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On smooth points of boundaries of open sets

by

S. Rolewicz (Warszawa)

Abstract. The notions of smooth points of the boundary of an open set and α(·)
intrinsically paraconvex sets are introduced. It is shown that for an α(·) intrinsically
paraconvex open set the set of smooth points is a dense Gδ-set of the boundary.

Let (X, ‖ · ‖) be a Banach space. Let C be an open set in X and let
x0 ∈ C.

The tangent cone TC(x0) of the set C at the point x0 consists of h ∈ X
such that for every neighbourhood Q of h there is tQ > 0 such that for
0 < t < tQ,

(1) (x0 + tQ) ∩ C 6= ∅
(Dubovitskĭı and Milyutin (1965)). It is easy to see that each tangent cone
is closed.

Using the distance function we can rewrite this definition in the following
form: TC(x0) consists of h ∈ X such that for every ε > 0 there is a t0 > 0
such that for 0 < t < t0,

dist(x0 + th, C) < εt.

Here the arbitrariness of ε means that the directional derivative of the
function dist(·, C) at the point x0 in the direction h is equal to 0,
∂ dist(x,C)|x0(h) = 0.

A point x0 ∈ ∂C is called a smooth point of ∂C if the cone TC(x0) is a
halfspace, i.e.

TC(x0) = {x ∈ X : x∗(x) ≥ 0}
for some continuous linear functional x∗. The set of all smooth points of ∂C
is called the smooth set of the ∂C and denoted by S(C).

It is a natural question how big part of ∂C is the smooth set S(C).
If S(C) = ∂C we say that ∂C is smooth.
Now we give an example of a smooth set C.
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Proposition 1. Let (Y, ‖ · ‖) be a Banach space. Let Ω be an open set
in Y . Let C ⊂ R×Ω be the epigraph of a function f : Ω → R, C = {(r, y) ∈
R×Ω : r ≥ f(y), y ∈ Ω}. If f is Gateaux differentiable at y0 then (f(y0), y0)
is a smooth point of ∂C.

Proof. We take X = R × Y and we put x∗((t, y)) = t + ∂f |y0(y) and
Hx∗ = {(r, y) : r ≥ f(y0) + ∂f |y0(y)}. Since f is Gateaux differentiable at
y0, for every (r, y) ∈ Hx∗ and every neighbourhood Q of zero in X there is
s > 0 such that for all 0 < t < s,

(f(y0), y0) + t(r − f(y0), y − y0) ∈ C + tQ.

Thus Hx∗ ⊂ TC((f(y0), y0)).

On the other hand, if (r, y) 6∈ Hx∗ then for all s > 0 there are ts > 0
and a neighbourhood Q of zero such that 0 < ts < s and (f(y0), y0) +
ts(r − f(y0), y − y0) 6∈ C + tsQ. This implies that (r, y) 6∈ TC((f(y0), y0)).
Therefore we have the equality

Hx∗ = TC((f(y0), y0)).

The converse assertion does not hold:

Example 2. Let Y = R. Let

f(x) =
{
|x|

(
−1 + sin 1

x

)
if x 6= 0,

0 if x = 0.
Of course, the function f(·) is not differentiable at 0. On the other hand, the
tangent cone of the epigraph C = {(t, x) : t ≥ f(x)} at the point (0, 0) is a
halfplane: TC((0, 0)) = {(t, x) : t ≥ 0}.

Mazur (1933) proved that ifX is separable, then every convex real-valued
function defined on an open convex set Ω ⊂ X is Gateaux differentiable on
a dense Gδ-set. Of course, such sets are residual (i.e. their complements in
Ω are of the first Baire category).

Asplund (1968) found a class of Banach spaces X such that every convex
real-valued function defined on an open convex set Ω ⊂ X is Fréchet differ-
entiable on a dense Gδ-set. Such spaces are now called Asplund spaces and
can be characterized in the following way. A Banach space X is an Asplund
space if and only if each of its separable subspaces has a separable dual (see
Phelps (1989)). As an obvious consequence of the Mazur and Asplund results
we get

Proposition 3. Let (X, ‖ · ‖) be either a separable Banach space or an
Asplund space. Let C be an open convex set in X. Then S(C) is a dense
Gδ-set in the boundary ∂C.

Proof. Let x0 ∈ C and let f(x) = inf{t > 0 : (x− x0)/t ∈ C} be the
Minkowski norm induced by the set C − x0. The function f(x) is convex,
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and thus it is Gateaux differentiable on a dense Gδ-set Cf . Since f(x) is
positively homogeneous, ∂C ∩ Cf is a dense Gδ-set in ∂C.

It is a natural question to which classes of sets Proposition 3 can be
extended.

Let α(·) : [0,+∞)→ [0,+∞] be a nondecreasing function such that

(2) lim
t↓0

α(t)
t

= 0.

Let f(·) be a real-valued continuous function defined on an open convex
subsetΩ ⊂ X. We say that f(·) is strongly α(·)-paraconvex (Rolewicz (2000))
if for all x, y ∈ Ω and 0 ≤ t ≤ 1 we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + min[t, (1− t)]α(‖x− y‖).
We say that an open set C ⊂ X is α(·)-intrinsically paraconvex (cf.

Ngai–Pénot (2008)) if for all x, y ∈ C,

dist(tx+ (1− t)y, C) ≤ t(1− t)α(‖x− y‖).
Proposition 4. Let (X, ‖ · ‖) be either a separable Banach space or an

Asplund space. Let C be an open bounded α(·)-intrinsically paraconvex set
in X. Assume that there is x0 ∈ C such that C is starshaped with respect
to x0. Then S(C) is a dense Gδ-set in ∂C.

Proof. Let f(x) = inf{t > 0 : (x− x0)/t ∈ C}. It is easy to see that
there is c > 0 such that f(·) is strongly cα(·)-paraconvex. Thus it is Gateaux
differentiable on a dense Gδ-set Cf (Rolewicz (2002), (2005a), (2006)). Since
f(x) is positively homogeneous, ∂C ∩ Cf is a residual subset of ∂C.

Question 5. Is Proposition 4 valid without the assumption that C is
starshaped with respect to some point?

By using Proposition 4 we can show this only for locally starshaped
intrinsically paraconvex sets.

We say that an open set C is a locally starshaped intrinsically paraconvex
set if for any x0 ∈ ∂C, there are a neighbourhood U of x0 and α(·) satisfy-
ing (2) such that U ∩C is an α-intrinsically paraconvex set starshaped with
respect to some x1 ∈ U ∩ C.

Proposition 6. Let (X, ‖ · ‖) be either a separable Banach space or an
Asplund space. Let C be an open locally starshaped intrinsically paraconvex
set in X. Then S(C) is a dense Gδ-set in ∂C.

Proof. Fix x0 ∈ ∂C. By our assumption there are a neighbourhood U
of x0 and α(·) satisfying (2) such that U ∩ C is an intrinsically paraconvex
set starshaped with respect to some x1 ∈ U ∩ C. Thus by Proposition 4,
S(U ∩C) is a dense Gδ-set in ∂(U ∩C). This implies that S(C) is a locally
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Gδ-set in ∂C. Therefore by the Michael theorem (Michael (1954)) it is a
Gδ-set in ∂C. Since x0 was arbitrary, S(C) is dense in ∂C.
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