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A lower bound on the radius of analyticity
of a power series in a real Banach space

by

Timothy Nguyen (Cambridge, MA)

Abstract. Let F be a power series centered at the origin in a real Banach space with
radius of uniform convergence %. We show that F is analytic in the open ball B of radius
%/
√
e, and furthermore, the Taylor series of F about any point a ∈ B converges uniformly

within every closed ball centered at a contained in B.

1. Introduction. Let X,Y be Banach spaces over a field K = R or C.
We will denote the norms on X and Y both by | · | since there should be no
confusion as to which Banach space elements are in. We quickly review the
notion of a power series (see [3] for further background).

A power series centered at a ∈ X is a formal sum

(1)
∞∑

m=0

Pm(x− a)

where for each m, Pm : X → Y is a continuous homogeneous polynomial of
degree m defined as follows: If Lm : Xm → Y is a symmetric m-linear map,
we write Lm(xk1

1 , . . . , x
ki
i ) as shorthand for Lm(x1, . . . , x1, . . . , xi, . . . , xi),

where each xj appears kj times for 1 ≤ j ≤ i, k1 + · · · + ki = m. A map
Pm : X → K is a homogeneous polynomial of degree m if there exists a
symmetric m-linear map Lm such that Pm(x) = Lm(xm).

Define the radius of uniform convergence of the power series (1) to be

% := sup{r : (1) converges uniformly on |x− a| ≤ r}.
There is the following standard formula for the radius of uniform convergence
of (1):

(2) % = 1/lim sup
m→∞

‖Pm‖1/m

where ‖Pm‖ = sup|x|=1 |Pm(x)| is the polynomial norm of Pm. If % > 0, then
for every 0 < r < %, (1) is a uniformly and absolutely convergent series for
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every x ∈ Br(a), the open ball of radius r centered at a. Hence in this case,
(1) is more than just a formal sum: it defines a function on B%(a) taking
values in Y .

The Taylor series of an infinitely differentiable function F defined in a
neighborhood of a is the power series defined by

(3) TaF (x) =
∞∑

m=0

1
m!

DmF (a)((x− a)m).

Here DmF (a) : Xm → Y is the symmetric m-linear map given by taking the
Fréchet derivative of F m times. We say that F is analytic at a if TaF (x)
has a positive radius of uniform convergence and equals F (x) within the
domain of uniform convergence. If U ⊂ X is open, we say F is analytic in U
if it is analytic at every a ∈ U . If furthermore TaF (x) converges uniformly
in every closed ball centered at a contained in U , for each a ∈ U , we say F
is fully analytic in U (1).

If a power series centered at a has positive radius of uniform convergence,
then this series defines an infinitely differentiable function whose Taylor
series at a is equal to the original power series as one would expect from the
classical one-dimensional setting (see Lemma 2).

Suppose we are given a power series F (x) centered at zero that has
radius of uniform convergence % > 0. If we pick any a ∈ B%(0) different
from 0, it follows that since the polynomials appearing in the series TaF (x)
have a complicated dependence on the polynomials appearing in the power
series F (x), then just using the definition (2), it is a priori unclear what
the relationship is between the radius of uniform convergence for TaF (x)
and that of F (x). However, if K = C, we get the expected result from the
classical theory of one complex variable, namely that F (x) is fully analytic in
B%(0) so that the radius of uniform convergence of Ta(x) is at least %−|a|. In
the one-dimensional setting X,Y = C, this follows from the Cauchy integral
formula. For general complex Banach spaces, one gets the same result by
applying the Cauchy integral formula inside every complex plane in the
Banach space, namely by applying the estimate to g(z) = F (zx+ (1− z)y)
for every x, y ∈ X (see [3, Chapter 13]).

However, the situation is unclear when K = R and we are in a real
Banach space. As we no longer have the Cauchy integral formula, it is unclear
what happens to the radius of uniform convergence when we reexpand F (x)
about a new point a, i.e. when we form the power series TaF (x).

(1) A function may be analytic in all of X without being fully analytic, since its
Taylor series about any point might only have a finite radius of uniform convergence. See
[3, Section 15.5] for an example.
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Definition 1. Let F (x) be a power series centered at a with radius of
uniform convergence % > 0. The radius of analyticity %A = %A(F ) of F (x)
at a is the largest r > 0 such that F (x) is fully analytic in Br(a).

As mentioned above, in the complex setting we have %A = %. In the real
case, it is known that %A ≥ %/e ([3, Theorem, p. 156]). Our main result is
an improvement of this theorem:

Theorem 1. Let F (x) be a power series in a Banach space X, which we
may take to be centered at the origin. Let % > 0 denote its radius of uniform
convergence and %A = %A(F ). Then

(i) %A ≥ %/
√
e;

(ii) for every n, the nth Fréchet derivative DnF : X → Ln(X,Y ) of
F (x), viewed as a map from X to the Banach space Ln(X,Y ) of
continuous n-linear maps from X into Y , has a Taylor series cen-
tered at the origin with radius of uniform convergence at least %/

√
e.

Moreover , the radius of analyticity of this power series is also at
least %/

√
e.

When X is a (real or complex) Hilbert space, one has %A = % (see the
discussion after the proof of Theorem 1). However, the author does not know
if %A = % holds for a general real Banach space.

The proof of the theorem involves understanding certain norms of mul-
tilinear maps which allow us to control the polynomial terms occurring in a
Taylor series.

2. Multilinear map estimates. Given an m-homogeneous polyno-
mial Pm, there is a unique symmetric m-linear map Lm such that Pm =
Lm(xm). This is because one can recover Lm from Pm via the polarization
identity:

(4) Lm(x1, . . . , xm) =
1

2mm!

∑
e1,...,em∈{±1}

e1 · · · emPm(e1x1 + · · ·+ emxm).

Given a symmetric m-linear map, let L̃ denote the polynomial associated
to L, namely L̃(x) = L(xm). We define the following norms:

‖L‖ = sup
|x1|,...,|xm|=1

|L(x1, . . . , xm)|,(5)

‖L‖(2) = sup
0≤k≤m

sup
|x1|,|x2|=1

|L(xk
1, x

m−k
2 )|,(6)

‖L̃‖ = sup
|x|=1

|L̃(x)|.(7)
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Clearly, ‖L̃‖ ≤ ‖L‖(2) ≤ ‖L‖. An easy consequence of the polarization
identity (4) is that

(8) ‖L‖ ≤ mm

m!
‖L̃‖.

This bound is sharp, i.e., there are examples where equality is achieved [3,
4.14]. However, this bound can be improved for certain Banach spaces X. If
X is a (real or complex) Hilbert space, we in fact have ‖L‖ = ‖L̃‖ (see [1,
Proposition 1.1]). Several other authors have investigated when (8) can be
improved (see [6], [8]).

The norm we need to control when we expand a power series at a new
point is ‖L‖(2). To see this, consider the power series (1) centered at a = 0,
which we may rewrite as

(9) F (x) =
∞∑

m=0

Lm(xm).

Observe that by the binomial formula, given any y ∈ X,

(10) Lm(xm) = Lm((y + x− y)m) =
m∑

k=0

(
m

k

)
Lm(ym−k, (x− y)k).

Then if in

(11)
∞∑

m=0

Lm(xm) =
∞∑

m=0

m∑
k=0

(
m

k

)
Lm(ym−k, (x− y)k)

the double series on the right converges absolutely, we can interchange sum-
mations and obtain

(12) F (x) =
∞∑

m=0

Lm(xm) =
∞∑

k=0

∞∑
m=k

(
m

k

)
Lm(ym−k, (x− y)k).

Thus, if we can perform this change of summation for all x ∈ Br(y), for
some r > 0, then we will have expressed F (x) as a power series centered at
y whose k-homogeneous polynomial coefficients are given by

(13) Ak(z) :=
∞∑

m=k

(
m

k

)
Lm(ym−k, zk).

Observe that the absolute convergence of the double sum (11) for x ∈ Br(y)
implies the absolute convergence of the Ak in Br(0) and hence on all of X
by homogeneity.

Absolute convergence of (11) holds if

(14)
∞∑

m=0

m∑
k=0

(
m

k

)
‖Lm‖(2)|y|m−k|x−y|k =

∞∑
m=0

‖Lm‖(2)(|y|+|x−y|)m<∞.



Radius of analyticity of a power series 175

This holds when

(15) |y|+ |x− y| < 1

lim sup ‖Lm‖1/m
(2)

.

Choose a subsequence mj such that

lim
j→∞

‖Lmj‖
1/mj

(2) = lim sup ‖Lm‖1/m
(2) .

Let % = 1/lim sup ‖L̃m‖1/m > 0 be the radius of uniform convergence of (9).
Suppose % <∞. Then (15) is satisfied if

|y|+ |x− y| < %
lim supj→∞ ‖L̃mj‖1/mj

limj→∞ ‖Lmj‖
1/mj

(2)

(16)

= % lim sup
j→∞

( ‖L̃mj‖
‖Lmj‖(2)

)1/mj

=: %.

Thus, for |y| < % and |x− y| < %− |y|, the series (11) converges absolutely.
Altogether then, we have shown that for any fixed |y| < %, we have

(17) F (x) =
∞∑

k=0

Ak(x− y)

for |x− y| < %− |y|.

Lemma 2 ([3, Corollary 1, p. 165]). For any power series as in (17) cen-
tered at y with positive radius of uniform convergence, Ak = (1/k!)DkF (y)
as k-homogeneous polynomials.

Lemma 3. Let L : Xm → Y be an m-linear map. Define the norm ‖L‖(n)

as in (6) but with up to n distinct arguments possible. Then (‖L‖(n)/‖L̃‖)1/m

≤ C
√
e where C = C(m,n) is independent of L, X, and Y and tends to 1

as m→∞ for any fixed n.

Given Lemmas 2 and 3, our main theorem easily follows:

Proof of Theorem 1. Suppose % <∞. Lemma 3 implies

(18) lim sup
m→∞

(‖L̃m‖/‖Lm‖(2))
1/m ≥ 1/

√
e,

hence % ≥ %/
√
e by (16). Thus the preceding analysis in (12)–(16) shows

that for |y| < %, the Taylor series (17) is absolutely convergent in {x :
|x − y| < %/

√
e − |y|}. From this, we get uniform convergence of (17) in

{x : |x − y| ≤ r} for every r < %/
√
e − |y|, since one can bound the tail of
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(17) as follows:∣∣∣ ∞∑
k=N

Ak(x− y)
∣∣∣ ≤ ∞∑

k=N

∞∑
m=k

(
m

k

)
|Lm(ym−k, (x− y)k)|(19)

≤
∞∑

m=N

‖Lm‖(2)(|y|+ |x− y|)m

where (19) tends to zero uniformly in x as N → 0 so long as |y|+ |x− y| ≤
|y|+r is bounded away from % ≥ %/

√
e. This follows because we have shown

that (19) viewed as power series in a single real variable has radius of uniform
convergence at least %. Finally, Lemma 2 implies that the power series (17)
is the Taylor series of F (x) centered at y. So for % <∞, this proves (i) since
we have shown %A ≥ %/

√
e.

For the remaining case % = ∞, i.e. limm→∞ ‖L̃m‖1/m = 0, (18) also
implies that limm→∞ ‖Lm‖1/m

(2) = 0. From (15), we can apply the previous
analysis for every % > 0, whence %A = % =∞. Altogether, this proves (i).

By [3, Corollary 1, p. 165], given any power series F (x) =
∑∞

m=0 Lm(xm)
with radius of uniform convergence % > 0, for every n, DnF (x) has a Taylor
series centered at the origin given by

(20) T0D
nF (x) = n!

∞∑
m=0

(
m+ n

n

)
Lm+n(xm).

In [3], (8) is used to show that the radius of uniform convergence of this
power series is at least %/e . However, in (20) the linear maps Lm+n are
only evaluated on at most n + 1 distinct arguments (DnF (x) takes values
in n-linear maps), so by Lemma 3, we can improve the lower bound for the
radius of uniform of convergence of (20) to %/

√
e since

lim sup
m→∞

∥∥∥∥(m+ n

n

)
Lm+n

∥∥∥∥1/m

(n+1)

≤ (lim sup
m→∞

C(m,n+ 1)
√
e)(lim sup

m→∞
‖L̃m+n‖1/m) ≤

√
e

%
.

By Lemma 2 and the formula (13) for the Ak, it follows that T0D
nF (y) =

DnF (y) for all y such that |y| < %/
√
e.

To complete the proof of (ii), we also need to show that the radius of
analyticity of (20) is at least %/

√
e. For this, we need to control ‖Lm+n‖(n+2),

since this is precisely the ‖ · ‖(2)-norm of Lm+n viewed as a map from X →
Ln(X,Y ). We apply Lemma 3 once again.

As mentioned earlier, when X is a Hilbert space, ‖L̃‖ = ‖L‖ and so
‖L‖(n) = ‖L̃‖ for all n. Thus, %A = %.
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Proof of Lemma 3. We can assume L 6≡ 0. We first prove the lemma in
the case n = 2. Let x, y ∈ X be unit vectors and let p + q = m. By the
polarization identity,

L(xp, yq) =
1

2mm!

∑
ei,fj=±1

[e1 · · · epf1 · · · fq](21)

× [L((e1 + · · ·+ ep)x+ (f1 + · · ·+ fq)y)m)],

|L(xp, yq)| ≤ 1
m!

∑
ei,fj=±1

1
2m

(|e1 + · · ·+ ep|+ |f1 + · · ·+ fq|)m‖L̃‖.(22)

The last sum is an expectation with respect to the uniform probability
measure on the space of outcomes for the independent Rademacher ran-
dom variables e1, . . . , ep, f1, . . . , fq, which each take on the values ±1 with
probability 1/2. We have the following well-known large deviation estimate
(Hoeffding’s inequality) for such random variables:

P (|e1 + · · ·+ ep| ≥ x) ≤ 2 exp(−x2/2p).

Let A = e1 + · · ·+ep and B = f1 + · · ·+fq. Thus, λA(x) := P (|A| ≥ x) is
bounded from above by Hoeffding’s inequality. Using the binomial theorem
and the independence of A and B, we can rewrite (22) as

(23)
|L(xp, yq)|
‖L̃‖

≤ 1
m!

m∑
k=0

(
m

k

)
E(|A|k)E(|B|m−k).

Next,

E(|A|k) = k

∞�

0

xk−1λA(x) dx ≤ 2k
∞�

0

xk−1 exp(−x2/2p) dx(24)

= k(2p)k/2Γ (k/2),

where the first equality is a general equality relating the kth moment of a
random variable with an appropriately weighted integral of its “distribution
function” λA(x) (see e.g. [5, Section 6.4]).

Below, we write Ck to denote some positive constants depending only on
k such that lim supk→∞C

1/k
k ≤ 1. The precise value of Ck is unimportant

and may change from line to line.
By Stirling’s formula,

Γ (k) ≤ Ck

(
k

e

)k

.

Thus,

E(|A|k) ≤ Ck

(
pk

e

)k/2

.

Since the same estimate holds for E(|B|m−k), we have
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(25)
|L(xp, yq)|
‖L̃‖

≤ 1
m!

m∑
k=0

(
m

k

)
Ck

(
pk

e

)k/2

Cm−k

(
q(m− k)

e

)(m−k)/2

= em/2
m∑

k=0

{[
Ck ·

1
k!

(
k

e

)k][
Cm−k ·

1
(m− k)!

(
m− k
e

)m−k]

×
(
p

k

)k/2( q

m− k

)(m−k)/2}
≤ em/2

(
sup

0≤k≤m
CkCm−k

) m∑
k=0

(
p

k

)k/2( q

m− k

)(m−k)/2

where in the last line, we used Stirling’s formula once again. If we view
the (last) summand appearing in (25) as a function of k, then setting its
derivative equal to zero, one finds that the maximum value of the summand
is achieved at k = pm/(p + q) = p since p + q = m. At this value of k, the
summand is one. Thus, since

lim sup
m→∞

(
sup

0≤k≤m
CkCm−k

)1/m
= lim sup

m→∞

(
sup

0≤k≤m
C

1/m
k C

1/m
m−k

)
≤ 1,

as m ≥ k,m− k, (25) implies

(|L(xp, yq)|/‖L̃‖)1/m ≤ C(m)
√
e,

where C(m) is some absolute constant and lim supm→∞C(m) ≤ 1.
The proof is similar for the case of general n. We now have n independent

random variables obeying the estimate (24). Instead of a binomial sum, we
have a multinomial sum, which by the same calculation is also bounded by
em/2 times a subexponential factor as m → ∞ for fixed n. Explicitly, if
we have unit vectors x1, . . . , xn ∈ X and positive integers p1, . . . , pn with
p1 + · · ·+ pn = m, then proceeding similarly to the above we get

|L(xp1
1 , . . . , x

pn
n )|

‖L̃‖
≤ em/2Cm

∑
m1+···+mn=m

m1,...,mn≥0

(
p1

m1

)m1/2

· · ·
(
pn

mn

)mn/2

.

One can show that the maximum of the summand in the above is achieved
at mi = pi for all i (for example, using the method of Lagrange multipliers),
in which case, the summand is equal to one. This implies that the entire
sum is bounded by

(
m+n−1

n−1

)
. This is subexponential in m for fixed n.

Remark 1. One can try to complexify the Banach space X and extend
the power series F (x) to the complexification X̃ of X. One could then hope
to apply Cauchy estimates to the function F (x) viewed as a holomorphic
function on an open subset of X̃. However, the problem of complexification
of a Banach space, namely, of choosing a suitable complexification norm,
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is a subtle issue (e.g., see [7]). In particular, [7] has shown that the unique
complex extension P̃ : X̃ → Ỹ of a real polynomial P : X → Y obeys (under
a suitable choice of norms on X̃ and Ỹ )

‖P̃‖∗ ≤ 2n−1‖P‖
where n is the degree of P and ‖ · ‖∗ is the polynomial norm taken with
respect to X̃, Ỹ . This bound is sharp, i.e., there are examples of polynomials
defined on a fixed Banach space that achieve equality in the above. Thus,
if one replaces Pm with P̃m in the definition of F , the radius of uniform
convergence on X̃ for the complex extension may a priori decrease to %/2,
which is worse than %/

√
e.

Since the estimates made in Lemma 3 are far from sharp, the ratio
%A/% ≥ 1/

√
e may not be optimal. Ideally, one would like to have %A = % as

in the complex case.
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