STUDIA MATHEMATICA 192 (2) (2009)

Canonical Banach function spaces generated by Urysohn universal spaces. Measures as Lipschitz maps

by

PIOTR NIEMIEC (Kraków)

Abstract. It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure $\operatorname{CFL}(\mathbb{U}_r)$ of the linear span of the maps $x \mapsto d(x, a) - d(x, b)$, where d is the metric of the Urysohn space \mathbb{U}_r of diameter r, is (isometrically if $r = +\infty$) isomorphic to the space $\operatorname{LIP}(\mathbb{U}_r)$ of equivalence classes of all real-valued Lipschitz maps on \mathbb{U}_r . The space of all signed (real-valued) Borel measures on \mathbb{U}_r is isometrically embedded in the dual space of $\operatorname{CFL}(\mathbb{U}_r)$ and it is shown that the image of the embedding is a proper weak^{*} dense subspace of $\operatorname{CFL}(\mathbb{U}_r)^*$. Some special properties of the space $\operatorname{CFL}(\mathbb{U}_r)$ are established.

The unbounded Urysohn space was introduced in [13, 14]. Holmes [3] has proved that this space generates a unique (up to linear isometry) Banach space (for simpler proofs see [4], [8] or [10]). Such metric spaces are called *linearly rigid*. The Banach space generated by a linearly rigid metric space X is isometrically isomorphic to the predual of the space $\operatorname{Lip}_0(X)$ of real-valued Lipschitz maps on X vanishing at a fixed point of X (equipped with the "Lipschitz" norm). It turns out that linearly rigid spaces are necessarily unbounded, provided they have more than two points (see [10]). This means that bounded Urysohn spaces do not generate unique Banach spaces. However, as we shall show, the dual space of some Banach function space generated by a bounded Urysohn space \mathbb{U}_r is isomorphic to the space $\operatorname{Lip}_{0}(\mathbb{U}_{r})$. The fundamental properties of Urysohn spaces will also enable us to link Borel measures with Lipschitz maps by means of a linear isometric map (given by a simple formula). However, the correspondence is not one-to-one, i.e. there are Lipschitz maps which do not "come from" measures.

Notation and terminology. The sets of all nonnegative reals and positive integers are denoted by \mathbb{R}_+ and \mathbb{N}_* , respectively.

²⁰⁰⁰ Mathematics Subject Classification: 46E27, 26A16.

Key words and phrases: Urysohn's universal space, spaces of measures, spaces of Lipschitz maps.

For a separable complete metric space X, $\operatorname{Mes}(X)$ stands for the Banach space of all signed (real-valued) Borel measures on X, equipped with the standard total variation norm. It is well known that each nonnegative (finite) Borel measure μ on X is *regular*, i.e. $\mu(A) = \sup\{\mu(K) \mid K \subset A, K \operatorname{compact}\}$ for any Borel subset A of X. This implies that the subspace $\operatorname{Mes}_{c}(X)$ of $\operatorname{Mes}(X)$ consisting of all measures supported on compact sets is dense (with respect to the norm topology) in the whole space.

A Lipschitz map between metric spaces (X, d) and (Y, ϱ) is any function $f : X \to Y$ for which there is a finite constant $M \ge 0$ such that $\varrho(f(x), f(y)) \le Md(x, y)$ for every $x, y \in X$. We denote by $\operatorname{Lip}(X)$ the space of all real-valued Lipschitz maps on X. If X has more than one point, we equip the space $\operatorname{Lip}(X)$ with the following seminorm:

$$l(f) = \sup_{\substack{x,y \in X \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)}, \quad f \in \operatorname{Lip}(X).$$

This is not a norm, because l(f) = 0 if and only if f is constant. Therefore we take the quotient space $\operatorname{Lip}(X)/\operatorname{Const}(X)$, where $\operatorname{Const}(X)$ consists of all (real-valued) constant maps on X, and denote it by $\operatorname{LIP}(X)$. The space $\operatorname{LIP}(X)$ is a Banach space with respect to its norm:

$$L(f + \text{Const}(X)) = l(f), \quad f \in \text{Lip}(X).$$

In what follows we shall write, for simplicity, $f \in LIP(X)$ and L(f) instead of $f \in Lip(X)$ or L(f+Const(X)). However, one has to remember that LIP(X) is **not** a function space. Nevertheless, if x and y are two points of X, the functional $LIP(X) \ni f \mapsto f(x) - f(y) \in \mathbb{R}$ is well defined. Additionally, let $B_L(X)$ stand for the closed unit ball of LIP(X).

It is easy to see that LIP(X) is isometrically isomorphic to $Lip_0(X, x)$, the subspace of Lip(X) constisting of the maps vanishing at x, where x is any fixed point of X. Spaces of type Lip_0 are well studied (see e.g. [15]). It is known that they are dual spaces, and the preduals are well described (the Arens–Eells spaces). For us, the two most important properties of $Lip_0(X, x)$, after an adaptation to LIP(X), are (see also [11] for proofs):

- (L1) If X is separable, then the ball $B_L(X)$ is (compact and) metrizable in the weak^{*} topology, and a sequence $(f_n)_{n \in \mathbb{N}_*}$ of elements of $B_L(X)$ is weak^{*} convergent to $f \in B_L(X)$ if and only if $f_n(x) - f_n(y) \to f(x) - f(y)$ $(n \to \infty)$ for all $x, y \in X$ (this condition, in fact, defines the weak^{*} topology on $B_L(X)$).
- (L2) Any weak^{*} continuous functional $\psi : LIP(X) \to \mathbb{R}$ has the form

$$\psi(f) = \sum_{n=1}^{\infty} a_n \frac{f(x_n) - f(y_n)}{d(x_n, y_n)},$$

where $\sum_{n=1}^{\infty} |a_n| < \infty$ and $(x_n)_{n \in \mathbb{N}_*}$ and $(y_n)_{n \in \mathbb{N}_*}$ are two sequences of elements of X such that $x_n \neq y_n$; what is more, the sequences $(a_n)_{n \in \mathbb{N}_*}$, $(x_n)_{n \in \mathbb{N}_*}$ and $(y_n)_{n \in \mathbb{N}_*}$ may be taken so that $\sum_{n=1}^{\infty} |a_n|$ is arbitrarily close to $\|\psi\|$.

Whenever we deal with spaces of real-valued maps, the symbol $\|\cdot\|$ denotes the supremum norm.

Now we pass to the main subject of the paper.

1. DEFINITION. An Urysohn space is a separable complete metric space X such that every separable metric space of diameter no greater than diam X is isometrically embeddable in X, and each isometry between finite subsets of X is extendable to an isometry of X onto itself. An Urysohn space is nontrivial if it has more than one point.

For every $r \in [0, +\infty]$ there is a unique (up to isometry) Urysohn space of diameter r. We shall denote it by \mathbb{U}_r , and \mathbb{U} will stand for the unbounded Urysohn space.

A Katětov map on a metric space (X,d) is any function $f: X \to \mathbb{R}_+$ such that

$$|f(x) - f(y)| \le d(x, y) \le f(x) + f(y) \quad \text{for all } x, y \in X.$$

A common sphere is a set of the form

$$S_X(A, f) = \{ x \in X \mid \forall a \in A : d(x, a) = f(a) \}$$

with nonempty $A \subset X$ and any function $f : A \to \mathbb{R}_+$. If X is Urysohn, then $S_X(K, f)$ is nonempty for each nonempty compact subset K of X and every Katětov map f on K such that $f(K) \subset [0, \operatorname{diam} X]$. This is a consequence of the Huhunaišvili theorem [5]. For $r \in [0, +\infty]$, we denote by $E_r(X)$ the set of Katětov maps f on X such that $f(X) \subset [0, r]$. For more on Katětov maps, see [6], [8], [1]. The reader interested in Urysohn spaces is referred to [7, 8].

From now on, $r \in (0, +\infty]$, d is the metric of \mathbb{U}_r , and $B_L = B_L(\mathbb{U}_r)$. Let $\varrho : \mathbb{U}_r \to \operatorname{LIP}(\mathbb{U}_r)$ be defined as follows: $\varrho(x)$ is the equivalence class of the map e_x , where $e_x(y) = d(x, y)$. It is easy to see that $\varrho(\mathbb{U}_r) \subset B_L$, and ϱ is continuous when $\operatorname{LIP}(\mathbb{U}_r)$ is considered with the weak^{*} topology.

First we shall establish the basic properties of the set $\varrho(\mathbb{U}_r)$.

2. PROPOSITION. The set $\varrho(\mathbb{U}_r)$ is linearly independent.

Proof. Let $n \geq 2$. Suppose that x_1, \ldots, x_n are distinct points of \mathbb{U}_r and $\alpha_1, \ldots, \alpha_n$ are scalars such that the map $u = \alpha_1 e_{x_1} + \cdots + \alpha_n e_{x_n}$ is constant. Let $M = \operatorname{diam}\{x_1, \ldots, x_n\}$. For $j \in \{1, \ldots, n\}$, put $p_j = \min_{k \neq j} d(x_j, x_k) > 0$. Let $A = \{x_1, \ldots, x_n\}$, let $f_0 : A \to \mathbb{R}_+$ be the constant map with value M, and for $j = 1, \ldots, n$, let $f_j : A \to \mathbb{R}_+$ be defined as follows: $f_j(x_j) = M - p_j$ and $f_j(x_k) = M$ for $k \neq j$. It is easy to verify that f_0, \ldots, f_n are Katětov maps and take values in [0, r]. There are points z_0, \ldots, z_n such that $e_{x_j}(z_k) = f_k(x_j)$. Since the map u is constant it follows that $u(z_j) = u(z_0)$, or equivalently $\sum_{m=1}^n \alpha_m(f_j(x_m) - f_0(x_m)) = 0$. But this yields $\alpha_j p_j = 0$ and thus $\alpha_1 = \cdots = \alpha_n = 0$.

3. THEOREM. The weak^{*} closure of $\varrho(\mathbb{U}_r)$ contains the ball $\frac{1}{2}B_L$. If $r = +\infty$, then $\varrho(\mathbb{U}_r)$ is weak^{*} dense in B_L .

Proof. First assume that $r = +\infty$. It is enough to show that for each $f \in B_L$ and any finite nonempty subset A of \mathbb{U} there are $C \in \mathbb{R}$ and $x \in \mathbb{U}$ such that $f + C = e_x$ on A. Since A is finite, there is C such that $d(a, b) - f(a) - f(b) \leq 2C$ for $a, b \in A$. This implies that f + C is a Katětov map on A. So, there exists $x \in \mathbb{U}$ for which f(a) + C = d(x, a) $(a \in A)$. But this means that $f + C = e_x$ on A.

Now assume that r is finite. Take $f \in B_L$ and a finite nonempty subset A of \mathbb{U}_r . We have to prove that there are $C \in \mathbb{R}$ and $x \in \mathbb{U}_r$ such that $\frac{1}{2}f + C = e_x$ on A. Observe that since $L(f) \leq 1$ and diam $\mathbb{U}_r = r$, there is a constant α such that the image of $f + \alpha$ is contained in $\left[-\frac{1}{2}r, \frac{1}{2}r\right]$. But then the image of $\frac{1}{2}f + C$, where $C = \frac{1}{2}\alpha + \frac{3}{4}r$, is a subset of $\left[\frac{1}{2}r, r\right]$ and thus f + C is a Katětov map on A (because $\frac{1}{2}r \geq \frac{1}{2}$ diam A). So, as in the first case, it suffices to take $x \in \mathbb{U}_r$ such that $\frac{1}{2}f + C = e_x$ on A.

4. COROLLARY. If $\psi \in \text{LIP}(\mathbb{U}_r)^*$ is weak^{*} continuous, then

$$\frac{1}{2} \|\psi\| \le \sup_{x \in \mathbb{U}_r} \psi(\varrho(x)) \le \|\psi\|,$$

and if $r = +\infty$, then $\|\psi\| = \sup_{x \in \mathbb{U}_r} \psi(\varrho(x))$.

5. COROLLARY. The set $\varrho(\mathbb{U})$ is metrizable in the weak^{*} topology, but is not completely metrizable. In particular, $\varrho: \mathbb{U} \to \varrho(\mathbb{U})$ is not a homeomorphism.

Proof. Suppose that, on the contrary, $\rho(\mathbb{U})$ is completely metrizable. Then, by Theorem 3, it is a dense \mathcal{G}_{δ} -subset of B_L and thus so is $-\rho(\mathbb{U})$. But $\rho(\mathbb{U})$ and $-\rho(\mathbb{U})$ are disjoint (thanks to Proposition 2), contrary to the Baire theorem.

Corollary 4 leads us to the following

6. DEFINITION. The canonical function linear space (for short, the CFL space) of the Urysohn space \mathbb{U}_r is the space $\operatorname{CFL}(\mathbb{U}_r)$ consisting of the maps $f: \mathbb{U}_r \to \mathbb{R}$ of type $f(x) = \psi(\varrho(x))$, where ψ is a weak* continuous functional on $\operatorname{LIP}(\mathbb{U}_r)$. Since $\varrho(\mathbb{U}_r)$ is a subset of B_L , $\operatorname{CFL}(\mathbb{U}_r)$ consists of bounded maps. The CFL space is equipped with the supremum norm.

As an immediate consequence of Corollary 4 we obtain

7. THEOREM. The CFL space of the [unbounded] Urysohn space \mathbb{U}_r is [isometrically] isomorphic to the predual of $\operatorname{LIP}(\mathbb{U}_r)$ and therefore it is a Banach space. The canonical [isometric] isomorphism $J : \operatorname{LIP}(\mathbb{U}_r)_* \to \operatorname{CFL}(\mathbb{U}_r)$ has the form

$$(J(\psi))(x) = \psi(\varrho(x)) \quad (\psi \in \operatorname{LIP}(\mathbb{U}_r)_*, x \in \mathbb{U}_r),$$

and $\max(\|J\|, \|J^{-1}\|) \le 2.$

Now we will characterize the maps belonging to $CFL(\mathbb{U}_r)$.

8. THEOREM. A function $f : \mathbb{U}_r \to \mathbb{R}$ is a member of $\text{CFL}(\mathbb{U}_r)$ if and only if for any $\varepsilon > 0$ there are $u_1, \ldots, u_m \in \mathbb{U}_r$ and $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$ such that $\sum_{j=1}^m \alpha_j = 0$ and for each $x \in \mathbb{U}_r$,

(1)
$$\left| f(x) - \sum_{j=1}^{m} \alpha_j d(u_j, x) \right| \le \varepsilon.$$

Proof. If $f \in CFL(\mathbb{U}_r)$, then, by (L2), there are sequences $(a_n)_{n=1}^{\infty} \in l^1$ and $(x_n, y_n)_{n=1}^{\infty} \in (\mathbb{U}_r \times \mathbb{U}_r)^{\mathbb{N}_*}$ such that $x_n \neq y_n$ and

$$f(x) = \sum_{n=1}^{\infty} a_n \frac{d(x_n, x) - d(y_n, x)}{d(x_n, y_n)}.$$

So, it is enough to take $N \ge 1$ such that $\sum_{n=N+1}^{\infty} |a_n| < \varepsilon$ and to express the map $x \mapsto \sum_{n=1}^{N} a_n (d(x_n, x) - d(y_n, x)) / d(x_n, y_n)$ in the form $\sum_{j=1}^{m} \alpha_j e_{u_j}$.

Now assume that f is the uniform limit of a sequence of maps of the form $\sum_{j=1}^{m} \alpha_j e_{u_j}$ with $\sum_{j=1}^{m} \alpha_j = 0$. It is easy to check that

$$\Big(\sum_{j=1}^m \alpha_j e_{u_j}\Big)(x) = \psi(\varrho(x)),$$

where ψ : LIP(\mathbb{U}_r) $\to \mathbb{R}$ is a weak^{*} continuous functional given by $\psi(g) = \sum_{j=1}^{m} \alpha_j g(u_j)$ ($g \in \text{LIP}(\mathbb{U}_r)$). So, $\sum_{j=1}^{m} \alpha_j e_{u_j} \in \text{CFL}(\mathbb{U}_r)$ and thus the completeness of $\text{CFL}(\mathbb{U}_r)$ finishes the proof.

9. COROLLARY. Let f be a nonzero member of the CFL space of \mathbb{U} . Then the image R of f is a bounded interval such that $(-\|f\|, \|f\|) \subset R \subset [-\|f\|, \|f\|]$.

Proof. By Theorem 8, f is continuous and thus R is an interval. Further, thanks to Corollary 4, ||f|| belongs to the closure of R and, similarly, ||-f|| is in the closure of -R. This implies that the closure of R coincides with [-||f||, ||f||]. Now the assertion is clear.

In contrast to the case of the unbounded Urysohn space, for $r < +\infty$ the set $\varrho(\mathbb{U}_r)$ is not weak^{*} dense in B_L . What is more, the canonical isomorphism $J: \text{LIP}(\mathbb{U}_r)_* \to \text{CFL}(\mathbb{U}_r)$ is nonisometric, as shown by

10. PROPOSITION. For $r < +\infty$, the convex hull V of the set $\varrho(\mathbb{U}_r) \cup (-\varrho(\mathbb{U}_r))$ is not weak^{*} dense in B_L . In particular, the canonical isomorphism J is nonisometric.

Proof. Take four points p_1, p_2, p_3, p_4 of \mathbb{U}_r such that $d(p_j, p_k) = r$ for distinct $j, k \in \{1, 2, 3, 4\}$. Let $g \in B_L$ be any nonexpansive map such that $g(p_j) = 0$ and $g(p_k) = r$ for j = 1, 2 and k = 3, 4. We claim that g does not belong to the weak^{*} closure W of V. Suppose, for contradiction, that $g \in W$. This implies that there are numbers t_1, \ldots, t_n and points x_1, \ldots, x_n of \mathbb{U}_r such that $\sum_{j=1}^n |t_j| = 1$ and the map $g - \sum_{j=1}^n t_j e_{x_j}$ is constant on $A = \{p_1, p_2, p_3, p_4\}$. Since $e_x \in E_r(\mathbb{U}_r)$ for each $x \in \mathbb{U}_r$ and $E_r(A)$ is convex we infer that there is a $c \in \mathbb{R}$ such that

(2)
$$(g+c)|_A \in \operatorname{conv}[E_r(A) \cup (-E_r(A))]$$

("conv" stands for convex hull). It is easily seen that $g|_A$, as an element of $\operatorname{LIP}(A)$, is an extreme point of $B_L(A)$. Thus, by (2), $g|_A + c = \pm f$ for some $f \in E_r(A)$. This shows that $f(p_1) = f(p_2)$, $f(p_3) = f(p_4)$ and $|f(p_1) - f(p_3)| = r$. But $f(A) \subset [0, r]$ and therefore $f(p_1) = f(p_2) = 0$ and $f(p_3) = f(p_4) = r$ or conversely. So, card $f^{-1}(\{0\}) > 1$, which contradicts the relation $f \in E_r(A)$.

We have shown that $g \notin W$. By the separation theorem, there is a weak^{*} continuous functional $\psi : \text{LIP}(\mathbb{U}_r) \to \mathbb{R}$ such that $|\psi(u)| \leq 1$ for each $u \in W$ and $\psi(g) > 1$. Hence $\|\psi\| > 1$ and $\|J(\psi)\| \leq 1$, which finishes the proof.

Theorem 7 says that the dual of $\operatorname{CFL}(\mathbb{U}_r)$ may be identified with $\operatorname{LIP}(\mathbb{U}_r)$ (at least in the unbounded case). This identification has the following form: a functional $\varphi \in \operatorname{CFL}(\mathbb{U}_r)^*$ corresponds to a map $g \in \operatorname{LIP}(\mathbb{U}_r)$ such that $g(x) - g(y) = \psi(e_x - e_y) \ (x, y \in \mathbb{U}_r)$. For $f \in \operatorname{CFL}(\mathbb{U}_r)$ and $g \in \operatorname{LIP}(\mathbb{U}_r)$, we shall write $\int f \, dg$ or $\int f(x) \, dg(x)$ for the value at f of the functional corresponding to g. Thus for each $a, b \in \mathbb{U}_r$,

(3)
$$\int (e_a - e_b) \, \mathrm{d}g = \int (d(a, x) - d(b, x)) \, \mathrm{d}g(x) = g(a) - g(b).$$

The next result will enable us to link measures with Lipschitz maps on Urysohn spaces.

11. THEOREM. Let K be a (nonempty) compact subset of \mathbb{U}_r and let $f: K \to \mathbb{R}$ be continuous. Then there is $F \in \operatorname{CFL}(\mathbb{U}_r)$ such that $F|_K = f$ and $\|F\| = \|f\|$. What is more, for a given element z of the common sphere $S_{\mathbb{U}_r}(K,s)$, where $s \in (0, +\infty)$ is such that $\frac{2}{3} \operatorname{diam} K \leq s \leq \frac{4}{5}r$, there are sequences $(x_n)_{n \in \mathbb{N}_*}$ and $(t_n)_{n \in \mathbb{N}_*}$ of elements of \mathbb{U}_r and of positive numbers, respectively, such that $\|F\| = \sum_{n \in \mathbb{N}_*} t_n d(x_n, z)$ and $F = \sum_{n \in \mathbb{N}_*} t_n (e_{x_n} - e_z)$.

Proof. It is easily seen that $S_{\mathbb{U}_r}(K,s)$ is nonempty and $z \notin K$.

First assume that $f \in \operatorname{Lip}(K)$, $l(f) \leq 1$ and $||f|| \leq \frac{1}{4}s$. Define a map $g: K \cup \{z\} \to \mathbb{R}$ by g(x) = f(x) + s for $x \in K$ and g(z) = ||f||. The map g

is clearly nonexpansive on K (i.e. $l(g|_K) \leq 1$). What is more, for $x, y \in K$ we have $d(x, y) \leq \frac{3}{2}s \leq g(x) + g(y)$. Further,

 $|g(x) - g(z)| = s - ||f|| + f(x) \le s = d(x, z) \le s + f(x) + ||f|| = g(x) + g(z).$ So, g is a Katětov map and $g(K \cup \{z\}) \subset [0, r]$. This implies that there is $u \in \mathbb{U}_r$ such that g(y) = d(u, y) for $y \in K \cup \{z\}$. But then $f = (e_u - e_z)|_K$ and d(u, z) = g(z) = ||f||, and thus in that case the proof is finished.

Now consider an arbitrary map f. By [12], there are sequences $(t_n)_{n \in \mathbb{N}_*}$ and $(f_n)_{n \in \mathbb{N}_*}$ of positive numbers and real-valued nonexpansive maps on K (respectively) such that $||f|| = \sum_{n \in \mathbb{N}_*} t_n ||f_n||$ and $f = \sum_{n \in \mathbb{N}_*} t_n f_n$. Replacing, if necessary, the pair (t_n, f_n) by a suitable pair $(t_n/s_n, s_n f_n)$ with $s_n \in (0, 1)$, we may assume that $||f_n|| \leq \frac{1}{4}s$ for every n. We infer from the first part of the proof that there is a sequence $(x_n)_{n \in \mathbb{N}_*}$ of elements of \mathbb{U}_r for which $(e_{x_n} - e_z)|_K = f_n$ and $d(x_n, z) = ||f_n||$. This implies that $||f|| = \sum_{n \in \mathbb{N}_*} t_n d(x_n, z)$ and therefore the series $\sum_{n \in \mathbb{N}_*} t_n (e_{x_n} - e_z)$ is uniformly convergent. Let F be its uniform limit. By Theorem 7, $F \in CFL(\mathbb{U}_r)$. Furthermore, $F|_K = \sum_{n \in \mathbb{N}_*} t_n f_n = f$ and thus $||f|| \leq ||F||$. On the other hand, $||F|| \leq \sum_{n \in \mathbb{N}_*} t_n d(x_n, z) = ||f||$, which finishes the proof.

12. COROLLARY. Let K be a (nonempty) compact subset of \mathbb{U}_r and

$$\Phi_K : \operatorname{CFL}(\mathbb{U}_r) \ni f \mapsto f|_K \in \mathcal{C}(K),$$

where $\mathcal{C}(K)$ is the algebra of all real-valued continuous functions on K. Then Φ_K sends the closed unit ball onto the closed unit ball and therefore the adjoint operator $\Phi_K^* : \operatorname{Mes}(K) \to \operatorname{LIP}(\mathbb{U}_r)$ is a weak^{*} continuous isomorphic (and isometric if $r = +\infty$) embedding such that $\max(\|\Phi_K^*\|, \|(\Phi_K^*)^{-1}\|) \leq 2$. If $\mu \in \operatorname{Mes}(K)$ and $g = \Phi_K^*(\mu)$, then for each $f \in \operatorname{CFL}(\mathbb{U}_r)$,

(4)
$$\int_{K} f \, \mathrm{d}\mu = \int f \, \mathrm{d}g.$$

In particular, $\Phi_K^*(\delta_a) = \varrho(a)$ for $a \in K$, where δ_a is the Dirac measure at a.

13. LEMMA. Let K and L be two (nonempty) compact subsets of \mathbb{U}_r . If $\mu \in \operatorname{Mes}(\mathbb{U}_r)$ is a measure supported on $K \cap L$ (and therefore μ may be seen as a member of $\operatorname{Mes}(K)$ and $\operatorname{Mes}(L)$), then $\Phi_K^*(\mu) = \Phi_L^*(\mu)$.

Proof. Let $g = \Phi_K^*(\mu)$ and $h = \Phi_L^*(\mu)$. Then for any $f \in CFL(\mathbb{U}_r)$ we have

$$\int f \, \mathrm{d}g = \int_{K} f \, \mathrm{d}\mu = \int_{K \cap L} f \, \mathrm{d}\mu = \int_{L} f \, \mathrm{d}\mu = \int_{L} f \, \mathrm{d}\mu,$$

which implies that g = h.

The above lemma enables us to define an operator j_0 : $\operatorname{Mes}_c(\mathbb{U}_r) \to \operatorname{LIP}(\mathbb{U}_r)$ by $j_0(\mu) = \Phi_K^*(\mu)$, where K is a compact subset of \mathbb{U}_r such that μ is supported on K. Since the definition is independent of the choice of K,

the map j_0 is a linear embedding such that $\max(||j_0||, ||j_0^{-1}||) \leq 2$ and thus it is uniquely extendable to an isomorphic embedding of $\operatorname{Mes}(\mathbb{U}_r)$ in $\operatorname{LIP}(\mathbb{U}_r)$. We introduce the following

14. DEFINITION. The canonical embedding of $\operatorname{Mes}(\mathbb{U}_r)$ in $\operatorname{LIP}(\mathbb{U}_r)$ is a unique continuous extension $j : \operatorname{Mes}(\mathbb{U}_r) \to \operatorname{LIP}(\mathbb{U}_r)$ of j_0 . The canonical embedding is an isomorphism between its domain and range which sends Dirac's measure δ_x to $\varrho(x)$ for each $x \in \mathbb{U}_r$. What is more, the formula (4) is satisfied for any $\mu \in \operatorname{Mes}(\mathbb{U}_r)$ with $g = j(\mu)$ and K replaced by \mathbb{U}_r . If $r = +\infty$, then j is isometric.

The next result can be easily obtained from (4) by substituting $f = e_x - e_y$.

15. THEOREM. Let $\mu \in \operatorname{Mes}(\mathbb{U}_r)$ and $g = j(\mu)$. Then for each $x, y \in \mathbb{U}_r$, (5) $g(x) - g(y) = \int_{\mathbb{U}_r} (d(x, z) - d(y, z)) d\mu(z).$

It is rather surprising that j is isometric also for bounded Urysohn spaces. We shall prove this in the following

16. PROPOSITION. For $r < +\infty$, the canonical embedding $j : \operatorname{Mes}(\mathbb{U}_r) \to \operatorname{LIP}(\mathbb{U}_r)$ is isometric.

Proof. Let K be a compact nonempty subset of \mathbb{U}_r and let $\mu \in \operatorname{Mes}(\mathbb{U}_r)$. Put $g = j(\mu)$. It is enough to check that $\|g\| \ge \|\mu\| - \varepsilon$ for $\varepsilon > 0$. Since the space $\operatorname{Lip}(K)$ is dense in $\mathcal{C}(K)$, there is $u \in \operatorname{Lip}(K)$ such that $\|u\| = 1$ and $\int_K u \, d\mu \ge \|\mu\| - \varepsilon$. Take t > 0 such that $l(tu) \le 1$ and $\|tu\| \le \frac{3}{16}r$. It follows from the proof of Theorem 11 that there are $x, z \in \mathbb{U}_r$ for which $u = \frac{1}{t}(e_x - e_z)|_K$. This yields $t = \|e_x - e_z\| = d(x, z)$ and thus

$$\|\mu\| - \varepsilon \leq \int_{K} u \,\mathrm{d}\mu = \int_{K} \frac{e_x - e_z}{d(x, z)} \,\mathrm{d}\mu = \frac{g(x) - g(z)}{d(x, z)} \leq \|g\|. \bullet$$

17. COROLLARY. The norm closure of the linear span of $\varrho(\mathbb{U}_r)$ in LIP (\mathbb{U}_r) is (naturally) isometrically isomorphic to $l^1(\varrho(\mathbb{U}_r))$.

18. COROLLARY. For any $\mu \in \text{Mes}(\mathbb{U}_r)$, the total variation $|\mu|(\mathbb{U}_r)$ of the measure μ satisfies the condition

$$|\mu|(\mathbb{U}_r) = \sup\bigg\{\bigg|_{\mathbb{U}_r} \frac{d(x,z) - d(y,z)}{d(x,y)} \,\mathrm{d}\mu(z)\bigg| : x, y \in \mathbb{U}_r, \, x \neq y\bigg\}.$$

Our next aim is to prove that the canonical embedding j is nonsurjective. We shall do this using different methods for bounded and unbounded Urysohn spaces.

It is folklore that $\rho(\mathbb{U}_r)$ consists of extreme points of the ball B_L . However, $\rho(\mathbb{U}_r) \cup (-\rho(\mathbb{U}_r))$ is a proper subset of the set of all extreme points of B_L , as we shall see below. In fact, for $r = +\infty$, this is a consequence of the following

19. LEMMA. Let (Z, λ) be a metric space and A its nonempty subset. If $f \in \text{LIP}(A)$ is an extreme point of $B_L(A)$, then the Katětov extension \widehat{f} of f is an extreme point of $B_L(Z)$, where $\widehat{f}(z) = \inf_{a \in A} (f(a) + \lambda(a, z))$.

Proof. It is easily checked that $\hat{f} \in B_L(Z)$ and \hat{f} extends f. What is more, \hat{f} is the greatest element (with respect to the pointwise order) among nonexpansive extensions of f. So, if $g_1, g_2 \in B_L(Z)$ are such that $\hat{f} = (g_1 + g_2)/2 + C$ for some constant C, then $f = (g_1|_A + g_2|_A)/2 + C$ and thus $f = g_1|_A + C_1 = g_2|_A + C_2$, where C_1 and C_2 are constants with $C_1 + C_2 = 2C$. Thus $g_j + C_j \leq \hat{f}$ (j = 1, 2). But $g_1 + C_1 + g_2 + C_2 = 2\hat{f}$ and therefore $\hat{f} = g_1 + C_1 = g_2 + C_2$.

20. PROPOSITION. There are extreme points of B_L which do not belong to $\rho(\mathbb{U}) \cup (-\rho(\mathbb{U}))$. In particular, the canonical embedding $j : \operatorname{Mes}(\mathbb{U}) \to \operatorname{LIP}(\mathbb{U})$ is not surjective.

Proof. Let A be a subset of \mathbb{U} which is isometric to \mathbb{R} and let $\varphi : A \to \mathbb{R}$ be an isometry. Since the operator $\operatorname{LIP}(\mathbb{R}) \ni u \mapsto u \circ \varphi \in \operatorname{LIP}(A)$ is an isometric isomorphism and the map $f : \mathbb{R} \ni t \mapsto t \in \mathbb{R}$ is an extreme point of $B_L(\mathbb{R})$, it follows that $\varphi = f \circ \varphi$ is an extreme point of $B_L(A)$. So, by Lemma 19, $v = \widehat{\varphi}$ is extreme in B_L . Observe that $v(\mathbb{U}) = \mathbb{R}$, from which we infer that $v \notin \varrho(\mathbb{U}) \cup (-\varrho(\mathbb{U}))$. Finally, since the set $j^{-1}(\varrho(\mathbb{U}) \cup (-\varrho(\mathbb{U})))$ consists of all extreme points of the closed unit ball of $\operatorname{Mes}(\mathbb{U})$ (and j is isometric), it follows that v is not the value of j.

Now we have to show the same for a bounded Urysohn space. In order to do that, we need the following

21. LEMMA. Let $r < +\infty$ and let $\{a_n : n \ge 1\}$ be a dense subset of \mathbb{U}_r . If $g \in \operatorname{LIP}(\mathbb{U}_r)$ is an element of the image of j, then for any $\varepsilon > 0$ there exists $N \ge 1$ such that

(6)
$$|g(x) - g(y)| \le ||g|| \cdot ||(e_x - e_y)|_A|| + \varepsilon$$

for all $x, y \in \mathbb{U}_r$, where $A = \{a_1, \ldots, a_N\}$.

Proof. We may assume that $g \neq 0$. Let $\mu = j^{-1}(g)$. There is a compact nonempty subset K of \mathbb{U}_r such that $|\mu|(\mathbb{U}_r \setminus K) \leq \varepsilon/3r$. Since K is compact, there are $x_1, \ldots, x_p \in K$ such that $K \subset \bigcup_{j=1}^p B(x_j, \varepsilon/6||g||)$. Finally, there are positive integers m_1, \ldots, m_p such that $d(x_j, a_{m_j}) \leq \varepsilon/6||g||$ for $j = 1, \ldots, p$. Put $N = \max(m_1, \ldots, m_p)$ and $A = \{a_1, \ldots, a_N\}$. Take $x, y \in \mathbb{U}_r$. By the triangle inequality, for each $z \in K$ there is $a \in A$ for which $|d(x, z) - d(y, z)| \leq |d(x, a) - d(y, a)| + 2\varepsilon/3||g||$ and thus $||(e_x - e_y)|_K|| \leq ||(e_x - e_y)|_A|| + 2\varepsilon/3||g||$. This yields

$$\begin{split} |g(x) - g(y)| &= \left| \int_{\mathbb{U}_r} (d(x, z) - d(y, z)) \, \mathrm{d}\mu(z) \right| \\ &\leq \int_K |e_x - e_y| \, \mathrm{d}|\mu| + \int_{\mathbb{U}_r \setminus K} |e_x - e_y| \, \mathrm{d}|\mu| \\ &\leq \left(\left\| (e_x - e_y)|_A \right\| + \frac{2\varepsilon}{3\|g\|} \right) |\mu|(\mathbb{U}_r) + r \cdot |\mu|(\mathbb{U}_r \setminus K) \\ &\leq \|g\| \cdot \|(e_x - e_y)|_A \| + \varepsilon. \quad \bullet \end{split}$$

And now the announced result:

22. PROPOSITION. For $r < +\infty$, the canonical embedding j is nonsurjective. There are extreme points of B_L which do not belong to $\varrho(\mathbb{U}_r) \cup (-\varrho(\mathbb{U}_r))$.

Proof. Let $(U_n)_{n\geq 1}$ be a sequence of nonempty open subsets of \mathbb{U}_r which form a basis of the topology of \mathbb{U}_r . Take any $x_1 \in U_1$ and put $g(x_1) = 0$. Now suppose that we have found points x_1, \ldots, x_{3k-2} of \mathbb{U}_r and have defined $g(x_1), \ldots, g(x_{3k-2})$ (for some $k \geq 1$) in such a way that for any $j \in \{1, \ldots, k\}$:

 $\begin{array}{ll} (1)_{j} \ \{x_{1}, \ldots, x_{3j-2}\} \cap U_{j} \neq \emptyset, \\ (2)_{j} \ |g(x_{p}) - g(x_{q})| \leq d(x_{p}, x_{q}) \text{ and } g(x_{p}) \in [0, r] \text{ for } p, q = 1, \ldots, 3j-2, \\ (3)_{j} \ \text{if } j > 1, \text{ then } |g(x_{3j-4}) - g(x_{3j-3})| = r \text{ and } e_{x_{3j-4}} = e_{x_{3j-3}} \text{ on the} \\ \text{set } \{x_{1}, \ldots, x_{3j-5}\}. \end{array}$

Take $x_{3k-1}, x_{3k} \in \mathbb{U}_r$ such that $d(x_p, x_q) = r$ for $p = 1, \ldots, 3k - 2$ and q = 3k - 1, 3k and $d(x_{3k-1}, x_{3k}) = r$. Put $g(x_{3k-1}) = r$ and $g(x_{3k}) = 0$. Now pick any $x_{3k+1} \in U_{k+1} \setminus \{x_1, \ldots, x_{3k}\}$ and define $g(x_{3k+1}) = \min\{g(x_j) + d(x_j, x_{3k+1}) : j \in \{1, \ldots, 3k\}\}$. There is no difficulty in checking that $g(x_{3k+1}) \in [0, r]$ and that the conditions $(1)_{k+1} - (3)_{k+1}$ hold. Thus we have obtained sequences $(x_n)_{n \in \mathbb{N}_*}$ and $(g(x_n))_{n \in \mathbb{N}_*}$ such that the set $D = \{x_n : n \geq 1\}$ is dense in \mathbb{U}_r , the map $g : D \to \mathbb{R}$ is nonexpansive and for any finite subset C of D there are $x, y \in D$ such that $e_x = e_y$ on C and |g(x) - g(y)| = r. Let $h \in B_L$ be the unique nonexpansive extension of g. The properties of g and Lemma 21 imply that $h \notin j(\operatorname{Mes}(\mathbb{U}_r))$.

Now suppose that the set of all extreme points of B_L coincides with $M = \rho(\mathbb{U}_r) \cup (-\rho(\mathbb{U}_r))$. As B_L is metrizable in the weak^{*} topology, the Choquet theorem yields a Borel probability measure λ on M such that

(7)
$$\int_{M} u \, \mathrm{d}\lambda(u) = h.$$

Further, since $\mathbb{U}_r \ni x \mapsto \varrho(x) \in \varrho(\mathbb{U}_r)$ is a continuous bijection, $\varrho(\mathbb{U}_r)$ is a Borel subset of M and the inverse function is Borel. Let $\mu_1, \mu_2 \in \operatorname{Mes}(\mathbb{U}_r)$ be defined by $\mu_1(A) = \lambda(\varrho(A))$ and $\mu_2(A) = \lambda(-\varrho(A))$ for a Borel subset Aof \mathbb{U}_r , and let $\mu = \mu_1 - \mu_2$. Fix $x, y \in \mathbb{U}_r$. Since the functional $\operatorname{LIP}(\mathbb{U}_r) \ni$

106

 $u\mapsto u(x)-u(y)\in\mathbb{R}$ is weak* continuous, by (7) and the measure transport theorem,

$$\begin{split} h(x) - h(y) &= \int_{M} (u(x) - u(y)) \, \mathrm{d}\lambda(u) \\ &= \int_{\varrho(\mathbb{U}_r)} (u(x) - u(y)) \, \mathrm{d}\lambda(u) + \int_{-\varrho(\mathbb{U}_r)} (u(x) - u(y)) \, \mathrm{d}\lambda(u) \\ &= \int_{\mathbb{U}_r} (\varrho(z)(x) - \varrho(z)(y)) \, \mathrm{d}\mu_1(z) + \int_{\mathbb{U}_r} (-\varrho(z)(x) + \varrho(z)(y)) \, \mathrm{d}\mu_2(z) \\ &= \int_{\mathbb{U}_r} (d(x, z) - d(y, z)) \, \mathrm{d}\mu(z), \end{split}$$

which means that $h = j(\mu)$. But this contradicts the first part of the proof.

23. REMARK. The nonsurjectivity of j in the case of a bounded Urysohn space may be immediately deduced from Propositions 10 and 16. Indeed, it is easy to check that if $\Psi : \operatorname{Mes}(\mathbb{U}_r) \to \operatorname{CFL}(\mathbb{U}_r)^*$ is an operator defined by $\Psi(\mu)(f) = \int_{\mathbb{U}_r} f \, d\mu$, then Ψ is isometric (by Theorem 11 or Corollary 12) and $j = J \circ \Psi$. The same argument shows that $J|_E$ is an isometry between $E = \Psi(\operatorname{Mes}(\mathbb{U}_r))$ and $F = j(\operatorname{Mes}(\mathbb{U}_r))$. What is more, J, as a dual operator, is a weak^{*} homeomorphism and the spaces E and F are weak^{*} dense in $\operatorname{CFL}(\mathbb{U}_r)^*$ and $\operatorname{LIP}(\mathbb{U}_r)$, respectively. So, we have obtained an interesting example of a weak^{*} homeomorphism which is isometric on a weak^{*} dense subspace of the domain, but not isometric on the whole domain.

Our last aim is to establish some geometric properties of the space $\operatorname{CFL}(\mathbb{U}_r)$. The property (L2) implies that B_L is the closed convex hull of the set $\operatorname{CFL}_0(\mathbb{U}_r) = \{(e_x - e_y)/d(x, y) : x, y \in \mathbb{U}_r, x \neq y\}$. The next result shows that the set $\operatorname{CFL}_0(\mathbb{U})$ is transitive with respect to isometric isomorphisms of $\operatorname{CFL}(\mathbb{U})$.

24. THEOREM. For any $f, g \in CFL_0(\mathbb{U})$ there exists an isometric isomorphism $V : CFL(\mathbb{U}) \to CFL(\mathbb{U})$ such that V(f) = g.

Proof. Let (p,q) and (a,b) be pairs of distinct points of \mathbb{U} such that

$$f = \frac{e_p - e_q}{d(p,q)}$$
 and $g = \frac{e_a - e_b}{d(a,b)}$.

There is a bijection $\varphi : \mathbb{U} \to \mathbb{U}$ such that $\varphi(p) = a, \varphi(q) = b$ and $d(\varphi(x), \varphi(y)) = \lambda d(x, y)$ for any $x, y \in \mathbb{U}$, where $\lambda = d(a, b)/d(p, q)$. Now let $V : \operatorname{CFL}(\mathbb{U}) \to \operatorname{CFL}(\mathbb{U})$ be the linear operator defined by $V(h) = h \circ \varphi^{-1}$ ($h \in \operatorname{CFL}(\mathbb{U})$). The map V is well defined, because

(8)
$$V(e_x - e_y) = \frac{e_{\varphi(x)} - e_{\varphi(y)}}{\lambda}.$$

It is clearly a bijective isometric map and (8) shows that V(f) = g.

Now let $\omega \in \mathbb{U}_r$ and $A_{\omega} = \{e_x - e_{\omega} : x \in \mathbb{U}_r\} \subset \operatorname{CFL}(\mathbb{U}_r)$. Note that $0 \in A_{\omega}$ and the map $m_{\omega} : \mathbb{U}_r \ni x \mapsto e_x - e_{\omega} \in A_{\omega}$ is isometric, so the set A_{ω} is closed. It is also a total subset of $\operatorname{CFL}(\mathbb{U}_r)$. First we shall prove the following

25. PROPOSITION. The set $A_{\omega} \setminus \{0\}$ is linearly independent.

Proof. Let x_1, \ldots, x_n be distinct elements of $\mathbb{U}_r \setminus \{\omega\}$ and $\alpha_1, \ldots, \alpha_n$ be real numbers such that $\sum_{j=1}^n \alpha_j (e_{x_j} - e_{\omega}) = 0$. This implies that $\sum_{j=1}^n \alpha_j \varrho(x_j) = (\sum_{j=1}^n \alpha_j) \varrho(\omega)$. So, Proposition 2 finishes the proof.

To state the next result, we need an auxiliary notion. For a number $\lambda \in (0, +\infty)$, we say that a function $w : P \to Q$ between metric spaces (P, p) and (Q, q) is λ -isometric if

$$q(w(x), w(y)) = \lambda p(x, y)$$
 for each $x, y \in P$.

Additionally, set $\Lambda(P) = \{1\}$ if P is bounded, and $\Lambda(P) = (0, +\infty)$ otherwise. Now we are ready to present

26. THEOREM. Let $\omega, \tau \in \mathbb{U}_r$. Let K be a nonempty compact subset of A_{ω} and let $v : K \to A_{\tau}$ be λ -isometric with $\lambda \in \Lambda(\mathbb{U}_r)$. Then there is an isometric isomorphism $V : \operatorname{CFL}(\mathbb{U}_r) \to \operatorname{CFL}(\mathbb{U}_r)$ and $f_0 \in A_{\tau}$ such that $v(f) = \lambda V(f) + f_0$ for every $f \in K$.

Proof. Let $K_0 = m_{\omega}^{-1}(K)$ and $u : K_0 \ni x \mapsto m_{\tau}^{-1}(v(m_{\omega}(x))) \in \mathbb{U}_r$. The set K_0 is compact and u is λ -isometric, so there is a bijective λ -isometric map $U : \mathbb{U}_r \to \mathbb{U}_r$ which extends u. Now put $V : \operatorname{CFL}(\mathbb{U}_r) \ni f \mapsto f \circ U^{-1} \in$ $\operatorname{CFL}(\mathbb{U}_r)$ and $f_0 = e_{U(\omega)} - e_{\tau} \in A_{\tau}$. As in the proof of Theorem 24, V is an isometric isomorphism such that $V(e_x - e_y) = (e_{U(x)} - e_{U(y)})/\lambda$. So, if $x \in \mathbb{U}_r$ and $f = e_x - e_{\omega}$, then

$$v(f) = v(m_{\omega}(x)) = m_{\tau}(u(x)) = m_{\tau}(U(x)) = e_{U(x)} - e_{\tau}$$

= $\lambda V(e_x - e_{\omega}) + e_{U(\omega)} - e_{\tau} = \lambda V(f) + f_0.$

27. REMARK. As mentioned at the beginning of the paper, the fact that the dual of CFL(\mathbb{U}) is linearly isometric to LIP(\mathbb{U}) is a consequence of the Holmes theorem [3, 4]. Namely, he has shown that if $(E, \|\cdot\|)$ is any Banach space such that $\mathbb{U} \subset E$ and $\|x - y\| = d(x, y)$ for all $x, y \in \mathbb{U}$, then for any $x_1, \ldots, x_n \in \mathbb{U}$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ with $\sum_{j=1}^n \alpha_j = 0$ one has

$$\left\|\sum_{j=1}^n \alpha_j x_j\right\| = \sup\left\{\left|\sum_{j=1}^n \alpha_j f(x_j)\right| : f \in B_L(\{x_1, \dots, x_n\})\right\}.$$

However, other properties of $CFL(\mathbb{U})$ cannot be deduced from the above fact, and Holmes' theorem applies only to the unbounded Urysohn space.

We end the paper with the following two questions. In both of them, r is finite.

QUESTION 1. The universality of an unbounded Urysohn space \mathbb{U} and the results of Godefroy and Kalton [2] imply that the space $CFL(\mathbb{U})$ is universal for separable Banach spaces (this was observed by Melleray [9]). These arguments do not work in the case of a bounded Urysohn space. Is the space $\mathcal{C}([0, 1])$ isometrically or isomorphically embeddable in $CFL(\mathbb{U}_r)$?

QUESTION 2. Suppose that $(E, \|\cdot\|)$ is a Banach space such that $\mathbb{U}_r \subset E$ and $\|x-y\| = d(x, y)$ for all $x, y \in \mathbb{U}_r$. Does there exist a constant c > 0 such that whenever x_1, \ldots, x_n are points of \mathbb{U}_r and $\alpha_1, \ldots, \alpha_n$ are real numbers with $\sum_{j=1}^{\infty} \alpha_j = 0$, then

$$\left\|\sum_{j=1}^{n} \alpha_j x_j\right\| \ge c \sup\left\{\left|\sum_{j=1}^{n} \alpha_j g(x_j)\right| : g \in B_L(\{x_1, \dots, x_n\})\right\}?$$

Does there exist a universal constant c > 0 for which the above estimate holds (independently of the space E)?

References

- S. Gao and A. S. Kechris, On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc. 161 (2003), no. 766.
- [2] G. Godefroy and N. J. Kalton, *Lipschitz-free Banach spaces*, Studia Math. 159 (2003), 121–141.
- [3] M. R. Holmes, The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces, Fund. Math. 140 (1992), 199–223.
- [4] —, The Urysohn space embeds in Banach spaces in just one way, Topology Appl. 155 (2008), 1479–1482.
- [5] G. E. Huhunaišvili, On a property of Urysohn's universal metric space, Dokl. Akad. Nauk SSSR (N.S.) 101 (1955), 332–333 (in Russian).
- [6] M. Katětov, On universal metric spaces, in: General Topology and its Relations to Modern Analysis and Algebra VI (Prague, 1986), Z. Frolík (ed.), Heldermann, Berlin, 1988, 323–330.
- J. Melleray, On the geometry of Urysohn's universal metric space, Topology Appl. 154 (2007), 384–403.
- [8] —, Some geometric and dynamical properties of the Urysohn space, ibid. 155 (2008), 1531–1560.
- [9] —, Computing the complexity of the relation of isometry between separable Banach spaces, Math. Logic Quart. 53 (2007), 128–131.
- [10] J. Melleray, F. V. Petrov and A. M. Vershik, *Linearly rigid metric spaces and the embedding problem*, Fund. Math. 199 (2008), 177–194.
- P. Niemiec, Integration and Lipschitz functions, Rend. Circ. Mat. Palermo 57 (2008), 391–399.
- [12] —, Strengthened Stone–Weierstrass type theorem, to appear.

- [13] P. S. Urysohn, Sur un espace métrique universel, C. R. Acad. Sci. Paris 180 (1925), 803–806.
- [14] —, Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43–64, 74–96.
- [15] N. Weaver, *Lipschitz Algebras*, World Sci., 1999.

Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland E-mail: piotr.niemiec@uj.edu.pl

> Received March 25, 2008 Revised version November 28, 2008

(6322)

110