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Algebra isomorphisms between standard operator algebras

by

Thomas Tonev (Missoula, MT) and Aaron Luttman (Potsdam, NY)

Abstract. If X and Y are Banach spaces, then subalgebras A ⊂ B(X) and B ⊂
B(Y ), not necessarily unital nor complete, are called standard operator algebras if they
contain all finite rank operators on X and Y respectively. The peripheral spectrum of
A ∈ A is the set σπ(A) = {λ ∈ σ(A) : |λ| = maxz∈σ(A) |z|} of spectral values of A
of maximum modulus, and a map ϕ : A → B is called peripherally-multiplicative if it
satisfies the equation σπ(ϕ(A) ◦ ϕ(B)) = σπ(AB) for all A,B ∈ A. We show that any
peripherally-multiplicative and surjective map ϕ : A→ B, neither assumed to be linear nor
continuous, is a bijective bounded linear operator such that either ϕ or −ϕ is multiplicative
or anti-multiplicative. This holds in particular for the algebras of finite rank operators or
of compact operators on X and Y and extends earlier results of Molnár. If, in addition,
σπ(ϕ(A0)) 6= −σπ(A0) for some A0 ∈ A then ϕ is either multiplicative, in which case X is
isomorphic to Y , or anti-multiplicative, in which case X is isomorphic to Y ∗. Therefore,
if X 6∼= Y ∗ then ϕ is multiplicative, hence an algebra isomorphism, while if X 6∼= Y , then
ϕ is anti-multiplicative, hence an algebra anti-isomorphism.

1. Introduction. Identifying algebra isomorphisms among maps be-
tween Banach algebras has attracted considerable interest. For maps pre-
sumed from the beginning to be linear it has been an active area of research,
particularly for maps that also preserve some non-algebraic structure, the
so-called linear preservers (see e.g. [9, 10, 12]). Recall that the spectrum of an
operator A ∈ B(X) is the compact set σ(A) = {λ ∈ C : (λI−A) /∈ B(X)−1}.
Molnár [11] introduced maps ϕ of an algebra into itself that are weakly mul-
tiplicative in the sense that

(1) σ(ϕ(A) ◦ ϕ(B)) = σ(AB)

for all algebra elements A,B, and has shown that any surjective self-map
ϕ that satisfies condition (1) is closely related to an algebra isomorphism
in the case of B(X), the algebra of all bounded linear operators on a Ba-
nach space X, or C(K), the algebra of complex-valued, continuous functions
on a first-countable compact Hausdorff space K. For uniform algebras and
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algebras of type B(X) Molnár’s result was extended further in various di-
rections (see e.g. [3, 4, 5, 8, 10, 13]). Rather than requiring that such a map
multiplicatively preserves the entire spectrum, however, it is also natural to
ask whether preserving particular subsets of the spectrum will suffice. The
peripheral spectrum σπ(A) = {λ ∈ σ(A) : |λ| = maxz∈σ(A) |z|} of A is the set
of spectral values of A of maximum modulus. In [3, 10] Molnár’s result is
extended to surjective maps ϕ : A→ B between two uniform algebras that
instead of (1) satisfy the equation

(2) σπ(ϕ(A) ◦ ϕ(B)) = σπ(AB)

for all A,B ∈ A. Maps that satisfy (2) are called peripherally-multiplicative.
In the settings of uniform algebras and operator algebras of type B(X),
related results involving alternative conditions are also considered (e.g. in
[2, 3, 12, 14, 15]). However, for operator algebras other than B(X), and
in particular for non-unital algebras or algebras of compact operators, the
subject has not been sufficiently studied.

A subalgebra A of B(X), not necessarily complete nor unital, is called a
standard operator algebra if it contains all rank one operators. For instance,
the algebra of finite rank operators, its norm-closure, and the algebra of com-
pact operators on a Banach space are standard operator algebras. In this pa-
per we extend Molnár’s result [11, Theorem 1] to peripherally-multiplicative
maps ϕ between distinct and not necessarily unital standard operator alge-
bras. In particular, we do not assume that ϕ is linear, nor continuous, nor
that it preserves operators’ injectivity or surjectivity. The theorems that
follow are the primary results of the paper.

Theorem 1. Let X,Y be Banach spaces, A ⊂ B(X) and B ⊂ B(Y )
be standard operator algebras, and ϕ : A → B be a surjective map, a priori
neither linear nor continuous. If ϕ is peripherally-multiplicative, i.e. satisfies
condition (2) for all A,B ∈ A, then it is linear , and either ϕ or −ϕ is
multiplicative or anti-multiplicative. Therefore, either ϕ or −ϕ is an algebra
isomorphism or anti-isomorphism.

Theorem 2. Let ϕ be as in Theorem 1. If , in addition, σπ(ϕ(A0)) 6=
−σπ(A0) for some A0 ∈ A then ϕ is a bijective bounded linear operator
which is either multiplicative, in which case X is isomorphic to Y , or anti-
multiplicative, in which case X is isomorphic to Y ∗. Thus, if X 6∼= Y ∗ then
ϕ is multiplicative, hence an algebra isomorphism, while if X 6∼= Y , then ϕ
is anti-multiplicative, hence an algebra anti-isomorphism.

Recall that an operator T ∈ B(X) is of rank at most one if the dimension
of its range is less than or equal to 1. Every such operator has the form x⊗f
for some x ∈ X and f ∈ X∗, the dual space of X, where (x⊗ f)y = f(y)x.
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The set of all operators in B(X) of rank at most one will be denoted by
B1(X).

Note that σ(x⊗ f) ⊂ {0, f(x)} and σπ(x⊗ f) = {f(x)}. It is easy to see
that if A ∈ B(X) and x⊗ f ∈ B1(X) then

(3) A ◦ (x⊗ f) = (Ax)⊗ f.
Therefore, A ◦ (x⊗ f) is also an operator of rank at most one, and

(4) σπ(A ◦ (x⊗ f)) = {f(Ax)}.

The following lemma gives a criterion for coincidence of two operators
in B(X).

Lemma 1 (Identification Lemma). Let X be a Banach space and A,B ∈
B(X). If σπ(AT ) = σπ(BT ) for every T ∈ B1(X), then A = B.

Proof. Let T = x⊗ f ∈ B1(X). If σπ(AT ) = σπ(BT ) for all T ∈ B1(X),
then by (4) we have {f(Ax)}=σπ(AT ) =σπ(BT ) = {f(Bx)}. Since f ∈X∗
is arbitrary, Ax = Bx for any x ∈ X, and thus A = B.

2. Peripherally-multiplicative maps on standard operator al-
gebras. Throughout this section A ⊂ B(X) and B ⊂ B(Y ) denote stan-
dard operator algebras on Banach spaces X and Y , respectively.

Lemma 2. Every peripherally-multiplicative map ϕ : A → B(Y ) on a
standard operator algebra A is injective.

Proof. Indeed, if ϕ(A) = ϕ(B) for some A,B ∈ A, then the peripheral
multiplicativity of ϕ yields σπ(AT ) = σπ(ϕ(A)◦ϕ(T )) = σπ(ϕ(B)◦ϕ(T )) =
σπ(BT ) for every T ∈ B1(X). The Identification Lemma 1 implies that
A = B, i.e. ϕ is injective.

The next lemma shows that if ϕ is a peripherally-multiplicative surjective
map between standard operator algebras, then ϕ(B1(X)) = B1(Y ), i.e. ϕ
preserves the operators of rank at most one.

Lemma 3. Every peripherally-multiplicative surjective map ϕ : A → B
preserves the operators of rank at most one.

Proof. We assume that dim(X) > 1 since the result obviously holds if
dim(X) = 1. Since B1(Y ) ⊂ B, the surjectivity of ϕ implies that for any T ∈
B1(Y ) there exists S ∈ A with T = ϕ(S). We claim that S is of rank at most
one. Assume that rank(S) > 1, and let x1, x2 be two linearly independent ele-
ments in the range of S. Hence there are linearly independent elements x′1, x

′
2

in X with Sx′i = xi, i = 1, 2. By the Hahn–Banach Theorem we can choose
linearly independent linear functionals f1, f2 in X∗ with f1(x2) = f2(x1) = 0
and fi(xi) = 1, i = 1, 2. Since the operator P = x′1⊗f1−x′2⊗f2 is of rank at
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most two, it belongs to A. The operator SP = x1⊗f1−x2⊗f2 also belongs
to A, and moreover σπ(SP ) = {−1, 1}. On the other hand, T ◦ϕ(P ) ∈ B1(Y )
since T ∈ B1(Y ), and therefore σπ(ϕ(S) ◦ ϕ(P )) = σπ(T ◦ ϕ(P )) is a sin-
gleton. Thus σπ(ϕ(S) ◦ϕ(P )) 6= σπ(SP ), in violation of the peripheral mul-
tiplicativity of ϕ. Consequently, rank(S) ≤ 1, i.e. S ∈ B1(X), and thus
T ∈ ϕ(B1(X)). Hence, B1(Y ) ⊂ ϕ(B1(X)).

Since B is a standard operator algebra on Y and ϕ is bijective, ϕ−1 is
also peripherally-multiplicative, and the above arguments applied to ϕ−1

yield the opposite inclusion.

Lemma 4. Every peripherally-multiplicative surjective map ϕ : A → B
is linear and one of the following holds:

(a) there are bijective linear operators C : X → Y and D : X∗ → Y ∗

such that ϕ(x⊗ f) = Cx⊗Df for every x ∈ X and f ∈ X∗, or
(b) there are bijective linear operators E : X∗ → Y and F : X → Y ∗

such that ϕ(x⊗ f) = Ef ⊗ Fx for all x ∈ X and f ∈ X∗.
Proof. We first show that under the hypotheses ϕ is a linear operator.

If T = u ⊗ g ∈ B1(Y ) for some u ∈ Y and g ∈ Y ∗, then Lemma 3 implies
that T = ϕ(S) for some S = x ⊗ f ∈ B1(X) with x ∈ X and f ∈ X∗. The
peripheral multiplicativity of ϕ, the linearity of f and g and (4) imply that
for all λ, µ ∈ C and A,B ∈ A we have

σπ(ϕ(λA+ µB) ◦ T ) = σπ(ϕ(λA+ µB) ◦ ϕ(S)) = σπ((λA+ µB) ◦ S)

= σπ((λA+ µB) ◦ (x⊗ f)) = σπ(((λA+ µB)x)⊗ f) = {f((λA+µB)x)}
= {f(λ(Ax) + µ(Bx))} = {λf(Ax) + µf(Bx)} = λ{f(Ax)}+ µ{f(Bx)}
= λσπ(AS) + µσπ(BS) = λσπ(ϕ(A) ◦ ϕ(S)) + µσπ(ϕ(B) ◦ ϕ(S))

= λσπ(ϕ(A) ◦ (u⊗ g)) + µσπ(ϕ(B) ◦ (u⊗ g))

= λσπ((ϕ(A)u)⊗ g) + µσπ((ϕ(B)u)⊗ g)

= λ{g((ϕ(A))u)}+ µ{g((ϕ(B))u)} = {λg((ϕ(A))u) + µg((ϕ(B))u)}
= {g((λϕ(A) + µϕ(B))u)} = σπ((λϕ(A) + µϕ(B)) ◦ (u⊗ g))

= σπ((λϕ(A) + µϕ(B)) ◦ ϕ(S)) = σπ((λϕ(A) + µϕ(B)) ◦ T ).

The Identification Lemma 1 implies that ϕ(λA + µB) = λϕ(A) + µϕ(B),
i.e. ϕ is linear, as claimed. Consequently, ϕ is a bijective linear operator.

Thus ϕ is linear and preserves the operators of rank at most one by
Lemma 3. The characterization of ϕ as being of the form (a) or (b) is
well-known in the case when A = B(X), B = B(Y ) and ϕ is a linear
spectrum-preserving map. The proof provided in [6, Theorem 2] actually
works also for arbitrary standard operator algebras in the case when ϕ
preserves operators of rank at most one.
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Observe that, if ϕ is multiplicative or anti-multiplicative and preserves
the peripheral spectra of operators (i.e. σπ(ϕ(A)) = σπ(A), A ∈ A), then ϕ
is peripherally-multiplicative. Lemmas 2 and 4 imply the following:

Corollary 1. Every multiplicative [resp. anti-multiplicative] surjective
map ϕ : A → B that preserves the peripheral spectra of operators is an
algebra isomorphism [resp. anti-isomorphism] onto B.

The following more general theorem extends one of the main results
in [11].

Theorem 1. Let X,Y be Banach spaces, A ⊂ B(X) and B ⊂ B(Y )
be standard operator algebras, and ϕ : A → B be a surjective map. If ϕ is
peripherally-multiplicative, i.e. σπ(ϕ(A)◦ϕ(B)) = σπ(AB) for all A,B ∈ A,
then it is linear , and either ϕ or −ϕ is multiplicative or anti-multiplicative.
Therefore, either ϕ or −ϕ is an algebra isomorphism or anti-isomorphism.

Proof. According to Lemmas 2 and 4 the map ϕ is a bijective linear
operator between A and B and is of type either (a) or (b) (cf. Lemma 4).

If ϕ is of type (a), then for any x ∈ X and f ∈ X∗, ϕ(x⊗f) = Cx⊗Df ,
where C : X → Y and D : X∗ → Y ∗ are bijective linear operators. Now
σπ((x⊗ f) ◦ (x⊗ f)) = σπ{(f(x)x)⊗ f} = {(f(x))2}, but also

σπ(ϕ(x⊗ f) ◦ ϕ(x⊗ f)) = σπ((Cx⊗Df) ◦ (Cx⊗Df))

= σπ((((Df)(Cx))Cx)⊗Df) = {((Df)(Cx))2}.

The peripheral multiplicativity of ϕ implies that (f(x))2 = ((Df)(Cx))2,
and hence (Df)(Cx) = ±f(x). For any A ∈ A and x⊗ f ∈ B1(X) we have

{f(Ax)} = σπ(Ax⊗ f) = σπ(A ◦ (x⊗ f))
= σπ(ϕ(A) ◦ ϕ(x⊗ f)) = σπ(ϕ(A) ◦ (Cx⊗Df))
= σπ((ϕ(A)Cx)⊗Df)) = {(Df)(ϕ(A)Cx)}
= {(Df)(CC−1(ϕ(A)Cx))} = {±f((C−1ϕ(A))Cx)}.

Since this holds for every f ∈ X∗, it follows that Ax = (±C−1ϕ(A)C)x,
i.e. ±ϕ(A)Cx = CAx. Hence, ϕ(A)y = ±(CAC−1)y for any y ∈ Y , i.e.
ϕ(A)y = τA(y)(CAC−1)y = τA(y)ψ(A)y, where τA is a ±1-valued function
on Y (possibly depending on A) and ψ is the injective, linear, multiplicative
operator from A into B(Y ) defined by ψ(A) = CAC−1. The linearity of
ϕ(A) and ψ(A) implies that τA actually does not depend on y, thus ϕ(A) =
τAψ(A), where τA takes values ±1 and possibly depends on A. The linearity
of ϕ and ψ implies that τA does not depend on A either. Hence ϕ = ±ψ,
i.e. either ϕ or −ϕ is multiplicative.
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If ϕ is of type (b), then for any x ∈ X and f ∈ X∗, ϕ(x⊗f) = Ef ⊗Fx,
where E : X∗ → Y and F : X → Y ∗ are bijective linear operators. Now

σπ(ϕ(x⊗ f) ◦ ϕ(x⊗ f)) = σπ((Ef ⊗ Fx) ◦ (Ef ⊗ Fx))

= σπ(((Fx)(Ef)Ef)⊗ Fx) = {((Fx)(Ef))2}.
The peripheral multiplicativity yields (f(x))2 = ((Fx)(Ef))2, so (Fx)(Ef)
= ±f(x). For any A ∈ A and x⊗ f ∈ B1(X) we have

{(A∗f)(x)} = {f(Ax)} = σπ(Ax⊗ f) = σπ(A ◦ (x⊗ f))
= σπ(ϕ(A) ◦ ϕ(x⊗ f)) = σπ(ϕ(A) ◦ (Ef ⊗ Fx))
= σπ((ϕ(A)Ef)⊗ Fx) = {(Fx)(ϕ(A)Ef)}
= {(Fx)(EE−1(ϕ(A)Ef))} = {±(E−1(ϕ(A)Ef))(x)},

where A∗ : X∗ → X∗ is the adjoint operator of A. Since this holds for
every x ∈ X, it follows that A∗f = (±E−1ϕ(A)E)f . Consequently, A∗ =
±E−1ϕ(A)E. Hence, ±ϕ(A)E = EA∗, i.e. ϕ(A) = ±η(A), where η is the
injective, linear, anti-multiplicative operator from A into B(Y ) defined by
η(A) = EA∗E−1, i.e. either ϕ or −ϕ is anti-multiplicative.

It is clear that the first case in Theorem 1 is possible only if X and Y
are linearly isomorphic, while the second case is possible only if X and Y ∗

are linearly isomorphic. Note that the conclusion of Theorem 1 also holds
if ϕ satisfies equation (2) for each A ∈ A and every operator B ∈ B(X) of
finite rank, or even of rank at most two. If B ∈ B1(X) then the equation
σp(ϕ(A) ◦ ϕ(B)) = σp(AB), similar to (2) and considered in [11], where
σp(A) is the point spectrum of A, implies (2), but not vice versa.

Since X,Y are Banach spaces, under the hypotheses of Theorem 1 the bi-
jections C,E and their inverses are actually bounded linear operators by the
Closed Graph Theorem. Consequently, ϕ is also a bounded linear operator.

Corollary 2. If a surjective map ϕ between the algebras of compact
operators (or of finite-rank operators) on X and Y is peripherally-multiplica-
tive, then either ϕ or −ϕ is a continuous algebra isomorphism or anti-
isomorphism.

If, in addition to the hypotheses of Theorem 1, there exists an A0 ∈ A
such that σπ(ϕ(A0)) 6= −σπ(A0), then the case “−ϕ” of Theorem 1 is
ruled out. Indeed, if ϕ = −ψ, where ψ(A) = CAC−1, then σπ(ϕ(A0)) =
σπ(−ψ(A0)) = −σπ(ψ(A0)) = −σπ(A0), contradicting the assumption. Sim-
ilar arguments apply in the case when ϕ = −η, where η(A) = EA∗E−1.
Hence ϕ 6= −ψ,−η, i.e. ϕ = ψ or ϕ = η and thus ϕ is an algebra isomor-
phism or anti-isomorphism. In the first case there exists a linear isomorphism
C : X → Y so that ϕ(A) = CAC−1, while in the second case there exists a
linear isomorphism E : X∗ → Y so that ϕ(A) = EA∗E−1.
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Consequently, we obtain the following theorem:

Theorem 2. Let ϕ be as in Theorem 1. If , in addition, σπ(ϕ(A0)) 6=
−σπ(A0) for some A0 ∈ A then ϕ is a bijective and bounded linear operator
which is either multiplicative, in which case X is isomorphic to Y , or anti-
multiplicative, in which case X is isomorphic to Y ∗.

Consequently, under the conditions of Theorem 2, if X 6∼= Y ∗ then ϕ is
multiplicative, hence an algebra isomorphism, while if X 6∼= Y , then ϕ is
anti-multiplicative, hence an algebra anti-isomorphism.

Clearly, Theorem 2 holds if there exists an A0 ∈ A with σπ(A0) 6= {0}
such that σπ(ϕ(A0)) = σπ(A0). In particular, we have:

Corollary 3. Let A ⊂ B(X) and B ⊂ B(Y ) be unital standard op-
erator algebras. If a peripherally-multiplicative surjective map ϕ : A → B
is unital , then it is a continuous multiplicative or anti-multiplicative linear
operator.

Note that if, under the hypotheses of Theorem 2, A is the algebra of finite
rank operators on X [resp. its closure], then B is the algebra of finite rank
operators on Y [resp. its closure]. If A is the algebra of compact operators
on X, then the elements of B are automatically compact operators on Y .
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[15] P. Šemrl, Two characterizations of automorphisms on B(X), Studia Math. 105
(1993), 143–149.

Department of Mathematical Sciences
The University of Montana
Missoula, MT 59812-1032, U.S.A.
E-mail: tonevtv@mso.umt.edu

Division of Mathematics
and Computer Science

Box 5815, Clarkson University
Potsdam, NY 13699, U.S.A.

E-mail: aluttman@clarkson.edu

Received March 11, 2008
Revised version September 11, 2008 (6318)


