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Essential norms of weighted composition operators
on the space H∞ of Dirichlet series

by

Pascal Lefèvre (Lens)

Abstract. We estimate the essential norm of a weighted composition operator rela-
tive to the class of Dunford–Pettis operators or the class of weakly compact operators, on
the space H∞ of Dirichlet series. As particular cases, we obtain the precise value of the
generalized essential norm of a composition operator and of a multiplication operator.

0. Introduction. The aim of this paper is to investigate the complete
continuity and weak compactness of weighted composition operators on the
space H∞ of Dirichlet series. Composition operators have been investigated
in many papers. The monographs [CmC] and [S] bring very good surveys
of this topic. These operators are very often investigated on Hp spaces (1 <
p < ∞), where their weak compactness and complete continuity are trivial
problems (because of reflexivity). Investigations in the setting of Dirichlet
series are more recent: see, for example, [B2], [GH] and [Q2].

Let us recall some terminology. We are going to work on half-planes

Cθ = {s ∈ C; Re(s) > θ}, θ ≥ 0.

In particular, H(C0) denotes the space of analytic functions on C0.
The space of Dirichlet series is

H∞ =
{
f ∈ H(C0); f bounded,

f(s) =
∑
n≥1

ann
−s on some half-plane Cε with ε > 0

}
.

(In fact, a result of Bohr [Bo] implies that any ε > 0 works.) The space H∞
is the version of the classical Hardy space H∞ in the setting of Dirichlet
series.
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It is natural to introduce the counterpart of the disk algebra,

A = {f ∈ H∞; f continuous on C0}.
Both H∞ and A are normed by ‖f‖∞ = sup{|f(s)|; s ∈ C0}.

Before taking up some special properties of composition operators onH∞,
we have to know when they are defined. Actually, the caseH∞ is less compli-
cated than the case of general Hp spaces: An analytic function ϕ : C0 → C0

defines a bounded composition operator Cϕ : f 7→ f ◦ ϕ on H∞ if and only
if ϕ(s) = α0s+

∑
n≥1 αnn

−s with α0 ∈ N (see [B1, after Cor. 2, p. 217], or
[B2, p. 65]). We shall always assume that ϕ satisfies this condition. We then
have ‖Cϕ‖ = 1.

A characterization of compact composition operators on H∞ is due to
Bayart [B1, Th. 18]. Actually, Bayart estimates the (classical) essential norm
of a composition operator on H∞. Let us recall his result:

Theorem ([B1], [B2]). Let Cϕ be a composition operator on H∞. Then
Cϕ is compact if and only if ϕ(C0) ⊂ Cε for some ε > 0.

The compactness of weighted composition operators was studied in the
classical frame of the disk algebra in [K]. Some extensions are studied in [L],
where generalized essential norms are computed.

We are going to use rather elementary techniques, adapted from [L], to
estimate the essential norm, relative to Dunford–Pettis operators and weakly
compact operators, of weighted composition operators on H∞.

We first specify some terminology:

Definition 0.1. Let X, Y be Banach spaces and I a closed subspace of
the space B(X,Y ) of bounded operators from X to Y . The essential norm
of T ∈ B(X,Y ) relative to I is the distance from T to I:

‖T‖e,I = inf{‖T + S‖; S ∈ I}.
This is the canonical norm on the quotient space B(X,Y )/I.

If moreover I is an ideal of B(X) then B(X)/I is an algebra.

The classical case is that of compact operators, I = K(X,Y ) (in this
case, the preceding quotient space is the Calkin algebra). Below, we are
interested in the case of weakly compact operators: I = W(X,Y ), and in
the case of completely continuous operators (= Dunford–Pettis operators):
I = DP(X,Y ). Compact operators are both weakly compact and completely
continuous.

Recall that a Banach space X has the Dunford–Pettis property if, for
every Banach space Y and every operator T : X → Y which is weakly
compact, T maps any weakly Cauchy sequence in X into a norm Cauchy
sequence. A good survey on the subject (until the early eighties) is the paper
of Diestel [D]. A Banach space X has the property (V ) of Pe lczyński if, for
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every Banach space Y and every operator T : X → Y which is not weakly
compact, there exists a subspace X0 of X isomorphic to c0 such that T|X0

is an isomorphic embedding.
If the space H∞ of Dirichlet series had both property (V ) and the

Dunford–Pettis property, then the idealsW(H∞, Y ) and DP(H∞, Y ) would
coincide for every Banach space Y . It turns out thatH∞ does not have prop-
erty (V ) and it is unknown whether it has the Dunford–Pettis property.

Claim. H∞ does not have property (V ) (we have no reference for this
remark).

This is a consequence of the Bohr inequality (see [Q1]):∑
p∈P
|ap| ≤ ‖f‖∞ for every f ∈ H∞,

where P stands for the set of prime numbers. The inequality implies that
{f ∈ H∞; f(s) =

∑
p∈P app

−s} is a complemented subspace of H∞, iso-
morphic to `1. Thus, the corresponding projection can neither be weakly
compact, nor fix a copy of c0. This proves the claim.

Let us point out too that the same argument implies that the space H∞
does not satisfy the Grothendieck theorem: the projection (given by the
Bohr inequality) from H∞ to `1 is bounded and cannot be 2-summing.

Given u ∈ H∞ and an analytic function ϕ from C0 to C0 defining a
composition operator, we shall study the (generalized) essential norm of the
weighted composition operator Tu,ϕ:

Tu,ϕ(f) = u · (f ◦ ϕ) where f ∈ H∞.

Of course, when u = 1, this operator is the classical composition operator,
simply denoted by Cϕ. When ϕ = IdC0 , it is the multiplication operator Mu

by u.
Observe that Tu,ϕ is always bounded from H∞ to H∞, with ‖Tu,ϕ‖ =

‖u‖∞, where ‖u‖∞ = sup{|u(s)|; s ∈ C0}.
The following quantity plays a crucial role in the estimate of the essential

norm:
nϕ(u) = lim

r→0+
sup{|u(s)|; s ∈ C0, Re(ϕ(s)) ≤ r},

which is finite since u is bounded.
If inf Re(ϕ) > 0 then nϕ(u) = 0 (i.e. the supremum over the empty set

is taken as 0).

1. Characterization of weak compactness and complete conti-
nuity. We first need the following lemma.
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Lemma 1.1. Let (hn)n≥0 be a sequence in the disk algebra A(D), to which
we associate the sequence in A defined by Hn(s) = hn(2−s). If (hn)n≥0 is
weakly Cauchy in A(D), then (Hn)n≥0 is weakly Cauchy in A. Moreover ,

(i) (Hn)n≥0 is weakly null if and only if Hn(ix)→ 0 for every x ∈ R.
(ii) (Hn)n≥0 is weakly Cauchy if and only if (Hn(ix)) is convergent for

every x ∈ R.

Proof. First notice that in (i) and (ii) the “only if” part is obvious since
H 7→ H(ix) clearly defines a linear functional on A for each x ∈ R.

Observe that, for every h ∈ A(D), H(s) = h(2−s) defines a function in A.
Indeed, if h(z) =

∑
cjz

j for z in the open unit disk D, then H(s) =
∑
cj2−js

is convergent for s ∈ C0. Moreover, H is continuous on iR.
Now, let ξ be a linear functional on A. We can define a linear functional

on A(D) in the following way: χ(h) = ξ(H), with H(s) = h(2−s). The first
part of the lemma easily follows: ξ(Hn) converges.

Thus, there is a Borel measure µ on T such that ξ(H) =
	
T h dµ. We

can deduce the “if” part in (i) and (ii) because Hn(ix) = hn(2−ix) and the
dominated convergence theorem applies.

Now, we can establish the following characterization, which is a gener-
alization of [B1, Th. 8].

Theorem 1.2. With the previous notations, the following assertions are
equivalent :

(1) Tu,ϕ : A → H∞ is completely continuous.
(2) Tu,ϕ : A → H∞ is weakly compact.
(3) nϕ(u) = 0.
(4) Tu,ϕ : H∞ → H∞ is compact.

Proof. Obviously (4) implies (1) and (2).
(1)⇒(3). Assume that inf Re(ϕ) = 0 and nϕ(u) > ε0 > 0.
Choose any sequence sj ∈ C0 such that Re(ϕ(sj)) converges to 0 and

|u(sj)| ≥ ε0. Extracting a subsequence if necessary, we may suppose that
2−ϕ(sj) converges to some a belonging to the unit circle. We shall write
a = 2−iα where α ∈ R.

Now, we consider the sequence of functions Fn(s) = fn(2−s) where
fn(z) = 2−n(āz+1)n lies in the unit ball of the disk algebra. (Fn) is clearly a
weakly Cauchy sequence in A thanks to Lemma 1.1(ii). Actually Fn(s)→ 0
for every s ∈ C0 \ {iα} and Fn(iα) = 1.

The operator Tu,ϕ being a Dunford–Pettis operator, the sequence
(u · Fn ◦ ϕ)n∈N is norm-Cauchy, hence converging to some σ ∈ H∞. But
for every fixed s ∈ C0, u(s) ·Fn ◦ϕ(s) converges both to 0 and σ(s), so that
σ = 0.
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For any fixed ε > 0, there exists n0 such that sups∈C0
|u(s)Fn0◦ϕ(s)| ≤ ε.

Choosing s = sj0 with j0 so large that |Fn0 ◦ ϕ(sj0)| ≥ 1− ε, we have

ε ≥ |u(sj0)|(1− ε) ≥ (1− ε)ε0.

As ε is arbitrary, this gives a contradiction.
(2)⇒(3). Assume that inf Re(ϕ) = 0 and nϕ(u) > ε0 > 0. As above,

choose any sequence sj ∈ C0 such that Re(ϕ(sj))→ 0 and |u(sj)| ≥ ε0. We
may assume that 2−ϕ(sj) converges to some a = 2−iα ∈ T and we consider
the same sequence of functions Fn. The operator Tu,ϕ being weakly compact,
there exists a sequence (nk) of integers such that (u · Fnk ◦ ϕ)k∈N is weakly
convergent to some σ ∈ H∞. Testing the weak convergence on the point
evaluation δs ∈ (H∞)∗, for each s ∈ C0, we conclude that σ = 0.

By the Mazur theorem, there exists a sequence of convex combinations
of these functions which is norm convergent to 0:∑

k∈Im

c
(m)
k u · (Fnk ◦ ϕ)→ 0

where c(m)
k ≥ 0 and

∑
k∈Im c

(m)
k = 1. Now, fixing ε ∈ (0, ε0/2), we have, for

a suitable m0,

sup
s∈C0

∣∣∣ ∑
k∈Im0

c
(m0)
k u(s) · Fnk(ϕ(s))

∣∣∣ ≤ ε.
So, for every j,

ε0

∣∣∣ ∑
k∈Im0

c
(m0)
k · Fnk(ϕ(sj))

∣∣∣ ≤ ∣∣∣ ∑
k∈Im0

c
(m0)
k u(sj) · Fnk(ϕ(sj))

∣∣∣ ≤ ε.
Letting j tend to infinity, we have Fnk(ϕ(sj)) → Fnk(iα) = 1, for each
k ∈ Im0 , so that

ε0 = ε0

∣∣∣ ∑
k∈Im0

c
(m0)
k

∣∣∣ ≤ ε.
This gives a contradiction.

(3)⇒(4). Note that Tu,ϕ = Mu ◦ Cϕ.
If inf Re(ϕ) > 0 then ϕ(C0) ⊂ Cε for some ε > 0 and Cϕ is compact

thanks to Bayart’s theorem, recalled in the introduction.
If inf Re(ϕ) = 0 and limr→0+ sup{|u(s)|; s ∈ C0, Re(ϕ(s)) ≤ r} = 0

then Tu,ϕ is compact. Indeed, given a sequence in the unit ball of H∞, we
can extract a subsequence (fn)n uniformly converging on every half-plane
Cθ with θ > 0. This is due to a version for Dirichlet series of the classical
Montel theorem, proved by Bayart (see [B1, Lemma 18] or [B2, Lemme 5.2]).
Hence, given ε > 0, we choose θ > 0 such that |u(s)| ≤ ε when Re(ϕ(s)) ≤ θ.



62 P. Lefèvre

Then we have

‖u · (fn − fm) ◦ ϕ‖∞ ≤ max{‖u‖∞ sup
ϕ(s)∈Cθ

|(fn − fm) ◦ ϕ(s)|, 2ε},

which is less than 2ε when n,m are large enough.

Corollary 1.3. Let Cϕ be a composition operator on H∞. The follow-
ing assertions are equivalent :

(i) Cϕ is completely continuous.
(ii) Cϕ is weakly compact.

(iii) Cϕ is compact.
(iv) inf Re(ϕ) > 0.

Proof. If inf Re(ϕ) > 0, then Cϕ is indeed compact. If Cϕ is completely
continuous (resp. weakly compact) on H∞ then its restriction to A is as
well. The result follows from the preceding theorem in the case u = 1.

Remark. We have the same results when the operators act from A into
itself (under the extra assumption that ϕ ∈ A).

From Theorem 1.2, we can deduce

Corollary 1.4. Let u ∈ H∞.

(1) Assume that E = {y ∈ R; infx>0 Re(ϕ(x + iy)) = 0} has positive
Lebesgue measure. Then Tu,ϕ is weakly compact or completely con-
tinuous if and only if u = 0.

(2) Mu : A → H∞ is weakly compact or completely continuous if and
only if u = 0.

Remark. Actually, the hypothesis on E means that the (nontangential)
boundary values of ϕ, defined almost everywhere on the imaginary axis,
vanish on a set of positive Lebesgue measure.

Proof. Under the hypothesis of weak compactness or complete continuity
of Tu,ϕ, we have nϕ(u) = 0, due to Theorem 1.2. Let us fix ε > 0 and take
r > 0 such that for every s ∈ C0,

Re(ϕ(s)) < r ⇒ |u(s)| ≤ ε.
The hypothesis on ϕ implies that, for every y ∈ E, there is a sequence (xn)n
in (0,∞) with

Re(ϕ(sn))→ 0

where sn = xn + iy. Moreover, we may suppose that xn → 0+, since for
every a > 0, ϕ(Ca) ⊂ Cb for some b > 0 (see [GH, Prop. 4.2]). Actually, we
could replace sn by any sequence in C0 nontangentially converging to iy.

But for almost every y ∈ E (say for y ∈ E0 where E0 ⊂ E has positive
Lebesgue measure), u(sn)→ u∗(iy), the boundary value of u, defined almost
everywhere on the imaginary axis.
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Therefore, for every y ∈ E0 and n large enough, we have Re(ϕ(sn)) < r,
hence |u∗(iy)| ≤ ε. Since ε > 0 is arbitrary the boundary value of u vanishes
on a set of positive Lebesgue measure, so u = 0 everywhere on C0.

The second point is an immediate consequence of the first one.

2. Essential norms. In the following, X denotes either A or H∞. We
shall adapt techniques of Section 1 to compute essential norms. We get a
generalization of the theorem of Bayart in several directions. We first need
the following lower estimate:

Lemma 2.1. Let u ∈ H∞ and ϕ : C0 → C0 defining a composition
operator. Assume that I ⊂ W(X,H∞)⊕DP(X,H∞). Then

nϕ(u) ≤ ‖Tu,ϕ‖e,I .

Proof. The proof combines the one of Theorem 1.2 with that of [B1]
(relying on an idea due to Zheng [Z]) and is very similar to the one given in
[L] in the framework of classical Hardy spaces. For completeness, we give the
details. We already know that ‖Tu,ϕ‖e,I = 0 if and only if Tu,ϕ is completely
continuous if and only if nϕ(u) = 0 if and only if Tu,ϕ is compact. We now
assume that Tu,ϕ is not compact; this implies that inf Re(ϕ) = 0.

We choose a sequence sj ∈ C0 such that Re(ϕ(sj)) → 0 and |u(sj)| →
nϕ(u). We may assume that 2−ϕ(sj) converges to some a = 2−iα.

We introduce the sequence of functions (where n ≥ 2)

Hn(s) =
nā2−s − (n− 1)
n− (n− 1)ā2−s

,

which lies in the unit ball of A.
Obviously, Hn(s) = hn(2−s) where hn lies in the unit ball of the disk

algebra, with hn(z)→ −1 for every z ∈ D\{a} and hn(a) = 1. So, Hn(s)→
−1 for every s ∈ C0 \ {iα} and Hn(iα) = 1.

Now, let S ∈ I. Write S = D +W , where W is weakly compact and D
is Dunford–Pettis.

As D ∈ DP(X,H∞) and (Hn)n is a weakly Cauchy sequence by Lem-
ma 1.1, (D(Hn))n is a Cauchy sequence, hence convergent to some ∆ ∈ H∞.

As W ∈ W(X,H∞), up to extracting a subsequence, (W (Hn))n is weakly
convergent to some w ∈ H∞. By the Mazur theorem, we can find some
c
(m)
k ≥ 0 with

∑
k∈Im c

(m)
k = 1, where Im ⊂ N, and

∑
k∈Im c

(m)
k W (Hk)→ w.

Moreover, we can assume that sup Im < inf Im+1.
Introducing H̃m=

∑
k∈Im c

(m)
k Hk, we have H̃m(s)→−1 for every s∈C0,

and H̃m(ϕ(sj)) → 1 for every m. Clearly, (D(H̃n))n is norm convergent
to ∆, so (S(H̃n))n is norm convergent to σ = ∆+ w.
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For every integer n,

‖(Tu,ϕ − S)(H̃n)‖∞ ≥ ‖Tu,ϕ(H̃n)− σ‖∞ − ‖S(H̃n)− σ‖∞
and we already know that ‖S(H̃n)− σ‖∞ → 0.

For every s ∈ C0 \{iα}, we have |u(s) · H̃n ◦ϕ(s)−σ(s)| → |σ(s) +u(s)|.
If |σ(s0) + u(s0)| > nϕ(u) for some s0 ∈ C0, then

‖Tu,ϕ − S‖ ≥ lim ‖(Tu,ϕ − S)(H̃n)‖∞ ≥ lim |u(s0) · H̃n ◦ ϕ(s0)− σ(s0)|
= |σ(s0) + u(s0)| ≥ nϕ(u).

If not, then ‖σ+ u‖∞ ≤ nϕ(u) and |σ(s)− u(s)| ≥ 2|u(s)| − nϕ(u) for every
s ∈ C0. Then, for every n ≥ 2 and every integer j,

‖Tu,ϕ − S‖ ≥ |u(sj) · H̃n ◦ ϕ(sj)− σ(sj)| − ‖S(H̃n)− σ‖∞
≥ 2|u(sj)| − nϕ(u)− |u(sj)| · |H̃n ◦ ϕ(sj)− 1| − ‖S(H̃n)− σ‖∞.

Letting first j tend to infinity, we obtain ‖Tu,ϕ−S‖ ≥ nϕ(u)−‖S(H̃n)−σ‖∞.
Finally, letting n → ∞ yields ‖Tu,ϕ − S‖ ≥ nϕ(u), and the conclusion
follows.

For the upper estimate, we have

Lemma 2.2. Let u ∈ H∞ and ϕ : C0 → C0 defining a composition
operator. Then

‖Tu,ϕ‖e ≤ inf{2nϕ(u), ‖u‖∞}.

Proof. Fix ε > 0. There exists r ∈ (0, 1) such that for every s ∈ C0,

Re(ϕ(s)) ≤ r ⇒ |u(s)| ≤ nϕ(u) + ε.

Now, fixing % > 0 for a while, we introduce the operator defined for s ∈ C0

by
S(f)(s) = u(s) · f(ϕ(s) + %).

In other words, S = Tu,ϕ% with ϕ% = ϕ+ %. By the theorem of Bayart, S is
compact since ϕ%(C0) ⊂ C%. We have

‖Tu,ϕ − S‖ = sup
f∈H∞
‖f‖∞≤1

sup
Re(ϕ(s))>0

|u(s)| · |f ◦ ϕ(s)− f ◦ (ϕ(s) + %)|.

First observe that

sup
f∈H∞
‖f‖∞≤1

sup
Re(ϕ(s))≤r

|u(s)| · |f ◦ ϕ(s)− f ◦ (ϕ(s) + %)| ≤ 2(nϕ(u) + ε).

On the other hand, we claim that

sup
f∈H∞
‖f‖∞≤1

sup
Re(ϕ(s))>r

|f ◦ ϕ(s)− f ◦ (ϕ(s) + %)| %→0+

−−−→ 0.
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Indeed,

sup
f∈H∞
‖f‖∞≤1

sup
Re(ϕ(s))>r

|f ◦ϕ(s)−f ◦ (ϕ(s)+%)| ≤ sup
f∈H∞
‖f‖∞≤1

sup
Re(w)>r

|f(w)−f(w+%)|

and using the analogue for Dirichlet series of the Montel theorem (cited
above), it is easy to see that

lim
%→0+

sup
Re(w)>r

sup
f∈H∞
‖f‖∞≤1

|f(w)− f(w + %)| = 0.

So we can choose % > 0 such that

sup
f∈H∞
‖f‖∞≤1

sup
Re(ϕ(s))>r

|f ◦ ϕ(s)− f ◦ (ϕ(s) + %)| ≤ ε.

Finally,
‖Tu,ϕ − S‖ ≤ max{ε‖u‖∞, 2(nϕ(u) + ε)}.

As ε > 0 is arbitrary, we conclude that ‖Tu,ϕ‖e ≤ 2nϕ(u). This gives the
result.

We summarize our results in the following theorem.

Theorem 2.3. Let u ∈ H∞ and ϕ : C0 → C0 defining a composition
operator. Assume that K(X,H∞) ⊂ I ⊂ W(X,H∞)⊕DP(X,H∞). Then

‖Tu,ϕ‖e,I ≈ nϕ(u).

More precisely ,

nϕ(u) ≤ ‖Tu,ϕ‖e,I ≤ inf{2nϕ(u), ‖u‖∞}.
As a particular case, when nϕ(u) = ‖u‖∞, we have the equality ‖Tu,ϕ‖e,I =
‖Tu,ϕ‖e = ‖u‖∞.

We specify two particular cases.

Corollary 2.4. Let u ∈ H∞ and ϕ : C0 → C0 defining a composition
operator. Assume that K(X,H∞) ⊂ I ⊂ W(X,H∞)⊕DP(X,H∞). Then

(1) ‖Mu‖e,I = ‖Mu‖e = ‖u‖∞.
(2) ‖Cϕ‖e,I = 1 if inf Re(ϕ) = 0, and ‖Cϕ‖e,I = 0 if inf Re(ϕ) > 0.
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ing conversations on the topic of Dirichlet series. We also wish to thank the
referee for suggesting some simplifications of the previous proofs of Corol-
lary 1.4 and Lemma 2.2.

References

[B1] F. Bayart, Hardy spaces of Dirichlet series and their composition operators,
Monatsh. Math. 136 (2002), 203–236.



66 P. Lefèvre
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