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Surjective isometries on spaces of
differentiable vector-valued functions

by

Fernanda Botelho and James Jamison (Memphis, TN)

Abstract. This paper gives a characterization of surjective isometries on spaces of
continuously differentiable functions with values in a finite-dimensional real Hilbert space.

1. Introduction. We consider the space of continuously differentiable
functions on the interval [0, 1] with values in a Banach space E. This function
space, equipped with the norm ‖f‖1 = maxx∈[0,1]{‖f(x)‖E + ‖f ′(x)‖E}, is
a Banach space, denoted by C(1)([0, 1], E).

Banach and Stone obtained the first characterization of the isometries
between spaces of scalar-valued continuous functions (see [2, 15]). Sev-
eral researchers derived extensions of the Banach–Stone theorem to a va-
riety of different settings. For a survey of this topic we refer the reader
to [7]. Cambern and Pathak [4, 5] considered isometries on spaces of scalar-
valued differentiable functions and gave a representation for the surjec-
tive isometries of such spaces. In this paper, we extend their result to
the vector-valued function space C(1)([0, 1], E), for E a finite-dimensional
Hilbert space. We also characterize the generalized bi-circular projections
on C(1)([0, 1], E).

The characterization of the extreme points of the dual unit ball of a
closed subspace of the continuous functions a compact Hausdorff space due
to Arens and Kelley [6, p. 441] plays a crucial role in our proofs. In addition,
the following result by de Leeuw which gives a converse of the Arens–Kelley
theorem, for a closed subspace X of C(Ω) (cf. [11]), is also essential to our
methods. To state de Leeuw’s result we need the following definition.

Definition 1.1. The point ω ∈ Ω is said to be a peak point for h ∈ X
if h(ω) = 1, |h(ω1)| ≤ 1 for every ω1 ∈ Ω, and |h(ω1)| = 1 at some ω1 6= ω
if and only if |g(ω1)| = |g(ω)| for all g ∈ X .
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Theorem 1.2 (cf. [11, p. 61]). If ω ∈ Ω is a peak point for some h ∈ X ,
then the functional Φ ∈ X ∗ defined by Φ(g) = g(ω) is an extreme point of
the unit ball in X ∗.

We construct an isometric embedding of C(1)([0, 1], E) onto a closed
subspace of the space of scalar-valued continuous functions on a compact set.
This allows us to describe the form of the extreme points of C(1)([0, 1], E)∗1.
We denote by B1 the unit ball in a Banach space B.We consider the isometry
F from C(1)([0, 1], E) onto a subspace M of the scalar-valued continuous
functions on Ω = [0, 1]×E∗1×E∗1 , with E∗ equipped with the weak∗ topology,

F (f) = Ff (x, ϕ, ψ) = ϕ(f(x)) + ψ(f ′(x)).

The surjective isometry on the dual spaces F ∗(F ∗f )(g) = F ∗f (Fg) maps the
extreme points of M∗1 onto the extreme points of C(1)([0, 1], E)∗1. It follows
from the Arens–Kelley lemma [6, p. 441] that

ext(M∗1) ⊆ {Φω : Φω(Ff ) = ϕ(f(x)) + ψ(f ′(x)), ∀f ∈ C(1)([0, 1], E)}.
Proposition 1.3. If E is a smooth, separable and reflexive Banach

space, over the reals or complex numbers. Then Φ is an extreme point of
M∗1 if and only if there exists (x, ϕ, ψ) ∈ Ω, with ϕ and ψ extreme points of
E∗1 , such that

Φ(f) = ϕ(f(x)) + ψ(f ′(x)).

Proof. If Φ is an extreme point of M∗1, then Φ = Φω for some ω =
(x, ϕ, ψ) ∈ Ω. If ϕ (or ψ) is not an extreme point of E∗1 , then there must
exist distinct functionals ϕ1 and ϕ2 in E∗1 such that ϕ = (ϕ1 + ϕ2)/2. For
i = 1, 2, we set ωi = (x, ϕi, ψ) and

Φωi(Ff ) = ϕi(f(x)) + ψ(f ′(x)).

We have Φ = (Φω1 + Φω2)/2 and

|Φωi(Ff )| ≤ |ϕi(f(x))|+ |ψ(f ′(x))| ≤ ‖f(x)‖E + ‖f ′(x)‖E ≤ ‖f‖1 = ‖Ff‖∞.
On the other hand, there exist ai ∈ E1 (i = 1, 2) so that |ϕi(ai)| = 1.

Thus, if fi is the constant function equal to ai, then |Φωi(Ffi
)| = 1 and

Φωi ∈M∗1. Thus Φ is not an extreme point of M∗1, contradicting our initial
assumption. Similar reasoning applies if ψ /∈ ext(E∗1).

Now we show that Φ given by

Φ(f) = ϕ(f(x)) + ψ(f(x)),

with ω = (x, ϕ, ψ) ∈ Ω and ϕ,ψ ∈ ext(E∗1), is an extreme point of M∗1.
There exist a1 and a2 in E1 such that ϕ(a1) = eiα1 and ψ(a2) = eiα2 . We
define f ∈ C(1)([0, 1], E) by

f(t) =
e−iα1a1 + λ(t)e−iα2a2

2
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with

(1.1) λ(t) =

{
−1

2(x2 − t2) + (x− 1)(x− t) for 0 ≤ t ≤ x,
−1

2(t2 − x2) + (x+ 1)(t− x) for x ≤ t ≤ 1.

We observe that λ(x) = 0, λ′(x) = 1, and |λ(t)|+ |λ′(t)| = 1− 1
2(x− t)2 < 1

for all t 6= x. Therefore

|Ff (ω)| = |ϕ(f(x)) + ψ(f ′(x))| = 1.

If ω1 6= ω with ω1 = (x1, ϕ1, ψ1) and x1 6= x, we have

|Ff (ω1)| = |ϕ1(f(x1)) + ψ1(f ′(x1))|

=
∣∣∣∣ϕ1

(
e−iα1a1 + λ(x1)e−iα2a2

2

)
+ ψ1

(
λ′(x1)e−iα2a2

2

)∣∣∣∣
≤ 1

2
+
|λ(x1)|+ |λ′(x1)|

2
< 1.

If x1 = x, and ϕ1 6= ϕ or ψ1 6= ψ, then

|Ff (ω1)| = |ϕ1(f(x1)) + ψ1(f ′(x1))|

=
∣∣∣∣ϕ1

(
e−iα1a1

2

)
+ ψ1

(
e−iα2a2

2

)∣∣∣∣ < 1,

unless |ϕ1(e−iα1a1)| = 1 and |ψ1(e−iα2a2)| = 1. The conclusion now follows
from Theorem 1.2.

An extreme point ofM∗1 is therefore represented by a triplet (x, ϕ, ψ) ∈
Ω, with x ∈ [0, 1] and ϕ, ψ extreme points of E∗1 . Given the hypothesis on E
we know that ext(E∗1) = E∗1 . If T is a surjective isometry of C(1)([0, 1], E),
then T ∗ maps extreme points to extreme points. Hence Proposition 1.3 as-
serts that given ω = (x, ϕ, ψ) there exists ω1 = (x1, ϕ1, ψ1) such that

(1.2) ϕ[(Tf)(x)] + ψ[(Tf)′(x)] = ϕ1(f(x1)) + ψ1(f ′(x1))

for every f ∈ C(1)(Ω,E).
This determines a transformation τ, on Ω = [0, 1]×E∗1 ×E∗1 , associated

with the isometry T and given by

τ(x, ϕ, ψ) = (x1, ϕ1, ψ1).

Lemma 1.4. τ is a homeomorphism.

Proof. We first observe that τ is well defined. Suppose there exist two
triplets ω1 = (x1, ϕ1, ψ1) and ω2 = (x2, ϕ2, ψ2), both corresponding to ω =
(x, ϕ, ψ). Then

(1.3) ϕ1(f(x1)) + ψ1(f ′(x1)) = ϕ2(f(x2)) + ψ2(f ′(x2)).

If x1 6= x2, we select a function f ∈ C(1)([0, 1], E) constant equal to a,
an arbitrary vector in E1, on a neighborhood of x1, say Ox1 , and equal to
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zero on a neighborhood of x2, say Ox2 , with Ox1 ∩Ox2 = ∅. Equation (1.3)
implies that ϕ1(a) = 0, so ϕ = 0. This contradicts ϕ ∈ E∗1 and shows that
x1 = x2. If f is now chosen to be constant equal to a, an arbitrary vector
in E1, then (1.3) reduces to ϕ1(a) = ϕ2(a), thus ϕ1 = ϕ2. If f is given by
f(x) = (x−x1)a then (1.3) implies that ψ1 = ψ2. Therefore τ is well defined.
Similar arguments and the invertibility of T imply that τ is a bijection. The
continuity of τ follows from the weak∗ continuity of T ∗.

2. Properties of the homeomorphism τ . In this section we explore
further properties of the homeomorphism τ to be used in our characteri-
zation of surjective isometries on C(1)([0, 1], E), with E a real and finite-
dimensional Hilbert space.

For a fixed x ∈ [0, 1] we define the map τx : E∗1×E∗1 → [0, 1] by τx(ϕ,ψ) =
π1τ(x, ϕ, ψ), with π1 representing the projection on the first component.

The next lemma holds for a finite-dimensional Banach range space, the
proof does not require an inner product structure.

Lemma 2.1. If E a finite-dimensional Banach space, then τx is a con-
stant function.

Proof. If τx is not constant, then its image is a non-degenerate subin-
terval of [0, 1]. We select a basis for E∗, say {ϕ1, . . . , ϕk}, consisting of
functionals of norm 1. We select an element

y ∈ τx(E∗1 × E∗1) \ {τx(ϕi, ϕi), τx(ϕi,−ϕi)}i=1,...,k.

Then we set τ(x, ϕi, ϕi) = (xi, ηi, ξi), τ(x, ϕi,−ϕi) = (yi, αi, βi), and
τ(x, ϕ0, ψ0) = (y, η, ξ). We select g ∈ C(1)([0, 1], E) such that, for all i =
1, . . . , k, g(xi) = g(yi) = g′(xi) = g′(yi) = 0E , g(y) = u and g′(y) = v, where
u and v are such that η(u) = 1 and ξ(v) = 1. Therefore we have

ϕi((Tg)(x)) + ϕi((Tg)′(x)) = ηi(g(xi)) + ξi(g′(xi)) = 0

and
ϕi((Tg)(x))− ϕi((Tg)′(x)) = αi(g(yi)) + βi(g′(yi)) = 0.

These equations imply that ϕi((Tg)(x)) = 0 and ϕi((Tg)′(x)) = 0 for all i.
Hence Tg(x) = (Tg)′(x) = 0E , implying that 2 = η(g(y)) + ξ(g′(y)) = 0.
This contradiction establishes the claim.

For fixed x ∈ [0, 1] and ϕ ∈ E∗1 , we define the map τ(x,ϕ) : E∗1 → E∗1 by

τ(x,ϕ)(ψ) = ϕ1 provided that τ(x, ϕ, ψ) = (x1, ϕ1, ψ1).

Lemma 2.2. If E is a finite-dimensional real Hilbert space then, for any
fixed x ∈ [0, 1] and ϕ ∈ E∗1 , τ(x,ϕ) is constant.

Proof. The Riesz Representation Theorem allows us to set notation as
follows: ϕ,ψ ∈ E∗1 are completely determined by the inner product with
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a single vector u, v respectively. Hence we define τ : [0, 1] × E1 × E1 →
[0, 1]×E1 ×E1 by τ(x, u, v) = (x1, u1, v1), and for every f ∈ C(1)([0, 1], E),

(2.1) 〈(Tf)(x), u〉+ 〈(Tf)′(x), v〉 = 〈f(x1), u1〉+ 〈f ′(x1), v1〉.

For fixed x and u, we let F(x,u) : E1 → E1 be given by F(x,u)(v) =
π2(τ(x, u, v)), where π2 is the projection on the second component. We prove
the lemma by showing that F(x,u) is constant. For simplicity we denote F(x,u)

by just F , unless the dependence on x, u has to be emphasized.
We choose f(t) = a, a unit vector. Then

〈(Tf)(x), u〉+ 〈(Tf)′(x),±v〉 = 〈a, F (±v)〉.
This implies that

〈(Tf)(x), u〉 =
〈
a,
F (v) + F (−v)

2

〉
for every v ∈ E1. The function G : E1 → E defined by G(v) = F (v)+F (−v)
is therefore constant, denoted by w. As a consequence, for every v0 and v1
in E1, we have

〈F (v0), F (−v0)〉 = 〈F (v1), F (−v1)〉, 〈F (v0), F (v1)〉 = 〈F (−v0), F (−v1)〉.
Therefore

‖F (v0)− F (−v0)‖2 = 2− 2〈F (v0), F (−v0)〉 = 2− 2〈F (v1), F (−v1)〉
and

‖F (v0)− F (−v0)‖2 = ‖F (v1)− F (−v1)‖2.
Moreover, the function H : E1 → R given by H(v) = ‖F (v) − F (−v)‖ is
also constant. This implies that

〈F (v0)− F (−v0), F (v0) + F (−v0)〉 = 0.

If v ∈ E1 is such that {F (v), F (−v)} is linearly independent, we set Πv to be
the two-dimensional space spanned by F (v) and F (−v). Clearly w ∈ Πv. In
the plane Πv, we represent F (v) by (w/‖w‖)eiα and F (−v) by (w/‖w‖)e−iα.
This is the polar representation for F (v) and F (−v) in Πv, with w identi-
fied with the positive direction of the x-axis. Without loss of generality, we
choose α ∈ (0, π). This, in particular, implies that w = F (v) + F (−v) =
(2 cos(α)/‖w‖)w and 2 cos(α) = ‖w‖. The value of α is then uniquely deter-
mined, so {F (v), F (−v)} are the only two values in the range of F belonging
to the plane Πv. The line Ow divides the line segment F (v)F (−v) into two
equal parts. Since G is a constant function we have

F (E1) ⊆
(
w

2
+ {w}⊥

)
∩ S
(
w

2
,
‖F (v)− F (−v)‖

2

)
with S(x, δ) representing the set of points in E at distance δ from x ∈ E,
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and {w}⊥ representing the space orthogonal to the span of w. We also notice
that F (v0) 6= ±F (−v0) for every v0.

These considerations imply that F maps the n − 1-sphere ext(E1) to a
set homeomorphic to a subset of an n − 2-sphere, and F sends antipodal
points to antipodal points. We now show that such a map cannot exist.

First, for n = 2 this would mean that F would map S1 onto two points,
which is impossible since S1 is connected and F is continuous. The general
case is a consequence of the Borsuk–Ulam Theorem (see [13, p. 266]).

Therefore {F (v), F (−v)} is linearly dependent, and as a consequence,
we consider the following two possibilities:

(i) F (v) = F (−v) for every v,
(ii) F (−v) = −F (v) for every v.

In case (i), we have F (v) = w/2 for every v, so F is constant.
In case (ii), given two different vectors v0 and v1 in E1 we have

〈(Tf)(x), u〉+
〈

(Tf)′(x),
v0 + v1
‖v0 + v1‖

〉
=
〈
a, F

(
v0 + v1
‖v0 + v1‖

)〉
,

〈(Tf)(x), u〉 −
〈

(Tf)′(x),
v0 + v1
‖v0 + v1‖

〉
=
〈
a, F

(
− v0 + v1
‖v0 + v1‖

)〉
.

Hence 〈(Tf)(x), u〉 = 0 and〈
(Tf)′(x),

v0 + v1
‖v0 + v1‖

〉
=
〈
a, F

(
v0 + v1
‖v0 + v1‖

)〉
.

This implies that

(2.2)
F (v0) + F (v1)
‖v0 + v1‖

= F

(
v0 + v1
‖v0 + v1‖

)
, ‖F (v0) + F (v1)‖ = ‖v0 + v1‖.

Equation (2.2) implies that

〈F (v0), F (v1)〉 = 〈v0, v1〉,

or F is norm preserving. We define a map Θ : [0, 1] × E1 → C(E1, E1) by
Θ(x, u)(v) = F(x,u)(v). It follows from Lemma 1.4 that Θ is continuous.
Furthermore, we have shown that, for each (x, u) ∈ [0, 1] × E1, Θ(x, u) is
either constant or an isometry in E1.

The continuity of Θ and the connectedness of the domain [0, 1] × E1

implies that the range of Θ consists only of constant functions on C(E1, E1)
or only of norm preserving functions on E1 that map antipodal points onto
antipodal points. This last assertion follows from the fact that the distance
between one such norm preserving map on E1 and a constant function is
greater than or equal to

√
2. In fact, let Fx0,u0 = Θ(x0, u0) be a constant

function, everywhere equal to a, and Fx1,u1 = Θ(x1, u1) be norm preserving
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on E1 with Fx1,u1(−v) = −Fx1,u1(v) for all v ∈ E1. Then we have

‖Fx0,u0 − Fx1,u1‖∞ = max
v∈E1

{‖Fx0,u0(v)− Fx1,u1(v)‖E}.

Furthermore,

‖Fx0,u0(v)− Fx1,u1(v)‖E = ‖a− Fx1,u1(v)‖E ,
‖Fx0,u0(−v)− Fx1,u1(−v)‖E = ‖a + Fx1,u1(v)‖E ,

implying that

4 = ‖a− Fx1,u1(v)‖2E + ‖a + Fx1,u1(v)‖2E ≤ 2 max{‖a± Fx1,u1(v)‖2E}.
Consequently,

‖Fx0,u0 − Fx1,u1‖∞ ≥
√

2.

As mentioned before, this implies that the range of Θ contains only
constant functions or only norm preserving maps. Now we show that the
assumption that the range of Θ contains only norm preserving maps that
send antipodal points to antipodal points leads to a contradiction.

In fact, if the range of Θ contains only such maps, then for a fixed
constant function f on [0, 1] equal to a ∈ E1, we have

〈(Tf)(x), u〉+ 〈(Tf)′(x), v〉 = 〈a, F(x,u)(v)〉
and

〈(Tf)(x), u〉 − 〈(Tf)′(x), v〉 = 〈a, F(x,u)(−v)〉.
Therefore 〈(Tf)(x), u〉 = 0 for all u and x, and so Tf is zero. This completes
the proof.

Remark 2.3. We mention that we can also prove, following a similar
strategy, that for a fixed x ∈ [0, 1] and ψ ∈ E∗1 , the map τ(x,ψ) : E∗1 → E∗1
such that

τ(x,ψ)(ϕ) = ψ1

is constant. This result is stated in Lemma 3.2 of the next section.

3. Surjective isometries of C(1)([0, 1], E). In this section we establish
that surjective isometries on C(1)([0, 1], E) are composition operators. First,
we prove preliminary results about surjective isometries on these spaces.
The space E is a finite-dimensional Hilbert space. The Riesz Representation
Theorem allows us to associate a unique unit vector to each functional in
E∗1 . Then we represent τ : [0, 1] × E1 × E1 → [0, 1] × E1 × E1 given by
τ(x, u, v) = τ(x, u1, v1) with u, v, u1, v1 corresponding to ϕ, ψ, ϕ1, ψ1

respectively.

Lemma 3.1. If E is a finite-dimensional real Hilbert space and T is
a surjective isometry on C(1)([0, 1], E) then T maps constant functions to
constant functions.
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Proof. We assume that there exists a constant function f ∈C(1)([0, 1], E)
with f(t) = a, a vector in E, such that Tf is not constant. This means
there exists x0 ∈ [0, 1] such that (Tf)′(x0) 6= 0E . We choose a vector v0
in E1 orthogonal to (Tf)′(x0), i.e. 〈(Tf)′(x0), v0〉 = 0. We set τ(x0, u, v) =
(x1, u1, v1). Then

(3.1) 〈(Tf)(x0), u〉+ 〈(Tf)′(x0), v〉 = 〈a, u1〉.
Lemma 2.2 implies that

(3.2) 〈(Tf)(x0), u〉+ 〈(Tf)′(x0), v0〉 = 〈a, u1〉.
Therefore 〈(Tf)(x0), u〉 = 〈a, u1〉 and 〈(Tf)′(x0), v〉 = 0 for every v. This
contradicts our initial assumption that (Tf)′(x0) 6= 0E , and completes the
proof.

For a fixed x ∈ [0, 1] and v ∈ E1, we define τ(x,v) : E1 → E1 by

τ(x,v)(u) = v1 provided that τ(x, u, v) = (x1, u1, v1).

Lemma 3.2. If E is a finite-dimensional real Hilbert space then, for fixed
x ∈ [0, 1] and v ∈ E1, τ(x,v) is constant.

Proof. We follow the steps in the proof of Lemma 2.2 with the following
modification. We consider functions of the form f(t) = (t−x1)a with a rep-
resenting some unit vector in E, and set F (u) = v1 with u and v1 associated
with the functions ϕ and ψ1, respectively. A similar strategy to that followed
in Lemma 2.2 allows us to conclude that either F is constant or (Tf)′ is
zero. If (Tf)′ is zero, then Tf is constant. Lemma 3.1 and the surjectivity of
T imply that f must be constant. This contradiction completes the proof.

Lemma 3.3. If E is a finite-dimensional real Hilbert space, x and x1 are
such that τ(x, u, v) = (x1, u1, v1), and f ∈ C(1)([0, 1], E), then f(x1) = 0E
implies that (Tf)(x) = 0E .

Proof. Equation (2.1) reduces to

〈(Tf)(x), u〉+ 〈(Tf)′(x), v〉 = 〈f ′(x1), v1〉.
Now considering u0 ∈ E1, Lemmas 2.1 and 3.2 imply that

〈(Tf)(x), u0〉+ 〈(Tf)′(x), v〉 = 〈f ′(x1), v1〉.
Therefore 〈(Tf)(x), u − u0〉 = 0. Since u0 is chosen arbitrarily in E1 we
conclude that T (f)(x) = 0E .

Lemma 3.4. If E is a finite-dimensional real Hilbert space and T is a
surjective isometry on C(1)([0, 1], E), then there exists a surjective isometry
U on E and a homeomorphism σ on the interval [0, 1] such that

T (f)(t) = U(f(σ(t)))

for every f ∈ C(1)([0, 1], E).
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Proof. We define U(v) = T (ṽ)(0) with ṽ representing the constant func-
tion equal to v. Since T is a surjective isometry, U is also a surjective isome-
try on E. Given f ∈ C(1)([0, 1], E) and x1 ∈ [0, 1] we denote by f1 the func-
tion given by f1(t) = f(t)− f(x1). Lemma 3.3 implies that T (f1)(x) = 0E .
Therefore

T (f)(x) = U(f(x1)).

We set σ(x) = x1; Lemmas 1.4 and 2.1 imply that σ is a homeomorphism.

Theorem 3.5. If E is a finite-dimensional real Hilbert space, then T is
a surjective isometry on C(1)([0, 1], E) if and only if there exists a surjective
isometry on E such that for every f ,

T (f)(x) = U(f(σ(x)))

with σ = Id or σ = 1− Id.

Proof. It is clear that a composition operator of the form described in
the theorem is a surjective isometry on C(1)([0, 1], E). Conversely, if T is
a surjective isometry then Lemma 3.4 asserts the existence of a surjective
isometry U on E and a homeomorphism σ on the interval [0, 1] such that

T (f)(t) = U(f(σ(t)))

for every f ∈ C(1)([0, 1], E). In particular, if f(x) = xa with a an arbitrary
vector in E, then T (f)(x) = σ(x)U(a). This implies that σ is continuously
differentiable. Similar considerations applied to T−1 imply that σ−1 is also
continuously differentiable. Therefore σ is a diffeomorphism of [0, 1]. Since
‖T (f)‖1 = maxx{‖Tf(x)‖E + ‖(Tf)′(x)‖E} and Tf(x) = Uf(σ(x)) with U
an isometry on E, we have

‖Tf‖1 = max{‖Uf(σ(x))‖E + ‖Uf ′(σ(x))‖E |σ′(x)|}(3.3)
= max{‖f(σ(x))‖E + ‖f ′(σ(x))‖E |σ′(x)|}

and

‖f‖1 = max{‖f(x)‖E + ‖f ′(x)‖E} = ‖f(x0)‖E + ‖f ′(x0)‖E
for some x0 ∈ [0, 1]. Therefore |σ′(σ−1(x0))| ≤ 1. On the other hand,
T−1(f)(x) = U−1f(σ−1(x)) and

rl‖T−1f‖1 = max{‖U−1f(σ−1(x))‖E + ‖U−1f ′(σ−1(x))‖E |(σ−1)′(x)|}
= max{‖f(σ−1(x))‖E + ‖f ′(σ−1(x))‖E |(σ−1)′(x)|}.

Therefore |(σ−1)′(σ(x0))| = 1/|σ′(x0)| ≤ 1 and so |σ′(x0)| ≥ 1. To conclude
that |σ′(x)| = 1 for all x, we need to show that for every x ∈ [0, 1] there
exists f such that ‖f‖1 = ‖f(x)‖E+‖f ′(x)‖E and ‖f ′(x)‖E 6= 0. We consider
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fx(t) = λx(t)a with a a unit vector in E and λx given as in (1.1)

(3.4) λx(t) =

{
−1

2(x2 − t2) + (x− 1)(x− t) for 0 ≤ t ≤ x,
−1

2(t2 − x2) + (x+ 1)(t− x) for x ≤ t ≤ 1.

Hence |σ′| = 1 and so σ = Id or = 1− Id .

Remark 3.6. If the range space E is an infinite-dimensional separable
Hilbert space then there are nonsurjective isometries. Let {en}n∈N be an
orthonormal basis and U be the operator defined by U(en) = e2n. The
isometry T : C(1)([0, 1], E) → C(1)([0, 1], E) given by T (f)(x) = U(f(x)) is
not surjective. It is not clear, whenever E is finite-dimensional, if there are
isometries on C(1)([0, 1], E) which are not surjective.

Theorem 3.5 was stated for range spaces that are finite-dimensional
Hilbert spaces over the reals, and we now extend our characterization to
finite-dimensional Hilbert spaces over the complex numbers.

Corollary 3.7. If E is a finite-dimensional complex Hilbert space, then
T is a surjective isometry on C(1)([0, 1], E) if and only if there exists a
surjective isometry U on E such that , for every f,

T (f)(x) = U(f(σ(x)))

with σ = Id or σ(x) = 1− Id.

Proof. The space E is equipped with an inner product over C, denoted
by 〈·, ·〉. This inner product induces a norm on E, denoted by ‖ · ‖, and the
norm ‖ · ‖1 is defined on the space C(1)([0, 1], E). We define another inner
product (·, ·) on E by

(u, v) = Re 〈u, v〉.
The space E with multiplication only by real scalars and equipped with this
real inner product (·, ·), is a Hilbert space, denoted by Ẽ. The induced norm
is denoted by ||| · ||| and

|||f |||1 = sup
x∈[0,1]

{|||f(x)|||+ |||f ′(x)|||}

is the corresponding norm on C(1)([0, 1], Ẽ). The identity map id : (E, |||·|||)→
(E, ‖ · ‖) is real linear. Furthermore, given u ∈ E we have

|||u|||2 = (u, u) = Re 〈u, u〉 = ‖u‖2.

Consequently, (Ẽ, ||| · |||) and (E, ‖ · ‖) are linearly isometric as real Ba-
nach spaces. If T is a surjective isometry on C(1)([0, 1], E), then T̃ , on
C(1)([0, 1], Ẽ), given by T̃ (f) = T (f) is also a surjective isometry. In fact,

|||T̃ f |||1 = sup
t∈[0,1]

{|||T̃ f(t)|||+ |||(T̃ f)′(t)|||} = sup
t∈[0,1]

{‖f(t)‖+ ‖f ′(t)‖} = ‖f‖1.
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Theorem 3.5 now asserts that there exists a real isometry U on Ẽ and
σ = Id or 1−Id so that T̃ (f)(t) = U(f(σ(t))). Then it follows that T (f)(t) =
U(f(σ(t))). It also follows that U is a complex linear isometry by considering
constant functions. This concludes the proof.

4. Generalized bi-circular projections on C(1)([0, 1], E). In this
section we give a characterization of all generalized bi-circular projections
on C(1)([0, 1], E) with E a finite-dimensional complex Hilbert space. We
starting by reviewing the definition of generalized bi-circular projection.

Definition 4.1 (cf. [8]). A bounded linear projection P on C(1)([0, 1], E)
is said to be a generalized bi-circular projection if and only if there exists a
modulus 1 complex number λ, different from 1, so that P + λ(Id−P ) is an
isometry T on C(1)([0, 1], E).

The isometry T must satisfy the following operator quadratic equation:

T 2 − (1 + λ)T + λ Id = 0.

Since T is a surjective isometry, Theorem 3.5 implies the existence of a
surjective isometry U on E such that

U2f(x)− (1 + λ)U(f(σ(x)) + λf(x) = 0.

Therefore if λ = −1 then U2 = Id and P is the average of the identity with
an isometric reflection R(f)(x) = U(f(σ(x))). If λ 6= −1, then σ(x) = x for
every x ∈ [0, 1] and U2 − (1 + λ)U + λ Id = 0. Hence

P (f) =
U − λ Id

1− λ
f(x).

We summarize the previous considerations in the following proposition.

Proposition 4.2. Let E be a finite-dimensional complex Hilbert space.
Then P is a generalized bi-circular projection on C(1)([0, 1], E) if and only
if there exists a generalized bi-circular projection PE on E so that Pf(x) =
PE(f(x)).

Remark 4.3. We wish to thank the referee for several helpful sugges-
tions that resulted in a substantial improvement of this paper. The referee
also suggested that the proof of our main result could be shortened by using
results by Jarosz and Pathak in [9].
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50 F. Botelho and J. Jamison

[3] F. Botelho and J. E. Jamison, Generalized bi-circular projections on C(Ω,X), Rocky
Mountain J. Math. (2008), to appear.

[4] M. Cambern, Isometries of certain Banach algebras, Studia Math. 25 (1965), 217–
225.

[5] M. Cambern and V. D. Pathak, Isometries of spaces of differentiable functions,
Math. Japon. 26 (1981), 253–260.

[6] N. Dunford and J. T. Schwartz, Linear Operators Part I : General Theory, Inter-
science, New York, 1958.

[7] R. Fleming and J. Jamison, Isometries on Banach Spaces: Vol. I, Function Spaces,
Vol. II, Vector-Valued, Function Spaces, Chapman & Hall, 2003, 2007.
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