2) = hφ(z1)hψ(z2)f(φ(z1), ψ(z2))

for all (z1, z2) ∈ B̊v×w(U × V ), where φ ∈ Λv(U), ψ ∈ Λw(V ), hφ ∈
Hv0(U) and hψ ∈ Hw0(V ).

(b) If Hv0(U) is isometrically isomorphic to Hw0(V ) then every isometry
T of the space H(v×w)0(U× V ) has either the form

T (f)(z1, z2) = hφ(z1)hψ(z2)f(φ(z1), ψ(z2))

for all (z1, z2) ∈ B̊v×w(U × V ), where φ ∈ Λv(U), ψ ∈ Λw(V ), hφ ∈
Hv0(U) and hψ ∈ Hw0(V ), or the form

T (f)(z1, z2) = hφ(η(z2))hψ(η−1(z1))f(φ(η(z2)), ψ(η−1(z1)))

for all (z1, z2) ∈ B̊v×w(U × V ), for some biholomorphic mapping
η : B̊w(V ) → B̊v(U), where φ ∈ Λv(U), ψ ∈ Λw(V ), hφ ∈ Hv0(U)
and hψ ∈ Hw0(V ).

Proof. By the first Banach–Stone theorem (Theorem 1) we deduce that
every isometry T of H(v×w)0(U × V ) has the form

T (f)(z1, z2) = hφ(z1, z2)f(φ(z1, z2))

where φ is an automorphism of B̊v×w(U × V ) = B̊v(U) × B̊w(V ) and hφ ∈
H(v×w)0(U × V ). When Hv0(U) is not isometrically isomorphic to Hw0(V ),
applying [27, Proposition 5.I] (see also [10]) we see such φ has the form

φ(z1, z2) = (φ1(z1), φ2(z2))

where φ1 (resp. φ2) is an automorphism of B̊v(U) (resp. B̊w(V )). Further-
more, the first Banach–Stone theorem tells us that

|hφ(z1, z2)| = v(φ1(z1))
v(z1)

w(φ2(z2))
w(z2)

.

The transpose, T ∗, of T will give an isometry of H(v×w)0
(U × V )′. In [8,

Corollary 19] we observed that H(v×w)0
(U × V )′ is isometrically isomorphic
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to Hv0(U)′ ⊗̂π Hw0(V )′ and under this isometry v(x)w(y)δ(x,y) is mapped
to v(x)δx ⊗ w(y)δy. Suppose (x, y) ∈ B̊v×w(U × V ) = B̊v(U) × B̊w(V ). The
proof of the first Banach–Stone theorem tells us that there is α(z1, z2) ∈ Γ
with

(∗) T ∗(v(z1)δz1⊗w(z2)δz2) = α(z1, z2)v(φ1(z1))δφ1(z1)⊗w(φ2(z2))δφ2(z2).

As (T ∗)−1 maps α(z1, z2)v(φ1(z1))δφ1(z1)⊗w(φ2(z2))δφ2(z2) onto v(z1)δz1
⊗ w(z2)δz2 , we see that T ∗|BHv0 (U)′ maps BHv0 (U)′ onto BHv0 (U)′ , and
T ∗|BHw0 (V )′ maps BHw0 (V )′ onto BHw0 (V )′ . Therefore, φ1 ∈ Λv(U) and φ2 ∈
Λw(V ). From (∗) we now get |hφ(z1, z2)| = |hφ1(z1)hφ2(z2)| for all (z1, z2) ∈
B̊v×w(U×V ) and hence by the open mapping theorem we have hφ = λhφ1hφ2

for some λ ∈ Γ .
The second case is almost identical to the first when we allow for the

fact that there are automorphisms φ of B̊v×w(U × V ) of the form

φ(z1, z2) = (φ1(η(z2)), φ2(η−1(z1)))

for some automorphisms φ1, φ2 of B̊v(U) (or equivalently B̊w(V )) and η is
a biholomorphic mapping from B̊w(V ) onto B̊v(U) (see [27, Proposition 5.I]
or [10]).

Corollary 32. Let U and V be balanced bounded open subsets of Cn

and Cm respectively , and let v and w be continuous strictly positive radial
weights on U and V respectively which converge to zero on their respective
boundaries. Assume that both Bv(U) and Bw(V ) have non-empty interior
and that U (resp. V ) contains no positive-dimensional analytic set in an
open subset of Cn (resp. Cm).

(a) If Hv0(U) is not isometrically isomorphic to Hw0(V ) then
Λv×w(U × V ) = Λv(U)× Λw(V ) and πv×w = πv × πw.

(b) If Hv0(U) is isometrically isomorphic to Hw0(V ) then

Λv×w(U × V ) = Λv(U)× Λw(V ) modulo S2

and
πv×w = πv × πw modulo S2.

We list some of the isometries that Theorem 31 allows us to classify.

Example 33.

(a) Every isometry T of H(vα,2×vα,2)0(∆×∆) has the form
T (f)(z1, z2) = (φ′1(zσ(1))φ

′
2(zσ(2)))

αf(φ1(zσ(1)), φ2(zσ(2)))
where φ1, φ2 are in Aut(∆) and σ ∈ S2.

(b) For β 6= 2, every isometry T of H(vα,β×vα,β)0(∆×∆) has the form

T (f)(z1, z2) = λf(eiθ1(zσ(1)), e
iθ2(zσ(2)))

where eiθ1 , eiθ2 and λ are in Γ and σ ∈ S2.



230 C. Boyd and P. Rueda

(c) For β, β′ 6= 2 and distinct, every isometry T of H(vα,β×vα,β′ )0(∆×∆)
has the form

T (f)(z1, z2) = λf(eiθ1z1, e
iθ2z2)

where θ1, θ2 and λ are in Γ .
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[14] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans.

Amer. Math. Soc. 283 (1984), 253–264.

[15] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach

Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.



Spaces of weighted holomorphic functions 231

[16] K. Jarosz, Isometries between injective tensor products of Banach spaces, Pacific J.

Math. 121 (1986), 383–396.

[17] M. Klimek, Pluripotential Theory, London Math. Soc. Monogr., Oxford Univ. Press,

Oxford, 1991.

[18] C. J. Kolaski, Isometries of Bergman spaces over bounded Runge domains, Canad.

J. Math. 33 (1981), 1157–1164.

[19] —, Surjective isometries of weighted Bergman spaces, Proc. Amer. Math. Soc. 105

(1989), 652–657.

[20] W. Lusky, On the structure of Hv0(D) and hv0(D), Math. Nachr. 159 (1992), 279–

289.

[21] —, On weighted spaces of harmonic and holomorphic functions, J. London Math.

Soc. 51 (1995), 309–320.

[22] —, On generalized Bergman spaces, Studia Math. 119 (1996), 77–95.

[23] —, On the isomorphic classification of weighted spaces of holomorphic functions,

Acta Univ. Carolin. Math. Phys. 41 (2000), 51–60.

[24] —, On the Fourier series of unbounded harmonic functions, J. London Math. Soc.

61 (2000), 568–580.

[25] —, On the isomorphism classes of some spaces of harmonic and holomorphic func-

tions, preprint.

[26] M. Nagasawa, Isomorphisms between commutative Banach algebras with an appli-

cation to rings of analytic functions, Kōdai Math. Sem. Rep. 11 (1959), 182–188.
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