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Non-commutative martingale VMO-spaces

by

Narcisse Randrianantoanina (Oxford, OH)

Abstract. We study Banach space properties of non-commutative martingale VMO-
spaces associated with general von Neumann algebras. More precisely, we obtain a version
of the classical Kadets–Pełczyński dichotomy theorem for subspaces of non-commutative
martingale VMO-spaces. As application we prove that if M is hyperfinite then the non-
commutative martingale VMO-space associated with a filtration of finite-dimensional von
Neumannn subalgebras ofM has property (u).

1. Introduction. The space of functions of bounded mean oscillation
generally referred to as BMO-space has been instrumental in several aspects
of analysis. Its martingale version plays an equally important role in proba-
bility.

In this paper, we analyze subspaces of BMO-spaces related to non-com-
mutative martingales. Our main motivation comes primarily from a paper
by Müller and Schechtman [14] who studied structural properties of closed
subspaces of dyadic martingale VMO (vanishing mean oscillation) as Ba-
nach spaces. More precisely, they provided, among other things, a version of
the classical Kadets–Pełczyński dichotomy theorem for closed subspaces of
dyadic martingale VMO-spaces. In order to explain the details, we first recall
the celebrated Kadets–Pełczyński dichotomy theorem, which states that ev-
ery closed subspace of Lp(0, 1), 2 < p <∞, either is isomorphic to a Hilbert
space or contains a subspace which is isomorphic to lp. This dichotomy plays
a crucial role in the development of Lp-spaces and the theory of function
spaces in general. Non-commutative analogues of the Kadets–Pełczyński di-
chotomy has been considered by several authors with the most general result
obtained by Raynaud and Xu (see [21]) in the context of Haagerup Lp-spaces
when 2 ≤ p <∞. Clearly, the dichotomy does not extend to closed subspaces
of L∞(0, 1) or any C(K)-spaces in general. As a substitute, the following re-
sult was obtained by Müller and Schechtman:
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Theorem 1.1 ([14]). Let X be a subspace of the dyadic VMO. Then ei-
ther X is isomorphic to a Hilbert space or X contains a subspace isomorphic
to c0.

The result of Raynaud and Xu naturally leads to the question whether
Theorem 1.1 generalizes to non-commutative martingale VMO. Our main
result (Theorem 3.2) can be viewed as a characterization of subspaces of
non-commutative VMO that contain isomorphic copies of c0, which for the
hyperfinite case (Theorem 3.4) becomes an exact non-commutative ana-
logue of Theorem 1.1. As application, we deduce that as Banach space,
non-commutative VMO has the so called property (u).

The paper is organized as follows: in Section 2, we recall the construc-
tion of Haagerup Lp-spaces associated with general von Neumannn algebras,
review the general setup for non-commutative martingales, and introduce
non-commutative VMO-spaces. In Section 3, we formulate the appropriate
analogue of the Kadets–Pełczyński dichotomy theorem for VMO-spaces. In
the last section, we discuss applications of our main result to Banach space
structures of both VMO and BMO.

2. Notation and preliminary definitions. We use standard nota-
tion in operator algebras and Banach space theory. We refer to [11, 23]
for background on von Neumannn algebra theory and to [3, 12] for un-
explained terminology from Banach space theory. Throughout, we assume
that M is a σ-finite von Neumannn algebra acting on a Hilbert space H,
and ϕ is a distinguished normal faithful state onM. We denote by σt = σϕt
the one-parameter modular automorphism group on M associated with ϕ.
The Haagepup Lp-spaces associated with (M, ϕ) are defined from the cross-
product R =Moσt R. We recall that R is the von Neumannn subalgebra of
B(L2(R, H)) generated by the operators π(x), x ∈M, and λ(s), s ∈ R, where

π(x)(ξ(t)) = σϕ−t(x)(ξ(t)) and λ(s)(ξ(t)) = ξ(t− s)
for t ∈ R and ξ ∈ L2(R, H). If W (s) is the unitary operator on L2(R, H)
defined by

W (s)(ξ(t)) = e−istξ(t),

then the dual action θ on R is given by

θs(x) = W (s)xW (s)∗, x ∈ R.
The von Neumannn algebraM can be identified with the subalgebra of R

π(M) = {x ∈ R : θs(x) = x for all s ∈ R}.
Moreover, it is known that R is a semifinite von Neumannn algebra and
admits a canonical normal faithful semifinite trace τ satisfying

τ ◦ θs = e−sτ, s ∈ R, x ∈ R.
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For 1 ≤ p ≤ ∞, the Haagerup Lp-space associated with M, denoted by
Lp(M), is defined as the space of τ -measurable operators x affiliated with
R such that for all s ∈ R,

θs(x) = e−s/px.

This is clearly a closed self-adjoint linear subspace of the space of τ -measur-
able operators affiliated with R, and L∞(M) coincides withM. Moreover,
there is a canonical isomorphism between L1(M) and the predualM∗ ofM
which we now describe:

Every normal semifinite faithful weight ψ ∈ (M∗)+ is given by a density
hψ ∈ L1(M)+ satisfying

τ(hψx) =
�

R
ψ(θs(x)) ds

for all x ∈ R+. Using polar decomposition of an arbitrary element ψ ∈M∗,
this correspondence between (M∗)+ and L1(M)+ extends to a bijection
betweenM∗ and L1(M). Indeed, if ψ ∈ M∗, then ψ = u|ψ|, where u ∈ M
and |ψ| is the modulus of ψ. The corresponding hψ ∈ L1(M) then admits
the polar decomposition

hψ = u|hψ| = uh|ψ|.

The norm on L1(M) is defined by setting

‖hψ‖1 = |ψ|(1) = ‖ψ‖M∗ , ψ ∈M∗.
With this norm, L1(M) andM∗ are isometric. Furthermore, one can define
a distinguished positive linear functional tr on L1(M) called trace by

tr(hψ) = ψ(1), ψ ∈M∗.
Given 1 ≤ p <∞ and x ∈ Lp(M), we have |x|p ∈ L1(M). Define

‖x‖p := ‖ |x|p‖1/p1 = (tr(|x|p))1/p.
Equipped with ‖ · ‖p, the space Lp(M) is a Banach space.

Throughout, D denotes the Radon–Nikodym derivative (with respect
to τ) of the dual weight ϕ̃ of the distinguished state ϕ. The state ϕ can be
recovered from tr by the identity

ϕ(x) = tr(Dx), x ∈M.

If the von Neumannn algebraM is semifinite equipped with a faithful nor-
mal semifinite trace then the Haagerup Lp-spaces reduce to the usual non-
commutative Lp-spaces constructed from the theory of non-commutative in-
tegration as described in [16]. The reader is referred to [7, 24] for full details
of Haagerup’s theory.

Let us now recall the general setup for non-commutative martingales.
The reader is referred to [4, 2, 5] for the classical (commutative) martingale
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theory. Let (Mn)n≥1 be an increasing sequence of von Neumannn subal-
gebras of M such that the union of the Mn’s is weak∗-dense in M and
σt(Mn) ⊂ Mn for all t ∈ R and all n ∈ N. We further assume that if
(pn)n≥1 is the increasing sequence of projections in M consisting of the
units ofMn’s then σt(pn) = pn for all t ∈ R and all n ∈ N.

For each n ≥ 1, it follows from [22] that there exists a normal conditional
expectation Ẽn : pnMpn →Mn satisfying

Ẽn(σt(x)) = σt(Ẽn(x))
for all x ∈ pnMpn and all t ∈ R. We now define En :M→Mn by setting,
for x ∈M,

En(x) = Ẽn(pnxpn).
It is clear that for every m and n in N, EmEn = EnEm = Emin(n,m). More-
over, for 1 ≤ p < ∞, the conditional expectation En extends in a natural
way to a contractive projection from Lp(M) onto Lp(Mn) (we refer to [10,
Lemma 2.2] for details).

Definition 2.1. For 1 ≤ p ≤ ∞, a non-commutative martingale in
Lp(M) with respect to the filtration (Mn)n≥1 is a sequence x = (xn)n≥1 in
Lp(M) satisfying

En(xn+1) = xn for all n ≥ 1.

For such a martingale x ⊂ Lp(M) (1 ≤ p ≤ ∞), we set

‖x‖p := sup
n≥1
‖xn‖p.

If ‖x‖p < ∞, then x is called a bounded Lp-martingale. The difference se-
quence dx = {dn(x)}n≥1 of a martingale x = (xn)n≥1 is defined by

dn(x) = xn − xn−1, n ≥ 1,

with the usual convention that x0 = 0.

We note that for 1 < p <∞, every bounded Lp-martingale is of the form
(En(x∞))n≥1 for some x∞ ∈ Lp(M). We often identify a martingale with its
final value whenever the latter exists. For some concrete natural examples
of non-commutative martingales, we refer to [20] and the survey paper [26].

We will now describe square functions of non-commutative martingales
and non-commutative martingale Hardy spaces. Our main references for clas-
sical martingale Hardy spaces are the monographs [13, 25]. Following Pisier
and Xu [20], we will consider the following row and column versions of square
functions. For a martingale x = (xn)∞n=1 and N ≥ 1, set

SC,N (x) =
( N∑
j=1

|dj(x)|2
)1/2

and SR,N (x) =
( N∑
j=1

|dj(x∗)|2
)1/2

.
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For 1 ≤ p ≤ ∞ and any finite sequence a = (an)n≥1 in Lp(M), set

‖a‖Lp(M;l2C) =
∥∥∥(∑

n≥1

|an|2
)1/2∥∥∥

Lp(M,τ)
,

‖a‖Lp(M;l2R) =
∥∥∥(∑

n≥1

|a∗n|2
)1/2∥∥∥

Lp(M,τ)
.

The difference sequence dx belongs to Lp(M; l2C) (respectively, Lp(M; l2R)) if
and only if the sequence (SC,n(x))∞n=1 (respectively, (SR,n(x))∞n=1) is bounded
in Lp(M). In this case, the limits

SC(x) =
( ∞∑
k=1

|dk(x)|2
)1/2

and SR(x) =
( ∞∑
k=1

|dk(x)∗|2
)1/2

are elements of Lp(M). These two versions of square functions are crucial
for the definition of non-commutative (martingale) Hardy spaces which we
now describe for p = 1 (we refer to [20] for the other values of p). The space
H1

C(M) (respectively, H1
R(M)) is defined as the set of all L1-martingales x

with respect to the filtration (Mn)n≥1 for which dx ∈ L1(M; l2C) (respec-
tively, L1(M; l2R)). For such x, we set

‖x‖H1
C(M) = ‖SC(x)‖1 and ‖x‖H1

R(M) = ‖SR(x)‖1.

Equipped with the above norms, H1
C(M) and H1

R(M) are Banach spaces.
The non-commutative martingale Hardy space H1(M) of non-commutative
martingales is defined as

H1(M) = H1
C(M) +H1

R(M)

equipped with the usual norm of sum of two Banach spaces:

‖x‖H1(M) = inf{‖y‖H1
C(M) + ‖z‖H1

R(M)}

where the infimum is taken over all y and z with x = y+ z, y ∈ H1
C(M) and

z ∈ H1
R(M).

The dual of H1(M) can be identified (up to a constant
√

2) to a non-
commutative analogue of martingale BMO which is the main object of this
paper. BMO-spaces associated with non-commutative martingales were in-
troduced by Pisier and Xu in [20] for the finite case and [10] for the general
case. It was proved among other results that Fefferman’s classical H1-BMO
duality extends to this setting. In order to define such BMO-spaces for this
context, we consider first what is known as the column BMO by setting

BMOC(M) := {x = (xn) : sup
m

sup
n≤m
‖En|xm − xn−1|2‖∞ <∞}.
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Then BMOC(M) becomes a Banach space when equipped with the norm

‖x‖BMOC
= (sup

m≥1
sup
n≤m
‖En|xm − xn−1|2‖∞)1/2.

Similarly, the row version BMOR(M) is defined as the space of all x for
which x∗ ∈ BMOC(M), equipped with the natural norm ‖x‖BMOR(M) =
‖x∗‖BMOC(M). The space BMO(M) associated with the filtration (Mn) is
the intersection of the two types of BMO-spaces described above:

BMO(M) := BMOC(M) ∩ BMOR(M)

with the usual intersection norm of two Banach spaces:

‖x‖BMO = max{‖x‖BMOC
, ‖x‖BMOR

}.
As noted above, (H1(M))∗ = BMO(M) isomorphically with the isomor-
phism given by the fact that any y ∈ BMO(M) defines a linear functional
ξy on H1(M) defined by ξy(x) = limn→∞ tr(y∗nxn) for all x ∈ H1(M).

For more information on non-commutative martingale BMO-spaces, we
refer to the articles [20, 10, 15, 9]. Special attention will be given to the
subspace called vanishing mean oscillation, denoted by VMO(M), and de-
fined as the closure (for the BMO-norm) of the linear subspace of those
x ∈ BMO(M) for which En(x) = x for some n ∈ N.

As in the classical case, for 1 ≤ p <∞, BMO(M) is a subset of Lp(M) in
the sense of Proposition 2.2 below. These inclusions will be used repeatedly
below.

Proposition 2.2 ([9, Theorem 3.18]). For 1 ≤ p < ∞ and 0 ≤ η ≤ 1,
let Iηp (x) = D(1−η)/pxDη/p. Then the inclusion map

Iηp (BMO) ⊂ Lp(M)

is bounded with norm c(p) ≤ cp, where c is an absolute constant.

3. Main results. Our primary objective in this section is to provide a
Kadets–Pełczyński type alternative for VMO-spaces. It generalizes a result of
Müller and Schechtman from [14] stated in Theorem 1.1 to non-commutative
setting.

For the general statement, we introduce the following norm for x in
BMO(M):

(3.1) |||x|||C :=
∑
n≥1

2−n‖En(|x− En−1(x)|2)‖1/2∞ .

As above, the row version is defined by |||x|||R := |||x∗|||C and

(3.2) |||x||| := max{|||x|||C, |||x|||R}.
One can easily verify that ||| · ||| is a norm in the linear space BMO(M) with
|||x||| ≤ ‖x‖BMO for all x ∈ BMO(M). We will see below that in general ||| · |||
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is not equivalent to the usual BMO-norm. The following property of ||| · ||| is
needed in the proof of our main result.

Lemma 3.1. For every m0 ∈ N and z ∈ VMO(M),
‖Em0(z)‖VMO ≤ 2m0 |||z|||.

Proof. If m > m0, then
‖Em|Em0(z)− Em−1(Em0(z))|2‖∞ = ‖Em|Em0(z)− Em0(z)|2‖∞ = 0.

We deduce from this observation that
‖Em0(z)‖BMOC

= sup
m≤m0

‖Em|Em0(z)− Em−1(Em0(z))|2‖1/2∞

≤ sup
m≤m0

‖Em|z − Em−1(z)|2‖1/2∞ ≤ 2m0 |||z|||C.

The lemma follows with similar estimate on ‖Em0(z)‖BMOR
.

Our first result is a characterization of subspaces of VMO containing
subspaces isomorphic to c0 in terms of the norm ||| · |||.

Theorem 3.2. Let X be a subspace of VMO(M). Then either X con-
tains a subspace isomorphic to c0 or the norm ||| · ||| and the usual VMO(M)-
norm are equivalent on X.

Theorem 3.2 will be deduced from the following result:

Proposition 3.3. (a) Let (pk)k≥1 be a strictly increasing sequence of
positive integers, (εk)k≥1 ⊂ R+ satisfying

∑∞
k=1 εk = δ and (xk)k≥1 ⊂

VMO(M) with:
(i) Epk

(xk) = xk and Epk−1
(xk) = 0;

(ii) ‖xk‖VMO = 1;
(iii) ‖Epk−1

(S2
C(xk))‖∞ ≤ εk.

Then for any finitely non-zero sequence (αk)k≥1 ⊂ B(l2),

sup
k≥1
‖αk‖∞ ≤

∥∥∥∑
k≥1

αk ⊗ xk
∥∥∥

BMOC(B(l2)⊗M)
≤ (1 + δ)1/2 sup

k≥1
‖αk‖∞,

where the BMO-norm is relative to the filtration (B(l2) ⊗Mn)n≥1. In par-
ticular , (xk)k≥1 is a basic sequence that is (1 + δ)1/2-equivalent to the unit
vector basis of c0 in BMOC(M).

(b) If one replaces condition (iii) by the weaker condition that
‖Epk−2

(S2
C(xk))‖∞ ≤ εk for all k ≥ 3,

then the same conclusion still holds with constant (2 + δ)1/2.
Proof. Let (αk)k be a finitely non-zero sequence in B(l2) and set for

convenience
a =

∑
k

αk ⊗ xk ∈ B(l2)⊗M.



46 N. Randrianantoanina

For n ≥ 1, let En = Id⊗En : B(l2)⊗M→ B(l2)⊗Mn be the corresponding
conditional expectation. To prove that ‖a‖BMOC

≤ (1 + δ)1/2 supk ‖αk‖∞,
we need to estimate ‖Em|a − Em−1(a)|2‖∞ for all m ≥ 1. To this end, fix
m∈N. Then there exists n∈N so that pn−1 < m≤pn.

First, Em|a − Em−1(a)|2 = Em(
∑

s≥m |ds(a)|2). Moreover, we observe
that for every s ≥ m,

(3.3) ds(a) =
∑
k≥n

αk ⊗ ds(xk).

Indeed, if k < n then pk < pn−1 < m ≤ s so xk ∈ Mpk
⊂ Ms−1 and

therefore ds(xk) = 0. On the other hand, if l, k ≥ n with l 6= k, then

(3.4) Em(ds(x∗l )ds(xk)) = 0.

To see this, assume that l > k ≥ n. Then m ≤ pk < pl−1 < pl. By assump-
tion, xk is inMpk

⊂Mpl−1
and so also is ds(xk). We deduce that

Em(ds(x∗l )ds(xk)) = Em
(
Epl−1

(ds(x∗l ))ds(xk)
)

= Em
(
[EsEpl−1

(x∗l )− Es−1Epl−1
(x∗l )]ds(xk)

)
= 0.

Combining (3.3) and (3.4), we have |ds(a)|2 =
∑

k≥n |αk|2 ⊗ |ds(xk)|2. Thus
we have the following estimates:

(3.5) Em|a− Em−1(a)|2 = Em
(∑
s≥m
|ds(a)|2

)
=
∑
s≥m

∑
k≥n
|αk|2 ⊗ Em|ds(xk)|2

≤ |αn|2 ⊗ Em
(∑
s≥m
|ds(xn)|2

)
+
∑

k≥n+1

|αk|2 ⊗ Em(S2
C(xk))

≤ |αn|2 ⊗ ‖xn‖2BMOC
1 +

∑
k≥n+1

|αk|2 ⊗ Em(S2
C(xk)).

Observe that for k ≥ n + 1, it follows from the choice of n above that
m ≤ pk−1. From condition (iii), we have for every k ≥ n+ 1,

Em(S2
C(xk)) = Em(Epk−1

(S2
C(xk))) ≤ εkEm(1).

We conclude that ‖Em|a− Em−1(a)|2‖∞ ≤ ‖αn‖2∞ +
∑

k≥n+1 ‖αk‖2∞εk and
taking supremum over m, we see that ‖a‖BMOC

≤ (1 + δ)1/2 supk ‖αk‖∞.
Thus the proof of (a) is complete.

For (b), we only need to adjust the last two lines of (3.5) and write

Em|a− Em−1(a)|2 ≤ |αn|2 ⊗ ‖xn‖2BMOC
1 + |αn+1|2 ⊗ ‖xn+1‖2BMOC

1

+
∑

k≥n+2

|αk|2 ⊗ Em(S2
C(xk)).

As above, if k ≥ n+ 2 then m < pk−2 and therefore

Em(S2
C(xk)) = Em(Epk−2

(S2
C(xk)))
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and hence ‖Em(S2
C(xk))‖∞ ≤ εk. We conclude as above that

‖Em|a− Em−1(a)|2‖∞ ≤ ‖αn‖2∞ + ‖αn+1‖2∞ +
∑

k≥n+1

‖αk‖2∞εk

≤ (2 + δ) sup
k≥1
‖αk‖2∞.

The proof is complete.

Proof of Theorem 3.2. Let X be a subspace of VMO(M) such that the
BMO(M)-norm and ||| · ||| are not equivalent on X. There exists a sequence
(zn) in the unit sphere of (X, ‖ · ‖BMO) with limn→∞ |||zn||| = 0. We claim
that there exists a subsequence (znk

) of (zn) and a sequence (xk) satisfying
the assumptions of Proposition 3.3 and such that ‖znk

− xk‖ < 2−k for all
k ≥ 1. This is done by induction. First observe that limn→∞ |||zn||| = 0 is
equivalent to

(3.6) lim
n→∞

max{‖Em|zn − Em−1(zn)|2‖∞, ‖Em|z∗n − Em−1(z∗n)|2‖∞} = 0,

for all m ∈ N. Furthermore, it follows from Lemma 3.1 that for every m ∈ N,

(3.7) lim
n→∞

‖Em(zn)‖VMO = 0.

Let n1 = 1 and p0 = 1. Choose p1 > 1 such that

‖z1 − Ep1(z1)‖ < 4−1.

For such p1, we can choose n2 > n1 = 1 and p2 > p1 such that

sup
m≤p1

max{‖Em|zn2 − Em−1(zn2)|2‖∞, ‖Em|z∗n2
− Em−1(z∗n2

)|2‖∞} ≤ ε2,

‖Ep1(zn2)‖VMO ≤ 4−2,

and
‖zn2 − Ep2(zn2)‖VMO ≤ 4−2.

Assume that nk−1 > · · · > n1 and pk−1 > · · · > p1 have been chosen. One
can choose nk > nk−1 and pk > pk−1 such that

(3.8) sup
m≤pk−1

max{‖Em|znk
− Em−1(znk

)|2‖∞,

‖Em|z∗nk
− Em−1(z∗nk

)|2‖∞} ≤ εk,

(3.9) ‖Epk−1
(znk

)‖VMO ≤ 4−k,

and

(3.10) ‖znk
− Epk

(znk
)‖VMO ≤ 4−k.

For k ≥ 1, set

(3.11) xk = Epk
(znk

)− Epk−1
(znk

).

We claim that the sequence (xk) satisfies the following:
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(i) Epk
(xk) = xk and Epk−1

(xk) = 0;
(ii) ‖znk

− xk‖VMO ≤ 2−k;
(iii) ‖Epk−1

(S2
C(xk))‖∞ ≤ εk,

(iv) ‖Epk−1
(S2

R(xk))‖∞ ≤ εk.
The first item is trivial. The second follows from (3.9) and (3.10). In fact,
for every k ≥ 1, we have

‖znk
− xk‖VMO ≤ ‖znk

− Epk
(znk

)‖VMO + ‖Epk−1
(znk

)‖VMO ≤ 2.4−k ≤ 2−k.

To verify (iii) and (iv), we observe that for every k ∈ N,

S2
C(xk) =

pk∑
j=pk−1+1

|dj(znk
)|2.

This leads to the following estimates:

Epk−1
(S2

C(xk)) = Epk−1

( pk∑
j=pk−1+1

|dj(znk
)|2
)
≤ Epk−1

( ∑
j≥pk−1

|dj(znk
)|2
)

= Epk−1
|znk
− Epk−1−1(znk

)|2.
We can deduce from (3.8) that

‖Epk−1
(S2

C(xk))‖∞ ≤ ‖Epk−1
|znk
− Epk−1−1(znk

)|2‖∞ ≤ εk.
The same argument may be used for the S2

R(xk)’s. It follows from Proposi-
tion 3.3 that the sequence (xk) is equivalent to the unit vector basis of c0 in
VMO(M). We conclude from (ii) that (znk

) is equivalent to the unit vector
basis of c0 in X.

In general, the two possibilities in Theorem 3.2 are not necessarily mu-
tually exclusive. This is the case when the von Neumannn algebra M is
not hyperfinite. Indeed, assume that the filtration (Mn) consists of infinite-
dimensional von Neumannn subalgebras. It is easy to verify that for every
m ∈ N, Mm (with its usual operator norm) is isomorphic to a subspace
of VMO(M) (using the canonical inclusion). In particular,M1 embeds iso-
metrically into VMO(M). It is clear that ||| · ||| and the usual VMO-norm
are equivalent on X = M1 but if M1 is infinite-dimensional then it also
contains isometric copies of c0 and therefore satisfies both possibilities.

For the case of hyperfinite von Neumannn algebras, the dichotomy from
Theorem 3.2 turns out to be mutually exclusive. Moreover, it reduces to
characterization of Hilbertian subspaces as in Theorem 1.1. To this end,
consider the following Hilbertian norm |||·|||2 on BMO(M). For x ∈ BMO(M),
let

(3.12) |||x|||2 := (‖I0
2 (x)‖22 + ‖I1

2 (x)‖22)1/2 = (‖xD1/2‖22 + ‖D1/2x‖22)1/2

where I0
2 and I1

2 are the inclusion maps described in Proposition 2.2.
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Theorem 3.4. Assume thatM is hyperfinite and (Mn)n≥1 is a filtration
consisting of finite-dimensional von Neumannn subalgebras of M. Let X be
a subspace of VMO(M). Then either X is isomorphic to a Hilbert space and
complemented in BMO(M) or X contains a subspace isomorphic to c0.

Proof. Let T2 = I0
2 ⊕ I1

2 : BMO(M) → L2(M) ⊕2 L
2(M) be the linear

map given by x 7→ (xD1/2, D1/2x) and S = T2|X .
• If S is an isomorphism then X is isomorphic to the Hilbert space S(X)

and if P : L2(M) ⊕2 L
2(M) → S(X) is the orthogonal projection then

Π := S−1PT2 is a projection from BMO(M) onto X.
• If S is not an isomorphism then the |||·|||2-norm and the VMO(M)-norm

are not equivalent on X in the sense that there exists a sequence (zn)n≥1 in
the unit sphere of X such that limn→∞(‖znD1/2‖2 + ‖D1/2zn‖2) = 0. We
claim that limn→∞ |||zn||| = 0. To this end, we will verify that for everym ∈ N,
limn→∞‖Em|zn−Em−1(zn)|2‖∞ = 0 and limn→∞ ‖Em|z∗n−Em−1(z∗n)|2‖∞ = 0.

Let m ≥ 1 be fixed. Since conditional expectations are bounded on
L2(M), it is clear from the fact that Em−1(znD1/2) = Em−1(zn)D1/2 (see for
instance the proof of [10, Proposition 2.3]) that limn→∞‖Em−1(zn)D1/2‖2 =0
and therefore

lim
n→∞

‖(zn − Em−1(zn))D1/2‖2 = 0.

Thus
lim
n→∞

‖D1/2|zn − Em−1(zn)|2D1/2‖1 = 0.

Since the conditional expectation Em is bounded in L1(M), it follows that

(3.13) lim
n→∞

‖D1/2Em|zn − Em−1(zn)|2D1/2‖1 = 0.

On the other hand, (Em|zn − Em−1(zn)|2)n≥1 is a bounded sequence in the
finite-dimensional spaceMm. Any subsequence of (Em|zn − Em−1(zn)|2)n≥1

has a further subsequence that is convergent inMm and since the inclusion
map I

1/2
1 : M → L1(M) is continuous (see Proposition 2.2), it follows

from (3.13) that the limit of such convergent subsequence must be zero.
This proves that

lim
n→∞

‖Em|zn − Em−1(zn)|2‖∞ = 0.

Since m is arbitrary, we deduce that limn→∞ |||zn|||C = 0. A similar argument
can be used for (z∗n)n≥ in order to conclude that limn→∞ |||zn|||R = 0.

Remarks 3.5. (a) Theorem 3.4 cannot be extended to the larger space
BMO(M). Indeed, since BMO(M) is a dual Banach space and contains
a subspace isomorphic to c0, it necessarily contains a subspace isomorphic
to l∞ (see for instance [3, Theorem 10, p. 48]). In particular, it contains
a subspace isomorphic to l1. Such a subspace clearly fails to satisfy the
conclusion of Theorem 3.2.
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(b) One should note that in contrast to the case of VMO, the non-
commutative generalization of the classical Kadets–Pełczyński alternatives
for non-commutative Lp-spaces (2 < p <∞), settled in [21], does not require
the hyperfinite assumption.

We conclude this section with a quantitative form of Proposition 3.4 for
the case of hyperfinite filtration. This version is much closer in spirit to the
proof in the commutative case of dyadic-VMO considered in [14]. It also
illustrates the involvement of Hilbert space norms.

First we will fix some notations. For n ≥ 1, let γn := dim(Mn) =
dim(L2(Mn)). Inductively, we can construct a sequence (wj)∞j=1 inM such
that:

(a) (wjD1/2)∞j=1 is an orthonormal basis of L2(M);
(b) for every n ≥ 1, (wjD1/2)1≤j≤γn is an orthonormal basis for L2(Mn).

For n ≥ 1, define

(3.14) Φ(n) :=
γn∑
j=1

‖wj‖2∞, n ≥ 1.

As an illustration, consider the concrete case of the type-II1 hyperfinite factor
R equipped with its usual trace τ and its usual filtration (Rn)n≥1. Since Rn
is the matricial space M2n×2n , we have γn = 4n. Moreover, the orthonormal
system can be taken to be the non-commutative Walsh system {wγ}γ∈ bD
where D̂ denotes the dual group of the dyadic group D =

∏∞
n=1 Z/2Z. For

a detailed account of the non-commutative Walsh system, we refer to [1]. It
was shown in [1] that {wγ}γ∈ bD is an orthonormal basis of L2(R, τ). Also,
{wγ}γ∈D∗

2n
where D∗2n = {γ ∈ D̂ : γi = 0 when i > n} is a basis of Rn and

‖wγ‖∞ = 1 for every γ ∈ D̂. Thus in this case Φ(n) = 4n for every n ≥ 1.

Proposition 3.6. Let (pk)k≥1 be a strictly increasing sequence of inte-
gers, (εk)k≥1 ⊂ R+ satisfying

∑∞
k=1 εk = δ and (xk)k≥1 ⊂ VMO(M) with:

(i) Epk
(xk) = xk and Epk−1

(xk) = 0;
(ii) ‖xk‖VMO = 1;
(iii) ‖xkD1/2‖22 + ‖D1/2xk‖22 ≤ εkΦ(pk−2)−1 for all k ≥ 3.

Then for any finitely non-zero sequence (αk)k≥1 ⊂ B(l2),

sup
k≥1
‖αk‖∞ ≤

∥∥∥∑
k≥1

αk ⊗ xk
∥∥∥

BMO(B(l2)⊗M)
≤ (2 + δ)1/2 sup

k≥1
‖αk‖∞.

Proof. It is enough to verify that condition (iii) implies the weaker con-
dition (iii) of Proposition 3.3(b). To this end, we will show that for every
k ≥ 3, we have the estimates Epk−2

(S2
C(xk)) ≤ εk and Epk−2

(S2
R(xk)) ≤ εk.
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Let k ≥ 3 and consider Epk−2
(S2

C(xk)D1/2) ∈ L2(Mpk−2
). Since the sys-

tem (wjD1/2)j≤γpk−2
is an orthonormal basis of L2(Mpk−2

), we have the
expansion

Epk−2
(S2

C(xk))D1/2 =
γpk−2∑
j=1

〈Epk−2
(S2

C(xk)D1/2), wjD1/2〉wjD1/2

=
γpk−2∑
j=1

〈Epk−2
(D1/2S2

C(xk)D1/2), wj〉wjD1/2.

Since D1/2 is fully supported, it follows that

Epk−2
(S2

C(xk)) =
γpk−2∑
j=1

〈Epk−2
(D1/2S2

C(xk))D1/2, wj〉wj .

We deduce from the L1-boundedness of expectations and the definition of Φ
that

‖Epk−2
(S2

C(xk))‖∞ ≤
γpk−2∑
j=1

|〈Epk−1
(D1/2S2

C(xk)D1/2), wj〉| · ‖wj‖∞

≤
γpk−2∑
j=1

‖Epk−2
(D1/2S2

C(xk)D1/2)‖1 · ‖wj‖2∞

≤
γpk−2∑
j=1

‖D1/2S2
C(xk)D1/2‖1 · ‖wj‖2∞

= ‖D1/2S2
C(xk)D1/2‖1Φ(pk−2).

Since D1/2S2
C(xk)D1/2 =

∑pk
j=pk−1+1 |dj(xkD1/2)|2 = S2

C(xkD1/2), we get

‖Epk−2
(S2

C(xk))‖∞ ≤ ‖SC(xkD1/2)‖22Φ(pk−2)

= ‖xkD1/2‖22Φ(pk−2) ≤ εk.

A similar estimate can be applied to the S2
R(xk)’s and the conclusion follows

directly from Proposition 3.3(b).

4. Banach space properties of VMO. Throughout this section, we
assume that the von Neumannn algebraM is hyperfinite and the filtration
consists of finite-dimensional subalgebras. We keep all notation introduced
in previous sections. First we recall some Banach space concepts.

Definition 4.1. A formal series
∑∞

n=1 xn in a Banach space E is called
weakly unconditionally Cauchy (WUC) if

∑∞
n=1 |〈x∗, xn〉|<∞ for all x∗∈E∗.
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It is a well known result of Bessaga and Pełczyński that a basic sequence
equivalent to the unit vector basis of c0 forms a (WUC) series, and conversely,
any basic sequence for which infn ‖xn‖ > 0 and

∑∞
n=1 xn is a (WUC) series

is equivalent to the unit vector basis of c0. We refer to [3, Theorem 6, p. 44]
for equivalent characterizations of (WUC) series.

Evidently, if
∑
xn is a (WUC) series and we set en =

∑n
j=1 xj for all n,

then (en) is weakly Cauchy and therefore has a weak∗-limit in E∗∗. We now
consider a notion introduced by Pełczyński ([18, 17]).

Definition 4.2. A Banach space E has property (u) if for every weakly
Cauchy sequence (xn), there exists a (WUC) series

∑
an in E such that

(xn −
∑n

j=1 aj) is weakly null.

For example, any Banach space with unconditional basis has property (u)
and so also do all weakly sequentially complete Banach spaces ([18]). Other
classes of Banach spaces having property (u) are order continuous Banach
lattices ([12, Proposition 1.c.2, p. 31] ) and those which areM -ideals in their
biduals ([6]).

The next result is the main focus of this section. It may be new even for
the classical dyadic martingale VMO.

Theorem 4.3. VMO(M) has property (u).

To prove this theorem, we need two intermediate results. We assume that
the next lemma is well known but we include the proof for completeness.

Lemma 4.4. Let E be a real or complex Banach space.
(i) A bounded subset C of E is relatively weakly compact if and only

if for a given sequence (xn) in C, there exists a sequence (yn) with
yn ∈ conv{xn, xn+1, . . . } that converges weakly.

(ii) A bounded sequence (xn) in E converges weakly to an x in E if and
only if for any subsequence (xnk

) of (xn) there exists a sequence (yk)
with yk ∈ conv{xnk

, xnk+1
, . . . } that converges weakly to x.

Proof. Decomposing any functional in E∗ into its real and imaginary
parts, we may assume that E is a real Banach space. We will only prove the
non-trivial implications. For (i), we verify (according to James’s theorem)
that every non-trivial functional x∗ ∈ E∗ attains its maximum on conv(C).
To this end, let x∗ ∈ E∗ \ {0} and set α := sup{〈x∗, x〉 : x ∈ conv(C)}.
Since α = sup{〈x∗, x〉 : x ∈ C}, there exists a sequence (xn) in C such that
α = limn→∞〈x∗, xn〉. By assumption, there exists a sequence (yn) with yn ∈
conv{xn, xn+1, . . . } that converges weakly to x ∈ conv(C). Since 〈x∗, yn〉 ∈
conv{〈x∗, xn〉, 〈x∗, xn+1〉, . . . }, it follows that

〈x∗, x〉 = lim
n→∞

〈x∗, yn〉 = lim
n→∞

〈x∗, xn〉 = α.

Thus conv(C) is relatively weakly compact, and hence so is C.
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To verify (ii), it is enough to observe from (i) that C := {xn : n ≥ 1} is
relatively weakly compact and since x is the only possible weak cluster point
of C, (xn) converges weakly to x.

The proof of Theorem 4.3 is based on the following observation.

Remark 4.5. First, we note that for every x ∈ BMO(M),

‖x‖BMOC
= sup

m≥1
sup
n≤m

sup
n≤k≤m

∥∥∥En( m∑
k=n

|dk(x)|2
)∥∥∥1/2

∞
.

A similar expression can be used for the BMOR-norm. It follows that mar-
tingale difference sequences are unconditional in BMO(M). In particular,
for every x ∈ BMO(M),

∑∞
k=1 dk(x) is a (WUC)-series in VMO(M). We

thank the referee for pointing out this fact.

Proof of Theorem 4.3. Let (xn)n be a weakly Cauchy sequence in the
space VMO(M) which is not weakly convergent. Viewed as a bounded se-
quence in the dual Banach space BMO(M), (xn)n≥1 is a weak∗-convergent
sequence in BMO(M). Let x ∈ BMO(M) be the weak∗-limit of (xn) in
BMO(M). By Remark 4.5,

∑∞
k=1 dk(x) is a (WUC) series in VMO(M).

For n ≥ 1, we set

(4.1) yn = xn −
n∑
k=1

dk(x) = xn − En(x).

Thus (yn)n is a bounded sequence in VMO(M) that converges to zero for
the weak∗ topology in BMO(M). We claim that the sequence (yn)n≥1 is
weakly null in VMO(M).

To prove this claim, we first observe that (ynD1/2)n and (D1/2yn)n are
weakly null sequences in L2(M). Let (un)n be an arbitrary subsequence of
(yn)n. One can choose a block convex combination of (un)n (say (vn)n) that
converges to zero for the ||| · |||2-norm. By Theorem 3.2 (and Proposition 3.3),
one can choose a further subsequences of (vn)n (which we still denote by
(vn)n) that is equivalent to the unit vector basis of c0. In particular, such
block convex combinations are weakly null in VMO(M). We have just veri-
fied that the sequence (yn)n is such that any of its subsequences has a block
convex combination that converges to zero weakly. We can now deduce the
claim from Lemma 4.4(ii).

In summary,
∑

k≥1 dk(x) is a (WUC) series in VMO(M) and the se-
quence (xn −

∑n
k=1 dk(x))n≥1 is weakly null, thus proving that VMO(M)

has property (u).

An immediate consequence of Theorem 4.3 is that every non-weakly com-
pact operator from VMO(M) into any arbitrary Banach space must fix iso-
morphic copies of c0. This property is called property (V ) and is shared
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by C∗-algebras in general ([19]). It is known that for dual Banach spaces,
property (V ) implies the space being Grothendieck. In particular, it follows
from [19] that von Neumannn algebras are Grothendieck spaces, i.e. if N is
an arbitrary von Neumannn algebra then any weak∗-convergent sequence of
functionals in N ∗ is automatically weakly convergent. We do not know if
this property is shared by the space BMO(M). In particular, the following
motivating question seems to be unresolved:

Problem. Is BMO(M) a Grothendieck space?

We note however that since H1
C(M) is a subspace of L1(M; l2C) which

is in turn a (complemented) subspace of L1(M ⊗ B(l2)), it follows that
BMOC(M) = (H1

C(M))∗ is a quotient of the von Neumannn algebraM⊗
B(l2). Thus BMOC(M) has property (V ) and therefore is a Grothendieck
space. The same observation can be applied to BMOR(M). We do not know
if this simple argument can be applied to BMO(M).

Note (added May 18, 2008). After this paper was submitted, Mikhail
Ostrovskii informed me that the Müller–Schechtman dichotomy stated in
Theorem 1.1 was also independently obtained by M. Lĕıbov for the case of
BMO defined on the unit circle (see “Subspaces of the space VMO”, Teor.
Funktsĭı Funktsional. Anal. i Prilozhen. 46 (1986), 51–54 (in Russian); trans-
lation in J. Soviet Math. 48 (1990), 536–538). I wish to thank M. Ostrovskii
for communicating these references to me.
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