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A Radon–Nikodym derivative for positive linear functionals

by

E. de Amo (Almeŕıa) and M. D́ıaz Carrillo (Granada)

Abstract. An exact Radon–Nikodym derivative is obtained for a pair (I, J) of posi-
tive linear functionals, with J absolutely continuous with respect to I, using a notion of
exhaustion of I on elements of a function algebra lattice.

1. Introduction and preliminaries. In [2] an abstract integration
theory for extended-real-valued functions was developed, with the integral
being a linear form, not necessarily continuous on monotone sequences, de-
fined on a vector lattice. In [3], with local integral metrics, this analogue
to Daniell’s extension process was generalized. Moreover, in [1], given two
positive Daniell integrals J and I, with J absolutely continuous with respect
to I, by a constructive procedure, sufficient conditions were found for the
existence of an exact Radon–Nikodym derivative of J with respect to I.

The aim of this paper is to contribute to the differentiation theory (in the
sense of Radon–Nikodym derivatives) in the context of abstract integration,
without any use of measure-theoretic methods.

It is known that the classical Radon–Nikodym theorem fails to be true
in the finitely additive case unless some further assumptions hold. Necessary
and sufficient conditions for the existence of exact Radon–Nikodym deriva-
tives were obtained by Maynard [9], in the scalar case, illustrating the role of
exhaustions and boundedness of the average range of the represented mea-
sure λ with respect to the integrating measure µ over a set. In [8] Hagood
generalize Maynard’s result to the case of a Banach-valued finitely additive
measure using the Dunford–Schwartz integration theory ([5, Chap. III]).

In this paper, the results of abstract integration theory, along with tech-
niques used for the finitely additive case, are employed to give an “exact”
Radon–Nikodym derivative. The main instruments are certain basic ideas
and natural results in abstract integration, which are not more complicated
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than the traditional ones, but more powerful, with applications to additive
set functions.

For terminology and results not explained in this section, we refer the
reader to [2]–[4].

One starts with a nonempty set X, a vector lattice B of real-valued
functions on X (with pointwise operations and order) and a positive linear
functional I on B. The triple (X,B, I) is called a Loomis system.

As usual, for any f ∈ RX , its Riemann upper integral is defined by

I−(f) := inf{I(g) : g ∈ B, f ≤ g},

with inf ∅ := +∞.
We adopt the convention ∞ −∞ := 0 for N. For every A ⊂ RX , +A

denotes the set of all positive elements in A.
By B(B, I), or simply B, we denote the Riesz space of all real-valued

functions belonging to the closure of B in RX with respect to the integral
metric (seminorm) I−(| · |); equivalently,

B = {f ∈ RX : I+(f) = I−(f) ∈ R}

where I+(f) := −I−(−f).
A function f ∈ RX is said to be I-integrable if there exists an I-Cauchy

sequence (hn) ⊂ B which converges to f (in symbols, hn → f (I−)); i.e.,

I(|hm − hn|)→ 0 as m,n→∞,

and for each fixed h ∈ +B,

I−(|hn − f | ∧ h)→ 0 as n→∞.

We denote by R1(B, I), or R1, the class of all extended-real-valued
I-integrable functions. The sequence (hn) is called an I-approximate (or
I-defining) sequence of f ; and I(f) := limn I(hn) for f ∈ R1(B, I).

For any I− : RX → R ∪ {+∞} and f ∈ RX , we define the localization

I−` (f) := sup{I−(f ∧ h) : h ∈ +B}.

Then R1(B, I) is the closure of B in RX with respect to the integral semi-
norm I−` (| · |). The set R1(B, I) is I−` -closed in the sense that for any I−` -
Cauchy sequence (fn) ⊂ R1(B, I) such that fn → f (I−` ) for some f ∈ RX ,
we have I−` (|f − fn|)→ 0 as n→∞, and f ∈ R1(B, I).

If f ∈ R1(B, I) then f ∈ B(B, I) if, and only if, there exists h ∈ +B
such that |f | ≤ h (see [3, Cor. XI] or [4]).

If Ω is a semiring of sets in X and µ : Ω → [0,∞] is finitely additive,
then B = BΩ := real-valued step functions over Ω and I = Iµ :=

	
· dµ

are admissible. We call (X,BΩ, Iµ) the induced Loomis system. In general,
R1(BΩ, Iµ) contains strictly the set L(X,Ω, µ) of Dunford–Schwartz [5]. If
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Ω is an algebra, µ(X) < +∞ and f ∈ RX is bounded, then f ∈ L(X,Ω, µ)
if, and only if, f ∈ B(BΩ, Iµ) (see [7, pp. 70, 199]).

We now briefly discuss the I-integrability for the product of two I-
integrable functions. Example 4.1 below shows that the pointwise prod-
uct of I-integrable functions with respect to a Loomis system need not be
I-integrable. We have the following sufficient conditions.

Lemma 1. Let (X,B, I) be a Loomis system. If k ∈ RX is a bounded
function such that hk ∈ R1(B, I) for all h ∈ B, then fk ∈ R1(B, I) for all
f ∈ R1(B, I).

Proof. Let (hn) ⊂ B be an I-approximate sequence of f . It is easily
verified that (hnk) ⊂ R1(B, I) is an I−` -approximating sequence of kf with

I−` (|hnk − kf |) ≤MI−` (|hn − f |)→ 0

as n → ∞, where M is an upper bound of |k|. In view of the closedness
property of R1, one has fk ∈ R1(B, I).

In particular, if f ∈ R1(B, I) (resp. B), h ∈ B is a bounded function and
BB ⊂ R1 (for instance, if B is an algebra lattice), then fh ∈ R1(B, I) (resp.
fh ∈ B). Now, the following especially useful corollary can be formulated.

Corollary 2. Let f, g ∈ R1(B, I) be two bounded functions and sup-
pose that BB ⊂ R1. Then fg ∈ R1(B, I).

Although boundedness is a sufficient condition, Example 4.2 below will
show that it is not necessary. Nevertheless, a bit more can be said concerning
the I-integrability of the product of two functions.

We say that a Loomis system (X,B, I) has the c00-property ifB is stonian
(i.e., h ∧ 1 ∈ B for all h ∈ +B) and I(h − h ∧ n) → 0 as n → ∞ for all
h ∈ +B. A Loomis system (X,B, I) is said to be an algebra Loomis system
if B is additionally an algebra lattice, i.e., BB ⊂ B.

Lemma 3. Let (X,B, I) be an algebra Loomis system with the c00-pro-
perty and let f, g ∈ R1(B, I). If either of the two functions is bounded , then
fg ∈ R1(B, I).

Note that the induced algebra Loomis system (X,BΩ, Iµ) always has
the c00-property. Note that when I is a Daniell integral, i.e., I(hn) → 0 if
0 ≤ hn+1 ≤ hn ∈ B and hn → 0 pointwise on X, no boundedness conditions
are needed: fg will be integrable when f and g are.

We consider a Loomis system (X,B, I) and another positive linear func-
tional J : B → R.

Definition 4. We say that J is absolutely continuous with respect to I
on B, and we write J � I, if for every ε > 0 and h ∈ +B there exists δ > 0
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(depending on ε and h) such that I(u) < δ implies J(u) < ε for all u ∈ +B
with u ≤ h.

Given a finitely additive measure space (X,Ω, µ) and the induced Loomis
system (X,BΩ, Iµ), if λ : Ω → [0,∞[ is another finitely additive measure on
the semiring Ω such that λ� µ (i.e., for every ε > 0 there exists δ > 0 such
that A ∈ Ω and µ(A) < δ implies λ(A) < ε), it is easy to check that λ� µ
implies Iλ � Iµ. If, additionally, Ω is an algebra, the converse is true.

We record some consequences of the above definition.
Suppose that J � I. Then the following assertions hold:

(i) Let (hn) ⊂ +B be such that there exists h ∈ +B with hn ≤ h for
all n ∈ N. Then I(hn)→ 0 implies J(hn)→ 0.

(ii) Let f, (fn) ⊂ RX , then fn → f (I−) implies fn → f (J−).
In particular, if f ∈ RX is an I-null function (i.e., f ∈ R1(B, I) and
I(|f |) = 0), then f is J-null.

(iii) BI ⊂ BJ and I � J on BI .

To prove (iii), observe that f ∈ B if, and only if, for every ε > 0 there
exist h, k ∈ B such that h ≤ f ≤ k and I(k − h) < ε.

Note that the following two conditions are equivalent:

(i) For every ε > 0 there exists δ > 0 such that h ∈ +B and I(h) < δ
implies J(h) < ε.

(ii) There exists M > 0 such that J(h) ≤MI(h) for all h ∈ +B.

Example 4. shows that absolute continuity, J � I, is strictly weaker than
the above condition (ii).

We recall that in the finitely additive measure case, a notion of great
importance in the construction of the Radon–Nikodym derivatives is that
of exhaustion, where the underlying set is partitioned into subsets having
a certain prescribed property. Also, since the measures involved need not
have Hahn decompositions, it is essential to consider the behaviour of the
“average range” and the “ε-approximate range”. Our results are proved by
translating the finitely additive case into the abstract linear functional one.
Example 4.4 exhibits a functional J that is absolutely I-continuous, J � I,
but not strongly I-representable, i.e., there does not exist g ∈ B such that
J(f) = I(fg) for all f ∈ B.

2. Exhaustions. We denote by L either the vector lattice B or B (as-
sociated to (X,B, I)), and I is again an extended positive linear functional
defined on B or B.

Definition 5. Let (X,B, I) be a Loomis system and let f ∈ +R1(B, I)
with I(f) > 0. A countable collection of positive functions in L, Φ = (hi)i∈T ,
is said to be an L-I-exhaustion on f if the following conditions are satisfied:
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(i) I(hi) > 0 for all i ∈ T and
∑

i∈P hi ≤ f for all finite P ⊂ T .
(ii) supP {

∑
i∈P I(hi)} = I(f), where the supremum is taken over all

finite subsets P of T .

In case
∑

i∈T hi = f, we say that Φ is a complete L-I-exhaustion of f .

For simplicity, we shall only consider exhaustions on functions f with
I(f) > 0.

It is easy to see that if (hi)i∈T is a (complete) L-I-exhaustion on f and for
each i ∈ T the countable collection (hi,j)j∈T ′ is a (complete) L-I-exhaustion
on hi, then (hi,j)(i,j)∈T×T ′ is a (complete) L-I-exhaustion on f .

Lemma 6. Let f ∈ +L and Φ = (hi)i∈T an L-I-exhaustion on f. If
J � I, then the collection {h ∈ Φ : J(h) > 0} is an L-J-exhaustion on f .

Proof. It suffices to treat the case T = N, since if T is finite the result
is clear.

First, we prove that I(f) > 0 is equivalent to {h ∈ Φ : J(h) > 0} 6= ∅.
If I(f) > 0, let 0 < ε < J(f), and for each n ∈ N, set gn := f −

∑n
i=1 hi.

We have gn ∈ +L, gn ≤ f and I(gn)→ I(f) as n→∞; hence, there exists
k ∈ N such that I(gnk

) < δ. In view of Definition 1.1 of absolute continuity,
one has

J(gk) = J(f)−
k∑
i=1

J(hi) < ε < J(f),

so that there exists j ∈ N such that J(hj) > 0. The converse is evident,
since 0 ≤ J(hi) ≤ J(f) for all i ∈ N.

Now, if Φ is an L-I-exhaustion on f , then according to Definition 5(ii),
there exists k ∈ N with I(f −

∑n
i=1 hi) < δ for all n ≥ k; and when J � I,

one has J(f −
∑n

i=1 hi) < ε for all n ≥ k, and the result is established.

Lemma 7. Let (X,B, I) be an algebra Loomis system. Suppose that f
is a bounded function in +R1(B, I) and Φ = (hi)i∈T is an L-I-exhaustion
on f. Then, for each bounded function g ∈ +L, the collection

{gh : I(gh) > 0, h ∈ Φ}
is an L-I-exhaustion on gf.

Proof. As a consequence of Lemma 1, gh ∈ +B for all h ∈ Φ and gf ∈
+R1(B, I). Indeed,

∑n
k=1 ghk ≤ gf for all natural n, and since

0 ≤ I
(
gf −

n∑
k=1

ghk

)
= I
[
g
(
f −

n∑
k=1

hk

)]
≤MI

(
f −

n∑
k=1

hk

)
→ 0

as n→∞, where M is an upper bound of g, we obtain the result.

Observe that I(gf) =
∑∞

i=1 I(ghi), which says that the exhaustions af-
ford a kind of partial continuity.
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Example 4.5 below shows that condition (ii) in Definition 5 is necessary.
Given any Loomis system (X,B, I), a property P is said to exhaust I

on f ∈ +R1(B, I) if there exists an L-I-exhaustion Φ on f , each element of
which has P . A property P is called L-I-invariant if whenever f, g ∈ +L,
I(f) > 0, I(g) > 0 and I(|f − g|) = 0, then either f and g both have P or
neither does.

Lemma 8. Let f ∈ +B and let P be a property such that :

(i) P exhausts I on f .
(ii) P is B-I-invariant.

Then there exists a complete B-I-exhaustion on f , each element of which
has P .

Proof. Let (hi)i∈N be a B-I-exhaustion on f , each element of which
has P . For each n ∈ N,

0 ≤
n∑
i=1

hi ≤
∞∑
i=1

hi ≤ f,

with
∑n

i=1 hi ∈ +B and

I
(
f −

n∑
i=i

hi

)
→ 0

as n→∞. As a consequence,∑
i∈N

hi ∈ +B and I
( ∞∑
i=1

hi

)
= I(f).

We now consider the sequence (gi)i∈N defined by

g0 := f −
∞∑
i=1

hi, g1 := h1 + g0, gi := hi, i ≥ 2.

Since I(|g1 − h1|) = I(g0) = 0, we have a B-exhaustion on f , which is
B-I-invariant. Moreover, it is complete, since∑

i∈N
gi = g0 +

∑
i∈N

hi = f.

For any f ∈ +R1(B, I) and L either the vector lattice B or B, define

Lf := {h ∈ +L : h ≤ f and I(h) 6= 0}.

The standard average range for finitely additive measures has the fol-
lowing parallel definition for positive linear functionals.
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Definition 9. For each f ∈ +R1(B, I) the average range of J with
respect to I over f (relative to L) is

AL(f) :=
{
J(h)
I(h)

: h ∈ Lf
}
,

and given ε > 0, the ε-approximate average range of J with respect to I
over f is

ALε (f) := {x ∈ R : |J(h)− xI(h)| ≤ εI(h), h ∈ Lf}.

Note that the property P := AL(f) 6= ∅ is hereditary in L, i.e., if f, g ∈
+L, f ≤ g and g has P , then f has P .

We need some notation: given ε > 0, we say that h ∈ +L has the property
Pε if ALε (f) 6= ∅.

The following lemma summarizes the properties that we will need. They
are all easy to verify.

Lemma 10. Given an arbitrary Loomis system (X,B, I), f ∈ +R1(B, I)
and ε > 0, the following assertions hold :

(i) δ(ALε (f)) ≤ 2ε, where δ denotes diameter.
(ii) If g ∈ +R1(B, I) and f ≤ g, then AL(f) ⊂ AL(g), and so ALε (f) ⊂

ALε (g).
(iii) If 0 < ε < γ, then ALε (f) ⊂ ALγ (f).
(iv) If h ∈ +RX is bounded and fh ∈ +R1(B, I), then ALε (f) ⊂ ALε (fh).
(v) ALε (f) 6= ∅ if , and only if , AL(f) is bounded and δ(AL(f)) ≤ 2ε.
(vi) The property ALε (f) 6= ∅ exhausts I on each element in +L if ,

and only if , the property δ(AL(f)) < ε exhausts I on each element
in +L.

Lemma 11. Given an arbitrary Loomis system (X,B, I), let J : B → R
be a positive linear functional such that J � I. If f, g ∈ +L are such that
I(|f − g|) = 0, then AL(f) = AL(g). In particular , the property ALε (f) 6= ∅
is L-I-invariant.

Proof. (a) Suppose f ≤ g. Then AL(f) ⊂ AL(g). To prove the reverse
inclusion, let α ∈ AL(g), then there exists h ∈ Lg such that α = J(h)/I(h).

Assume that h ∧ f ∈ Lg. Clearly, I(h) + I(f) = I(h ∨ f) + I(h ∧ f)
and 0 ≤ f ∨ h − f ≤ g − f . By hypothesis, I(h) = I(h ∧ f), and also
J(h) = J(h ∧ f), since J is absolutely continuous with respect to I on B
or BI . Consequently, α = J(h)/I(h) = J(h ∧ f)/I(h ∧ f) ∈ AL(f).

(b) For general f, g ∈ +L, we have f ∧ g ∈ +L. By applying (a) for
(f, f ∧ g) and (g, f ∧ g) we obtain AL(f) = AL(f ∧ g) = AL(g), and this
completes the proof.
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Proposition 12 (Exhaustion Principle). Let (X,B, I) be an algebra
Loomis system such that 1 ∈ B and let P be a hereditary property. Then the
following two statements are equivalent :

(i) P exhausts I on 1.
(ii) For each δ > 0, there exists g ∈ +B with g ≤ 1 and α ∈ ]0, 1[ such

that :

(a) I(1− g) < δ,
(b) for all h ∈ +B with h ≤ g, there exists k ∈ +B with k ≤ h such

that I(k) > αI(h) and k has P .

Proof. The argument is similar to the one in the proof of [8, Prop. 3.2].
We only need to establish the corresponding versions of some results.

(a) Let (hi)i∈N be an L-I-exhaustion on 1. For δ > 0, there exists n0 ∈ N
such that

∞∑
i=n0+1

I(hi) < δ.

Put g :=
∑n0

i=1 hi and assume, without loss of generality, that g ≤ 1. Then
I(1− g) < δ.

(b) For all h ∈ +B with h ≤ g, we have

I(h) =
n0∑
i=1

I(hih).

Observe that, by Lemma 6, (hih)i is an L-I-exhaustion on h, hence
∑n0

i=1 hih
≤ h and

∑∞
i=1 I(hih) = I(h). Consequently, there exists j ∈ N such that

2n0I(hjh) > I(h). Now, with k := hjh, (b) holds.
Note that k ≤ g ≤ 1 and k has P since the property is hereditary.

One can specify property P as Pε := ALε (f) 6= ∅ for f ∈ +L. As above,
we define

B1 := {h ∈ +B : h ≤ 1 and I(h) 6= 0}.

3. The Radon–Nikodym derivative

Theorem 13. Let (X,B, I) be an algebra Loomis system such that 1∈B.
Let J : B → R be a positive linear functional. Assume that :

(i) J � I.
(ii) AB(1) := {J(h)/I(h) : h ∈ B1} is bounded.

(iii) For each ε > 0, the property Pε := ABε (h) 6= ∅ exhausts I.

Then there exists a bounded function g ∈ B such that J(f) = I(fg) for all
bounded f ∈ B.
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Proof. We assume I(1) > 0. Hypotheses (i) and iii), together with Lem-
mas 7 and 10, imply that there exists a complete B-I-exhaustion (g1

i )i∈N
on 1, each element of which has Pε, i.e.,

1 =
∞∑
i=1

g1
i and ABε (g1

i ) 6= ∅ for every i ∈ N.

We may now decompose each g1
i ∈ +B (i ∈ N) in an exhausting way and,

by induction, we construct a sequence of exhaustions:
For every i ∈ N, ε := 1/22, there exists a complete B-I-exhaustion

(g2
i,j)j∈N on g1

i .
Given gkα ∈ +B (k ∈ N, α ∈ Nk), let (gk+1

α,j )j∈N be a complete B-I-
exhaustion on gkα; here ε := 1/2k+1.

Thus, for every k ∈ N, (gkα)α∈Nk is a complete B-I-exhaustion on 1, and
for k ∈ N, α ∈ Nk, s ∈ N, (gk+sα,β )β∈Ns is a complete B-I-exhaustion on gkα.
Moreover, for all k ∈ N and α ∈ Nk,

AB1/2k(gkα) 6= ∅.

Now, for each n ∈ N and α ∈ Nk, let rkα ∈ AB1/2k(gkα). From hypothesis
(ii), we have

(1) |rkα| ≤
∣∣∣∣rkα − J(gkα)

I(gkα)

∣∣∣∣+
J(gkα)
I(gkα)

≤ 1
2k

+M < 1 +M,

where M := supAB
1/2k(gkα). Let gk : X → N be defined by

gk :=
∑
α∈Nk

rkαg
k
α.

The sequence (gk) is uniformly Cauchy:
(2)

|gk − gk+s| ≤
∑
α∈Nk

∣∣∣rkαgkα − ∑
β∈Ns

rk+sα,β g
k+s
α,β

∣∣∣ ≤ ∑
α∈Nk

∑
β∈Ns

|rkα − rk+sα,β |g
k+s
α,β .

But rkα, r
k+s
α,β ∈ A

B
1/2k(gk+sα+β) and |rkα−rk+sα,β | ≤ 1/2k−1; hence, by Lemma 10(i),

it follows that |gk − gk+s| ≤ 1/2k−1 on X.
With (1) and (2) we conclude that g := limk gk is bounded.
On the other hand, as k →∞, since

I(|gk − gk+s|) ≤
1

2k−1
I(1)→ 0,

and, for all h ∈ +B,

I−(|gk − g| ∧ h) ≤ I(|gk − g|) ≤
1

2k−1
I(1)→ 0,
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we deduce that (gk) is an I-Cauchy sequence such that gk → g (I−); hence,
g ∈ R1(B, I) and I(g) = limk I(gk). Moreover, g ∈ B, because g is bounded.

Now, for every bounded f , by Corollary 2, fg and fgk are in B, and

|I(fgk)− I(fg)| ≤ I(f |gk − g|) ≤M ′
1

2k−1
I(1)→ 0,

where M ′ is an upper bound for f. Hence,

I(fg) = lim
k→∞

I(fgk).

Now, Lemmas 6 and 7 ensure that

J(f) =
∑
α∈Nk

J(fgkα) (k ∈ N);

and using Lemma 10(iv), we compute

|J(f)− I(fkα)| ≤
∑
α∈Nk

|J(fgkα)− rkαI(fgkα)| ≤ 1
2k
∑
α∈Nk

I(fgk) −−−→
k→∞

0.

Therefore,
J(f) = lim

k→∞
I(fgk) = I(fg).

For an arbitrary bounded function f ∈ B, we consider f = f+ − f−.

The following lemma illustrates connections between average ranges (see
[9, Lemma 3.7]).

Lemma 14. Let (X,B, I) be a Loomis system and let J : B → N be a
positive linear functional. Suppose that for each ε > 0 there exists α > 0 such
that for each h ∈ +B, there exists k ≤ h with k ∈ +B and I(k) > αI(h) > 0.
Consider the following two statements:

(i) AB(k) 6= ∅.
(ii) δ(AB(k)) < ε.

Then (i)⇒(ii); and if additionally J � I, then (ii)⇒(i).

Its proof follows quite easily from the above definitions.

Corollary 15. Let (X,B, I) be an algebra Loomis system with unit
(1 ∈ B) and let J : B → N be a positive linear functional with these two
properties:

(a) J � I.
(b) For all ε > 0 and δ > 0, there exists g ∈ +B with g ≤ 1 and α ∈ [0, 1]

such that :

• I(1− g) < δ.
• AB(g) is bounded.
• For all h ∈ +B with h ≤ g, there exists k ∈ +B with k ≤ h such

that I(k) > αI(h) and δ(AB(k)) < ε.
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Then there exists a bounded function g ∈ B such that J(f) = I(fg) for all
bounded f ∈ B.

Proof. For an arbitrary bounded function f in B, with (hn) an L-I-
exhaustion on f , by Lemma 6,

J(f) = sup
P⊂T

{∑
n∈P

J(hn)
}
.

Now, for every ε>0, by (b) and the Exhaustion Principle, property δ(AB(k))
< ε exhausts I on each element of +B. By Lemma 10(vi), the same is true
for ABε (k) 6= ∅. Hence, by Lemma 14 and Theorem 13, there exists g ∈ B
such that

J(hn) = I(hng), ∀n ∈ N.

But Lemma 7 says that (hng) is an L-I-exhaustion on fg, and we conclude
that

J(f) = sup
P⊂T

{∑
n∈P

J(hn)
}

= sup
P⊂T

{∑
n∈P

I(hng)
}

= I(fg), ∀f ∈ B.

Proposition 16. Let (X,B, I) be an algebra Loomis system with unit
and let J : B → N be a positive linear functional. Then:

(i) For g ∈ B and δ > 0, there exists k ∈ +B such that I(1− k) < δ.
(ii) If there exists a bounded function g ∈ B such that J(f) = I(gf) for

all bounded functions f ∈ B, then J � I and AB(1) is bounded.

Proof. For g ∈ B and δ > 0, there exist h1, h2 ∈ +B such that h1 ≤
g ≤ h2 and I(h2 − h1) < δ. With k := 1 − (h2 − h1), (i) holds. But (ii) is
immediate by Definition 9.

Proposition 16 provides necessary conditions for J to have a Radon–
Nikodym derivative with respect to I.

4. Examples

4.1. Let X := N and B := {f ∈ NN : I(f) := lim f(n)/n ∈ R exists}.
Hence, B is a vector lattice such that 1 ∈ B. Here,

B = B = {f ∈ R1 : |f(n)| <∞, ∀n ∈ N}.

If

f(n) :=
{

0, n is odd,
1, n is even,

and g(n) := n, ∀n ∈ N,

then fg /∈ B.
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4.2. Let X := ]−1,+1[, B := the class of all step functions on X, and
I : B → N given in the usual canonical form:

I
( n∑
k=1

akχAk

)
:=

n∑
k=1

akλ(Ak), ∀
n∑
k=1

akχAk
=: h ∈ B,

where λ is the Lebesgue measure on X. We now consider the following
functions:

f(x) :=
{ 0, −1 < x ≤ 0,∑∞

n=1 nχ[1/(n+1)3,1/n3[, 0 < x < 1,

g(x) :=
{∑∞

n=1 nχ[1/(n+1)3−1,1/n3−1[, −1 < x < 0,
0, 0 ≤ x < 1.

Both are in R1(B, I) (it is not difficult to show that f ∧ h and g ∧ h are in
R1(B, I) for all h in +B, and I+(|f |) and I+(|g|) are finite); but neither is
bounded, and their product is zero everywhere; hence fg is I-integrable.

4.3. Let X := [0, 1], B := C(X) and I(f) :=
	1
0 f dλ, for all real contin-

uous functions f on X, and λ the Lebesgue measure on X. We consider the
λ-integrable function h : X → N given by

h(x) :=
{

0, x = 0,
1/
√
x, x ∈ ]0, 1].

If we now define

J : B → N, J(f) := I(hf), ∀f ∈ B,

then J � I. Namely, J is a Radon measure with density h on the compact
space X, having the Radon measure I as basis (see [10]). If we assume that
there exists M > 0 such that J ≤ MI on B, we derive a contradiction by
constructing (un) ⊂ +B such that ‖un‖ := I(|un|)→ 0 and J(un) ≥ ln 2 for
all n ∈ N. For every n ≥ 2, un will be affine on [0, 1/2n] and [1/n, 1/(n−1)],
and will coincide with h on [1/2n, 1/n].

4.4. Let X and B be as in Example 4.3. Let us enumerate Q ∩ X as
{x0 = 0, x1, x2, . . .} with the xn all distinct, and let (an)n≥0 ⊂ +N be such
that a0 = 1 and the series

∑
n≥0 an converges. If we define the positive linear

functional I : B → N by

I(f) :=
∞∑
n=0

anf(xn) = f(0) +
∞∑
n=1

anf(xn),

and the constant functional (hence, positive and linear)

J(f) := f(0), ∀f ∈ B,

it is clear that J � I.
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Assume that there exists g ∈ B such that

J(f) = I(gf), ∀f ∈ B.

Then

J(f) = f(0) = I(fg) = f(0)g(0) +
∞∑
n=1

anf(xn)g(xn).

Hence, for f(x) := x on X, we have

J(f) = f(0) = 0 =
∞∑
n=1

anxng(xn).

But all an’s are positive, which means that g(xn) = 0 for all n ∈ N. By
continuity, g ≡ 0, and so J = 0, which is a contradiction. Observe that the
functionals I and J are Daniell integrals (use Dini’s theorem).

4.5. Let B be the Banach lattice c consisting of all convergent sequences
of real numbers, and define the following positive linear functional:

I(f) :=
∞∑
n=1

f(n)2−n + f(∞).

Let hn := χ{n}. Then (hn) satisfies (i) in Definition 5 (for f = 1 ∈ B), yet

I(1) = 2 6= 1 =
∞∑
n=1

I(hn).
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