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Algebra isomorphisms between standard operator algebras
by

THOMAS TONEV (Missoula, MT) and AARON LUTTMAN (Potsdam, NY)

Abstract. If X and Y are Banach spaces, then subalgebras 2 C B(X) and B C
B(Y), not necessarily unital nor complete, are called standard operator algebras if they
contain all finite rank operators on X and Y respectively. The peripheral spectrum of
A € 2 is the set 07(A) = {X € 0(A) : |A] = max.c,(a)|2|} of spectral values of A
of maximum modulus, and a map ¢: 2 — B is called peripherally-multiplicative if it
satisfies the equation o (¢(A) o 9(B)) = o=(AB) for all A,B € 2. We show that any
peripherally-multiplicative and surjective map ¢: 2 — 9B, neither assumed to be linear nor
continuous, is a bijective bounded linear operator such that either ¢ or —¢ is multiplicative
or anti-multiplicative. This holds in particular for the algebras of finite rank operators or
of compact operators on X and Y and extends earlier results of Molnar. If, in addition,
or(p(Ao)) # —ox(Aop) for some Ag € AU then ¢ is either multiplicative, in which case X is
isomorphic to Y, or anti-multiplicative, in which case X is isomorphic to Y*. Therefore,
if X 22Y™ then ¢ is multiplicative, hence an algebra isomorphism, while if X 22 Y, then
 is anti-multiplicative, hence an algebra anti-isomorphism.

1. Introduction. Identifying algebra isomorphisms among maps be-
tween Banach algebras has attracted considerable interest. For maps pre-
sumed from the beginning to be linear it has been an active area of research,
particularly for maps that also preserve some non-algebraic structure, the
so-called linear preservers (see e.g. [9, 10, 12]). Recall that the spectrum of an
operator A € B(X) is the compact set 0(A) = {\ € C: (\[—-A) ¢ B(X)~'}.
Molnér [11] introduced maps ¢ of an algebra into itself that are weakly mul-
tiplicative in the sense that

(1) o(¢(A) o p(B)) = o(AB)

for all algebra elements A, B, and has shown that any surjective self-map
¢ that satisfies condition (1) is closely related to an algebra isomorphism
in the case of B(X), the algebra of all bounded linear operators on a Ba-
nach space X, or C'(K), the algebra of complex-valued, continuous functions
on a first-countable compact Hausdorff space K. For uniform algebras and
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algebras of type B(X) Molnar’s result was extended further in various di-
rections (see e.g. [3, 4, 5, 8, 10, 13]). Rather than requiring that such a map
multiplicatively preserves the entire spectrum, however, it is also natural to
ask whether preserving particular subsets of the spectrum will suffice. The
peripheral spectrum or(A) = {\ € 0(A) : || = max,¢,(a) |2]} of A is the set
of spectral values of A of maximum modulus. In [3, 10] Molnér’s result is
extended to surjective maps : 2 — B between two uniform algebras that
instead of (1) satisfy the equation

(2) ox(p(A) 0 p(B)) = ox(AB)

for all A, B € 2. Maps that satisfy (2) are called peripherally-multiplicative.
In the settings of uniform algebras and operator algebras of type B(X),
related results involving alternative conditions are also considered (e.g. in
[2, 3, 12, 14, 15]). However, for operator algebras other than B(X), and
in particular for non-unital algebras or algebras of compact operators, the
subject has not been sufficiently studied.

A subalgebra 2 of B(X), not necessarily complete nor unital, is called a
standard operator algebra if it contains all rank one operators. For instance,
the algebra of finite rank operators, its norm-closure, and the algebra of com-
pact operators on a Banach space are standard operator algebras. In this pa-
per we extend Molnér’s result [11, Theorem 1] to peripherally-multiplicative
maps ¢ between distinct and not necessarily unital standard operator alge-
bras. In particular, we do not assume that ¢ is linear, nor continuous, nor
that it preserves operators’ injectivity or surjectivity. The theorems that
follow are the primary results of the paper.

THEOREM 1. Let X,Y be Banach spaces, 2 C B(X) and B C B(Y)
be standard operator algebras, and p: A — B be a surjective map, a priori
neither linear nor continuous. If ¢ is peripherally-multiplicative, i.e. satisfies
condition (2) for all A,B € A, then it is linear, and either ¢ or —p is
multiplicative or anti-multiplicative. Therefore, either ¢ or —p is an algebra
isomorphism or anti-isomorphism.

THEOREM 2. Let ¢ be as in Theorem 1. If, in addition, o,(p(Ag)) #
—0x(Ap) for some Ay € A then ¢ is a bijective bounded linear operator
which is either multiplicative, in which case X is isomorphic to 'Y, or anti-
multiplicative, in which case X is isomorphic to Y*. Thus, if X 2Y™* then
p is multiplicative, hence an algebra isomorphism, while if X 2Y, then ¢
18 anti-multiplicative, hence an algebra anti-isomorphism.

Recall that an operator T' € B(X) is of rank at most one if the dimension
of its range is less than or equal to 1. Every such operator has the form x® f
for some z € X and f € X*, the dual space of X, where (z ® f)y = f(y)x.
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The set of all operators in B(X) of rank at most one will be denoted by
Bi(X).

Note that o(z® f) C {0, f(z)} and o(z® f) = {f(x)}. It is easy to see
that if A € B(X) and 2 ® f € By(X) then

(3) Ao(z® f)=(Az)® f.
Therefore, Ao (x ® f) is also an operator of rank at most one, and
(4) or(Ao(x@ f)) = {f(Az)}.

The following lemma gives a criterion for coincidence of two operators
in B(X).

LEMMA 1 (Identification Lemma). Let X be a Banach space and A, B €
B(X). If 0.(AT) = 0(BT) for every T € B1(X), then A = B.

Proof. Let T =2 ® f € B1(X). If 0,(AT) = 0,(BT) for all T € B;(X),
then by (4) we have {f(Az)} =0,(AT)=0,(BT)={f(Bz)}. Since f € X*
is arbitrary, Ax = Bz for any z € X, and thus A = B. »

2. Peripherally-multiplicative maps on standard operator al-
gebras. Throughout this section 2 C B(X) and B C B(Y) denote stan-
dard operator algebras on Banach spaces X and Y, respectively.

LEMMA 2. Ewvery peripherally-multiplicative map ¢: A — B(Y) on a
standard operator algebra A is injective.

Proof. Indeed, if ¢(A) = ¢(B) for some A, B € 2, then the peripheral
multiplicativity of ¢ yields o (AT) = o,(p(A)op(T)) = ox(0(B)op(T)) =
ox(BT) for every T € Bi(X). The Identification Lemma 1 implies that
A = B, i.e. y is injective. m

The next lemma shows that if ¢ is a peripherally-multiplicative surjective
map between standard operator algebras, then ¢(B1(X)) = B1(Y), i.e. ¢
preserves the operators of rank at most one.

LEMMA 3. Fvery peripherally-multiplicative surjective map p: A — B
preserves the operators of rank at most one.

Proof. We assume that dim(X) > 1 since the result obviously holds if
dim(X) = 1. Since B;(Y) C B, the surjectivity of ¢ implies that for any 7" €
B (Y) there exists S € A with T' = ¢(.5). We claim that S is of rank at most
one. Assume that rank(S) > 1, and let x1, x2 be two linearly independent ele-
ments in the range of S. Hence there are linearly independent elements 2/,
in X with Sz} = z;, i = 1,2. By the Hahn-Banach Theorem we can choose
linearly independent linear functionals fi, fo in X* with fi(x2) = fa(z1) =0
and f;(z;) =1, i = 1, 2. Since the operator P = 2} ® f1 — 24 ® f2 is of rank at



166 T. Tonev and A. Luttman

most two, it belongs to . The operator SP = 21 ® fi — 2 ® fo also belongs
to A, and moreover o, (SP) = {—1,1}. On the other hand, Top(P) € B1(Y)
since T' € B1(Y), and therefore o,(¢(S) o p(P)) = o(T o ¢(P)) is a sin-
gleton. Thus o,(¢(S) o p(P)) # o,(SP), in violation of the peripheral mul-
tiplicativity of ¢. Consequently, rank(S) < 1, i.e. S € By(X), and thus
T € ¢(B1(X)). Hence, B1(Y) C ¢(B1(X)).

Since 9B is a standard operator algebra on Y and ¢ is bijective, 7! is
also peripherally-multiplicative, and the above arguments applied to ¢!
yield the opposite inclusion. =

LEMMA 4. Fvery peripherally-multiplicative surjective map p: A — B
1s linear and one of the following holds:

(a) there are bijective linear operators C: X — Y and D: X* — Y~
such that p(x ® f) = Cx @ Df for every x € X and f € X*, or

(b) there are bijective linear operators E: X* — Y and F: X — Y*
such that p(z ® f) = Ef @ Fx for allx € X and f € X*.

Proof. We first show that under the hypotheses ¢ is a linear operator.
KT =u®ge Bi(Y) for some u € Y and g € Y*, then Lemma 3 implies
that T = ¢(S) for some S =2 ® f € B1(X) with z € X and f € X*. The
peripheral multiplicativity of ¢, the linearity of f and g and (4) imply that
for all A, p € C and A, B € 2 we have

or(p(AA+ uB) o T) = o, (p(AMA + uB) o p(5)) = 0 (AMA + uB) o S)
=0r((AM+pB)o (2 ® f)) = or((A + puB)z) @ f) = {f(AA+pB)z)}
= {f(AM(Az) + u(Bx))} = {A\f(Az) + pf(Bx)} = M f(Azx)} + p{f(Bz)}

= Aoz (AS) + por(BS) = Aox(p(A) 0 p(S)) + pox(p(B) o ¢(5))

= Aor(p(A) o (u® g)) + pox(p(B) o (u®g))

= Ao ((p(A)u) ® g) + pox((e(B)u) @ g)

= Mg((e(A)u)} + p{g((e(B))u)} = {Ag((p(A)u) + ng((p(B))u)}
= {9((Ap(A) + pe(B))u)} = ox((Ap(A) + pp(B)) o (u® g))
= ox((Ap(A) + pp(B)) 0 () = ox((Ap(A) + pe(B)) o T).

The Identification Lemma 1 implies that o(AA + uB) = Ap(A) + pup(B),

i.e. ¢ is linear, as claimed. Consequently, ¢ is a bijective linear operator.

Thus ¢ is linear and preserves the operators of rank at most one by

Lemma 3. The characterization of ¢ as being of the form (a) or (b) is

well-known in the case when 2 = B(X), 8 = B(Y) and ¢ is a linear

spectrum-preserving map. The proof provided in [6, Theorem 2] actually

works also for arbitrary standard operator algebras in the case when ¢
preserves operators of rank at most one.
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Observe that, if ¢ is multiplicative or anti-multiplicative and preserves
the peripheral spectra of operators (i.e. o(¢p(A)) = o:(A), A € ), then ¢
is peripherally-multiplicative. Lemmas 2 and 4 imply the following:

COROLLARY 1. Every multiplicative [resp. anti-multiplicative] surjective
map p: A — B that preserves the peripheral spectra of operators is an
algebra isomorphism [resp. anti-isomorphism| onto B.

The following more general theorem extends one of the main results
n [11].

THEOREM 1. Let X,Y be Banach spaces, A C B(X) and B C B(Y)
be standard operator algebras, and p: A — B be a surjective map. If ¢ is
peripherally-multiplicative, i.e. o, (p(A)op(B)) = or(AB) for all A, B € 2,
then it is linear, and either @ or —p is multiplicative or anti-multiplicative.
Therefore, either ¢ or —p is an algebra isomorphism or anti-isomorphism.

Proof. According to Lemmas 2 and 4 the map ¢ is a bijective linear
operator between 2 and 9B and is of type either (a) or (b) (cf. Lemma 4).

If ¢ is of type (a), then for any x € X and f € X*, p(z® f) = Cz®Df,
where C: X — Y and D: X* — Y™ are bijective linear operators. Now

ox((z®@ f)o(z® f)) = ox{(f(z)z) @ f} = {(f(x))?}, but also

ar(p(z® fop(x® f)) = ox((Cx@ Df) o (Cx® Df))
= ox((Df)(Cx))Cx) ® Df) = {((Df)(Cx))*}.

The peripheral multiplicativity of ¢ implies that (f(z))? = ((Df)(Cx))?,
and hence (Df)(Cx) = £f(x). For any A € A and x ® f € B1(X) we have

{f(Az)} = 0x(Az @ f) = ox(A o (z® [))
= ox(p(A) o p(x ® f)) = ox(p(A) o (Cz © D))
= or((p(A)Cx) ® Df)) = {(Df)(p(A)Cx)}
= {(DF)(CCTH(p(A)Cx))} = {£f((CT p(A))Cx)}.

Since this holds for every f € X*, it follows that Az = (£C~'p(A)O)z,
i.e. +p(A)Cx = CAz. Hence, ¢(A)y = £(CAC )y for any y € Y, i.e.
0(A)y = Ta(y)(CAC™ )y = 74(y)1(A)y, where 74 is a £1-valued function
on Y (possibly depending on A) and % is the injective, linear, multiplicative
operator from 2 into B(Y) defined by 1(A4) = CAC~!. The linearity of
©(A) and ¥ (A) implies that 74 actually does not depend on y, thus ¢(A) =
TAY(A), where 74 takes values £1 and possibly depends on A. The linearity
of ¢ and @ implies that 74 does not depend on A either. Hence ¢ = £,
i.e. either ¢ or —¢ is multiplicative.
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If ¢ is of type (b), then for any z € X and f € X*, p(x® f) = Ef ® Fz,
where F: X* — Y and F': X — Y* are bijective linear operators. Now
or(p(z @ f)opr® f)) =or((Ef © Fz)o (Ef ® Fx))
= ox(((Fx)(Ef)Ef) ® Fa) = {((Fz)(E[))*}.
The peripheral multiplicativity yields (f(z))? = ((Fx)(Ef))?, so (Fz)(Ef)
=+ f(x). For any A € 2 and z ® f € B1(X) we have
{(AN) (@)} = {f(A2)} = 0= (Az © f) = 0x(A 0 (x® f))
= ox(p(A) ooz ® [)) = on(p(A) o (Ef ® Fu))
or((p(A)ESf) © Fz) = {(Fz)(p(A)Ef)}
= {(F2)(BE" (p(A)ES))} = {£(E7 (o(A)ES))(x)},
where A*: X* — X* is the adjoint operator of A. Since this holds for
every x € X, it follows that A*f = (£E 1p(A)E)f. Consequently, A* =
+E1o(A)E. Hence, £p(A)E = EA*, ie. p(A) = £n(A), where 7 is the
injective, linear, anti-multiplicative operator from 2l into B(Y') defined by
n(A) = EA*E~!, i.e. either ¢ or —¢ is anti-multiplicative. m

It is clear that the first case in Theorem 1 is possible only if X and Y
are linearly isomorphic, while the second case is possible only if X and Y*
are linearly isomorphic. Note that the conclusion of Theorem 1 also holds
if ¢ satisfies equation (2) for each A € 2 and every operator B € B(X) of
finite rank, or even of rank at most two. If B € B;(X) then the equation
op(p(A) o p(B)) = op(AB), similar to (2) and considered in [11], where
op(A) is the point spectrum of A, implies (2), but not vice versa.

Since X, Y are Banach spaces, under the hypotheses of Theorem 1 the bi-
jections C, E¥ and their inverses are actually bounded linear operators by the
Closed Graph Theorem. Consequently, ¢ is also a bounded linear operator.

COROLLARY 2. If a surjective map o between the algebras of compact
operators (or of finite-rank operators) on X andY is peripherally-multiplica-
tive, then either ¢ or —p is a continuous algebra isomorphism or anti-
isomorphism.

If, in addition to the hypotheses of Theorem 1, there exists an Ag € A
such that or(p(Ag)) # —or(Ap), then the case “—¢” of Theorem 1 is
ruled out. Indeed, if ¢ = —1, where ¥(A4) = CAC™L, then o, (p(Ap)) =
ox(—¥(Ap)) = —0-(¥(Ao)) = —ox(Ap), contradicting the assumption. Sim-
ilar arguments apply in the case when ¢ = —n, where n(A) = FA*E~L.
Hence ¢ # —,—n, i.e. ¢ = 9 or ¢ = n and thus ¢ is an algebra isomor-
phism or anti-isomorphism. In the first case there exists a linear isomorphism
C: X — Y so that p(A) = CAC™!, while in the second case there exists a
linear isomorphism E: X* — Y so that p(A) = EA*E~L.
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Consequently, we obtain the following theorem:

THEOREM 2. Let ¢ be as in Theorem 1. If, in addition, o.(p(Ao)) #
—0x(Ap) for some Ay € A then ¢ is a bijective and bounded linear operator
which is either multiplicative, in which case X s isomorphic to'Y, or anti-
multiplicative, in which case X is isomorphic to Y*.

Consequently, under the conditions of Theorem 2, if X 22 Y* then ¢ is
multiplicative, hence an algebra isomorphism, while if X 22 Y, then ¢ is
anti-multiplicative, hence an algebra anti-isomorphism.

Clearly, Theorem 2 holds if there exists an Ay € 2 with o,(Ag) # {0}
such that o.(¢(Ap)) = 0x(Ap). In particular, we have:

COROLLARY 3. Let 2 C B(X) and B C B(Y) be unital standard op-
erator algebras. If a peripherally-multiplicative surjective map ¢: A — B
18 unital, then it is a continuous multiplicative or anti-multiplicative linear
operator.

Note that if, under the hypotheses of Theorem 2, 2 is the algebra of finite
rank operators on X [resp. its closure], then B is the algebra of finite rank
operators on Y [resp. its closure]. If 2 is the algebra of compact operators
on X, then the elements of B are automatically compact operators on Y.
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