
STUDIA MATHEMATICA 192 (2) (2009)

Factorizing multilinear operators on Banach spaces,
C∗-algebras and JB∗-triples
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Abstract. In recent papers, the Right and the Strong∗ topologies have been intro-
duced and studied on general Banach spaces. We characterize different types of continuity
for multilinear operators (joint, uniform, etc.) with respect to the above topologies. We
also study the relations between them. Finally, in the last section, we relate the joint
Strong∗-to-norm continuity of a multilinear operator T defined on C∗-algebras (respec-
tively, JB∗-triples) to C∗-summability (respectively, JB∗-triple-summability).

1. Introduction and some known results. In [24], [25] and [22] the
Right and the Strong∗ topologies have been introduced and studied on gen-
eral Banach spaces. These topologies can be defined in the following way:
For each bounded linear operator S between two Banach spaces X and Y ,
the symbol ||| · |||S will denote the seminorm on X defined by

x 7→ |||x|||S := ‖S(x)‖.

The Strong∗ (S∗(X,X∗)) topology onX is the locally convex topology associ-
ated to the seminorms ||| · |||S induced by all bounded operators S : X → H,
with H any Hilbert space. The Right topology on X is the locally convex
topology associated to the seminorms ||| · |||S induced by all bounded opera-
tors S : X → R, with R any reflexive space [24]. When X is a dual Banach
space with predual denoted by X∗, the S∗(X,X∗) topology on X is generated
by all the seminorms ||| · |||S , where S is any weak∗ continuous linear operator
from X into a Hilbert space. It is known that S∗(X∗∗, X∗)|X = S∗(X,X∗)
(see [25]). Note that the Right and the Strong∗ topologies are particular
cases of the topologies defined in [17].
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The main result in [24] establishes that a linear operator T : X → Y
between two Banach spaces is weakly compact if and only if its restriction
to the closed unit ball of X is Right-to-norm continuous. For Banach spaces
in which the Right and Strong∗ topologies coincide on bounded sets (for ex-
ample, C∗-algebras, JB∗-triples, Hilbert spaces), the Strong∗ topology pro-
vides a convenient tool to characterize weakly compact operators (cf. [25]).
One of the main results in the paper just cited shows, under some additional
hypothesis, that a multilinear operator T : X1 × · · · ×Xn → X is jointly se-
quentially Right-to-norm (respectively, Strong∗-to-norm) continuous if and
only if its Aron–Berner extensions remain X-valued.

In this article we study the multilinear case in more detail. We work
with different kinds of continuity (using the above topologies) for a multi-
linear operator. We study the relations between separate, joint, and uniform
Strong∗-to-norm (respectively, Right-to-norm) continuity. The last section
reveals the connections between joint Strong∗-to-norm continuous multilin-
ear operators defined on C∗-algebras (respectively, JB∗-triples) and 2-C∗-
summing (respectively, 2-JB∗-triple-summing) multilinear operators. Both
notions are closely related to absolutely p-summing and p-dominated multi-
linear operators.

In the early 1980’s A. Pietsch [31] started the study of multilinear sum-
ming operators. He introduced the following definitions. Let X1, . . . , Xn and
X be Banach spaces and 0 < s < ∞, 1 ≤ r1, . . . , rn < ∞ be such that
1/s ≤ 1/r1 + · · · + 1/rn. A multilinear operator T : X1 × · · · ×Xn → X is
said to be absolutely (s; r1, . . . , rn)-summing if there exists a constant K ≥ 0
such that for every k ∈ N and every (xji )

k
i=1 ⊂ Xj ,( k∑

i=1

‖T (x1
i , . . . , x

n
i )‖s

)1/s
≤ K

n∏
j=1

sup
f∈X∗

j
, ‖f‖≤1

{( k∑
i=1

|f(xji )|
rj
)1/rj}

.

When s = p1 = · · · = pn = p we say that T is absolutely p-summing.
In our context, of particular significance is the case when 1 ≤ r1, . . . , rn

<∞ and 1/s = 1/r1+· · ·+1/rn. Then, an absolutely (s; r1, . . . , rn)-summing
multilinear operator T : X1×· · ·×Xn → X is called (r1, . . . , rn)-dominated.
We only deal with (2, . . . , 2)-dominated multilinear operators (which we just
call 2-dominated). By definition, the 2-dominated multilinear operators are
those for which there exists a constant K satisfying( k∑

i=1

‖T (x1
i , . . . , x

n
i )‖2/n

)n/2
≤ K

n∏
j=1

sup
f∈X∗

j
, ‖f‖≤1

{( k∑
i=1

|f(xji )|
2
)1/2}

for all k ∈ N and (xji )
k
i=1 ⊂ Xj .

Many contributions have supported the development of the multilinear
theory of summing operators (see for example [1], [6], [18], [19], [26], [27]
and [28]). The following remarkable definition appeared in [6]: Given 1 ≤
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p1, . . . , pn ≤ q <∞, we say that an n-linear operator T : X1×· · ·×Xn → X
is multiple (q; p1, . . . , pn)-summing if there is a constant K ≥ 0 such that for
any k1, . . . , kn ∈ N and (xjij )

kj
ij=1 ⊂ Xj , 1 ≤ j ≤ n, we have

( n∑
j=1

kj∑
ij=1

‖T (x1
i1 , . . . , x

n
in)‖

q
)1/q

≤ K
n∏
j=1

sup
f∈X∗

j
, ‖f‖≤1

{( kj∑
ij=1

|f(xjij )|
pj
)1/pj}

.

As above, we will only deal with multiple (2; 2, . . . , 2)-summing operators
(called multiple 2-summing operators). It follows from the definitions that
every multiple 2-summing operator is absolutely 2-summing, but the con-
verse is false in general.

When the Banach spaces X1, . . . , Xn enjoy an additional algebraic struc-
ture, like C∗-algebras and JB∗-triples, absolutely summing operators belong
to the wider classes of C∗-summing and JB∗-triple-summing operators (see
[32], [21] and §3 for more details). In Section 3, we shall study 2-C∗-dominated
and 2-JB∗-triple-dominatedmultilinear operators on a product ofC∗-algebras
and JB∗-triples, respectively. A characterization of joint Strong∗-continuity
is established in terms of a Grothendieck type inequality as well as in terms
of 2-JB∗-triple domination.

In [25, Proposition 3.20] the authors gave a characterization of those
multilinear operators on Banach spaces which are jointly S∗(X1, X

∗
1 )×· · ·×

S∗(Xn, X
∗
n)-to-norm (resp. Right×· · ·×Right-to-norm) continuous. This con-

tinuity is equivalent to factorizing through n Hilbert spaces (resp. n reflexive
spaces). Clearly, a multilinear mapping T is separately Strong∗ (resp., Right)
continuous whenever T is jointly Strong∗ (resp., Right), while the converse
is not always true (cf. [25, Example 3.19]). Note that there is an “overlap”, in
the case of the Right topology, between [24, 25, 22] and [17, 3, 11, 12]. Indeed,
in [12] (see also [13]), starting from the work done in [3] and [11], the authors
proved the more complete result below, relating the above kind of continuity
to the uniform Right× · · · ×Right-to-norm continuity on bounded sets. Let
X1, . . . , Xk and X be Banach spaces and let Lk(X1, . . . , Xk;X) denote the
space of all k-linear operators from X1 × · · · × Xk into X; moreover L(X)
and IdX will denote L(X;X) and the identity mapping on X, respectively.

Theorem 1 ([12, Theorem 4]). Let X1, . . . , Xn and X be Banach spaces,
and let T : X1 × . . . × Xn → X be an n-linear operator. The following
statements are equivalent :

(a) T is jointly Right-to-norm continuous (at 0).
(b) T factors through the cartesian product of n reflexive Banach spaces.
(c) T is uniformly Right × · · · × Right-to-norm continuous on bounded

sets.
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(d) For each i ∈ {1, . . . , n} the mapping

Ti : Xi → Ln−1(X1,
[i]. . . , Xn;X),

Ti(xi)(x1,
[i]. . . , xn) = T (x1, . . . , xn),

is (uniformly) Right-to-norm continuous on bounded sets.

As a consequence of the little Grothendieck inequality for C∗-algebras
(cf. [32] and [15]), the Strong∗ topology of a C∗-algebra A coincides with
the so-called C∗-algebra Strong∗ topology of A, that is, the locally convex
topology on generated by the seminorms x 7→ φ(x∗x+ xx∗), where φ ranges
over the positive functionals in the closed unit ball of A.

Remark 2. It is clear that every Strong∗-to-norm continuous operator is
automatically Right-to-norm continuous. However, the converse is not always
true. Consider for example the operator T : c0 → `8 defined by T ((xn)n) =
(n−1/4xn)n. Since `8 is a reflexive space, T is Right-to-norm continuous. If
(en) denotes the canonical basis of c0, then it can be checked that 0 belongs
to the Strong∗ closure in c0 of the set {

√
n en : n ∈ N} (cf. Exercise 1(a), p. 71

in [33] and the comments preceding this remark). Since for each natural n,
‖T (en)‖ = 4

√
n, it follows that T is not Strong∗-to-norm continuous.

Remark 3. When in Theorem 1 the Right topology and the reflexive
spaces are replaced with the Strong∗ topology and Hilbert spaces, respec-
tively, then (a)⇔(b)⇒(c)⇔(d). However, (c);(a). Indeed, it is known that
the Right and S∗(A,A∗) topologies coincide on bounded subsets of every
C∗-algebra A (cf. [2, Theorem II.7]). In view of this, Remark 2 provides a
counterexample to (c)⇒(a).

The characterization of the uniform S∗(X1, X
∗
1 ) × · · · × S∗(Xn, X

∗
n)-to-

norm continuity on bounded sets, given below, follows directly from [22,
Theorem 2.4], [25, Theorem 2.9] and [12, Proposition 2].

Corollary 4. Let X1, . . . , Xn and X be Banach spaces, and T an ele-
ment in Ln(X1, . . . , Xn;X). Then the following statements are equivalent :

(a) T is uniformly S∗(X1, X
∗
1 ) × · · · × S∗(Xn, X

∗
n)-to-norm continuous

on bounded sets.
(b) For each i ∈ {1, . . . , n} the mapping

Ti : Xi → Ln−1(X1,
[i]. . . , Xn;X),

Ti(xi)(x1,
[i]. . . , xn) = T (x1, . . . , xn),

is (uniformly) S∗(Xi, X
∗
i )-to-norm continuous on bounded sets.

(c) For each i ∈ {1, . . . , n}, there exist a bounded linear operator Si from
Xi into a Hilbert space and a mapping Ni : (0,∞) → (0,∞) such
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that
‖Ti(x)‖ ≤ Ni(ε)|||x|||Si + ε‖x‖,

for all x ∈ Xi and ε > 0.

If we assume that X1, . . . , Xn have property (V ) and for each i in {1, . . . , n},
the Right and the S∗(Xi, X

∗
i ) topologies coincide on bounded subsets of Xi,

then the previous three statements are also equivalent to the following :

(d) For each i ∈ {1, . . . , n} and each S∗(Xi, X
∗
i )-null sequence (xik) in

Xi, we have ‖Ti(xik)‖ → 0, that is,

lim sup
k→∞

{
‖T (z1, . . . , zi−1, x

i
k, zi+1, . . . , zn)‖ :

zj ∈ BXj ,
j ∈ {1, [i]. . . , n}

}
= 0.

Statement (c) above guarantees that a multilinear operator T in
Ln(X1, . . . , Xn;X) is uniformly S∗(X1, X

∗
1 )×· · ·×S∗(Xn, X

∗
n)-to-norm con-

tinuous on bounded sets if and only if it almost factorizes through the carte-
sian product of n Hilbert spaces.

2. Two more types of continuity. This section begins with a multi-
linear generalization of [22, Theorem 2.4].

Lemma 5. Let X1, . . . , Xn and X be Banach spaces and let

T : X1 × · · · ×Xn → X

be a multilinear operator. Suppose that

T |BX1
×···×BXn : BX1 × · · · ×BXn → X

is jointly Strong∗-to-norm (respectively , Right-to-norm) continuous. Then
there are Hilbert spaces (respectively , reflexive Banach spaces) H1, . . . ,Hn

and bounded linear operators Si : Xi → Hi such that

‖T (x1, . . . , xn)‖ ≤
n∏
i=1

(|||xi|||Si + ‖xi‖)

for all xi ∈ Xi.

Proof. The set

O := {(x1, . . . , xn) ∈ BX1 × · · · ×BXn : ‖T (x1, . . . , xn)‖ ≤ 1}
is a neighbourhood of 0 in BX1×· · ·×BXn , in the product of the S∗(Xi, X

∗
i )

topologies. By the definition of the Strong∗ topology, for each i = 1, . . . , n,
there exists a positive constant δ, Hilbert spaces H i

1, . . . ,H
i
pi and bounded

linear operators Sij : Xi → H i
j (1 ≤ j ≤ pi) such that O contains the set

O′ := {(x1, . . . , xn) ∈ BX1×· · ·×BXn : |||xi|||Sij ≤ δ, ∀1 ≤ j ≤ pi, 1 ≤ i ≤ n}.
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We define
Hi :=

⊕
1≤j≤pi

`2 H i
j

and let Si : Xi → Hi be the bounded linear operator given by Si(xi) :=
(δ−1Sij(xi))j . Clearly, for each i, Hi is a Hilbert space.

For each (x1, . . . , xn) ∈ X1 × · · · × Xn with xi 6= 0 (1 ≤ i ≤ n), the
element (

1
‖S1(x1)‖+ ‖x1‖

x1, . . . ,
1

‖Sn(xn)‖+ ‖xn‖
xn

)
belongs to O′ ⊆ O, and hence∥∥∥∥T( 1

‖S1(x1)‖+ ‖x1‖
x1, . . . ,

1
‖Sn(xn)‖+ ‖xn‖

xn

)∥∥∥∥ ≤ 1,

which implies that

‖T (x1, . . . , xn)‖ ≤
n∏
i=1

(|||xi|||Si + ‖xi‖).

When xi = 0 for some i, the above inequality is trivial.
The next result gives a necessary condition for a multilinear operator to

be jointly Strong∗-to-norm continuous on bounded sets.
Proposition 6. Let X1, . . . , Xn and X be Banach spaces and let

T : X1 × · · · ×Xn → X

be a multilinear operator. Suppose that T |BX1
×···×BXn is jointly Strong∗-

to-norm (respectively , Right-to-norm) continuous. Then there exist map-
pings Ni : (0,∞) → (0,∞) (depending only on T ), Hilbert spaces (respec-
tively , reflexive Banach spaces) H1, . . . ,Hn, and bounded linear operators
Si : Xi → Hi such that

‖T (x1, . . . , xn)‖ ≤
n∏
i=1

(Ni(ε)|||xi|||Si + ε‖xi‖)(1)

for all xi in Xi and ε > 0.

Proof. For each natural m, the mapping mT is jointly Strong∗-to-norm
continuous on BX1 ×· · ·×BXn . Thus, by Lemma 5, there are Hilbert spaces
H i
m (1 ≤ i ≤ n) and bounded linear operators Si,m : Xi → H i

m such that

‖mT (x1, . . . , xn)‖ ≤
n∏
i=1

(|||xi|||Si,m + ‖xi‖)

for all (x1, . . . , xn). We may assume Si,m 6= 0 for all m ∈ N and 1 ≤ i ≤ n.
Define

Hi :=
⊕
m∈N

`2 H i
m,
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and let Si : Xi → Hi be the bounded linear operator given by

Si(xi) :=
(

1
m‖Si,m‖

Si,m(xi)
)
m

.

Define Ni : (0,∞)→ (0,∞) by

Ni(ε) :=
m(ε)
n
√
m(ε)

‖Si,m(ε)‖,

where
m(ε) = min{m ∈ N : 1/ n

√
m < ε}.

Finally, given (x1, . . . , xn) ∈ X1 × · · · ×Xn we have

‖m(ε)T (x1, . . . , xn)‖ ≤
n∏
i=1

(‖Si,m(ε)(xi)‖+ ‖xi‖);

hence

‖T (x1, . . . , xn)‖ ≤
n∏
i=1

(
1

n
√
m(ε)

‖Si,m(ε)(xi)‖+
1

n
√
m(ε)

‖xi‖
)
,

so

‖T (x1, . . . , xn)‖ ≤
n∏
i=1

(
m(ε)
n
√
m(ε)

‖Si,m(ε)‖ ‖Si(xi)‖+ ε‖xi‖
)
,

and finally

‖T (x1, . . . , xn)‖ ≤
n∏
i=1

(Ni(ε)‖Si(xi)‖+ ε‖xi‖).

A careful reading of the last proof shows that we have only used the
joint Strong∗-to-norm (resp. jointly Right-to-norm) continuity at 0. On the
other hand, it is clear that every multilinear operator T satisfying the above
condition (1) must be jointly Strong∗-to-norm (resp. jointly Right-to-norm)
continuous at 0 on bounded sets. We therefore have:

Proposition 7. Let X1, . . . , Xn and X be Banach spaces and let

T : X1 × · · · ×Xn → X

be a multilinear operator. Then T |BX1
×···×BXn is jointly Strong∗-to-norm

(respectively , Right-to-norm) continuous at 0 if , and only if , T satisfies
the above condition (1).

In this way, given a multilinear operator T , we have four “natural” kinds
of continuity:

1) T is jointly S∗(X1, X
∗
1 )× . . .× S∗(Xn, X

∗
n)-to-norm continuous at 0,

2) T is uniformly S∗(X1, X
∗
1 )× · · ·×S∗(Xn, X

∗
n)-to-norm continuous on

bounded sets,
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3) T is jointly S∗(X1, X
∗
1 ) × · · · × S∗(Xn, X

∗
n)-to-norm continuous on

bounded sets,
4) T is jointly S∗(X1, X

∗
1 ) × · · · × S∗(Xn, X

∗
n)-to-norm continuous on

bounded sets at 0

(and the analogous statements 1′), 2′), 3′) and 4′) for the Right topology).
We already know that

(2)

1) // 2) //

��

3) //

��

4)

��
1′) oo // 2′) // 3′) // 4′)

We have mentioned in Remark 3 that 2) does not imply 1). The following
two examples show that 3) does not imply 2), and 4) does not imply 3),
respectively. By Remark 3, 3′) does not imply 2′), and 4′) does not imply 3′).

Example 8. Let A be a C∗-algebra. We recall that a positive functional
φ ∈ A∗ is said to be faithful on A∗∗ if φ(a) = 0 implies that a = 0 whenever
a is a positive element in A∗∗. Let φ be a positive faithful functional on A∗∗.
Proposition 5.3 in [33] guarantees that the S∗(A∗∗, A∗)-topology on BA∗∗ is
metrised by the norm

‖x‖2φ = 2−1φ(xx∗ + x∗x).

In particular, the S∗(A,A∗)-topology on BA is also metrised by the norm
‖ · ‖φ. On the other hand, Theorem 3.18 in [25] implies that every n-linear
form T : A×· · ·×A→ C is quasi-completely continuous, that is, T is jointly
sequentially S∗(A,A∗)-to-norm continuous, and hence, since the S∗(A,A∗)-
topology is metrisable on bounded sets, T is jointly S∗(A,A∗)-to-norm con-
tinuous on the cartesian product of the closed unit balls. Thus, every n-
homogeneous scalar polynomial on A is S∗(A,A∗)-to-norm continuous on
bounded sets.

Let A = K(`2) be the C∗-algebra of all compact operators on `2. Then
A∗∗ coincides with L(`2). Let φ ∈ A∗ denote the functional defined by φ(x) =∑

n λn(x(hn) |hn), where (hn) is an orthonormal basis of `2 and (λn) ∈ `+1
with λn > 0 for all n. Then φ is faithful in A∗∗. According to the above
comments, every T : A × A × A → C is jointly Strong∗ continuous on
bounded sets. However, we have examples of 3-linear forms which are not
uniformly Strong∗ continuous on bounded sets. Indeed, let P : A → c0 and
Q : A → `2 be given by P (x) =

∑
n x(hn)hn ⊗ hn and Q(x) = x(h1).

Consider the mapping

T : A3 → c0 × `2 × `2 → C,
(a, b, c) 7→ (P (a), Q(b), Q(c)) 7→ (P (a)Q(b) |Q(c)).
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The sequence (xn) = (hn ⊗ hn) is Strong∗-null in A, and yn = hn ⊗ h1 is in
the closed unit ball of A and T (xn, yn, yn) = 1, for all n. Corollary 4 implies
that T is not uniformly Strong∗ continuous on bounded sets.

As mentioned before (Remark 3), the Right and Strong∗ topologies co-
incide on bounded sets in a C∗-algebra. For this reason the example given
above is also valid for the Right topology. We remark that in [11] there is
a counterexample for the Right topology on Banach spaces (although the
notation is completely different). Finally, it is interesting to contrast the last
example with the behaviour in other topologies (see [4]).

The next example is based on an example in [14]. Being again on a
C∗-algebra, it is also valid for the Right topology.

Example 9. Let us consider the commutative C∗-algebra c0. It is known
that the Strong∗∗ topology of c0 is metrisable on bounded sets (cf. Remark 8).
Let T : c0 × c0 → c0 be the bilinear operator defined by

T (x, y) = x1y

for every x = (xn), y = (yn) ∈ c0.
Let (xm), (ym) be sequences in c0. Suppose that (xm) is Strong∗-null.

Then it is also weakly null, therefore xm1 → 0. So, for every bounded sequence
(ym) ⊂ c0 (in particular for every Strong∗-null sequence) we have

‖T (xm, ym)‖ → 0.

It follows that T is jointly Strong∗-to-norm continuous on bounded sets at 0.
However, let (em)m be the canonical basis of c0, and consider the sequences

xm = e1 + em and ym = em.

Then (xm) is Strong∗ convergent to e1, (ym) is Strong∗-null but

‖T (xm, ym)‖ = ‖em‖ = 1 9 0.

Thus T is not jointly Strong∗-to-norm continuous on bounded sets.

Remark 10. We conclude this section with an open problem already
posed in [25]. Clearly, if the Right and Strong∗ topologies coincide on
bounded sets in a Banach space, then i)⇔ i′) for all i = 2, 3, 4. The converse
is also trivially true. That is, if the Right and the Strong∗ topologies do not
coincide on bounded sets in a general Banach space, then i) < i′) for all
i = 1, . . . , 4. We do not know of any intrinsic characterisation of those Ba-
nach spaces for which the Right and Strong∗ topologies coincide on bounded
sets.

3. The setting of C∗-algebras and JB∗-triples. Complex Banach
spaces belonging to the classes of C∗-algebras and JB∗-triples satisfy suitable
algebraic-geometric axioms which make the above diagram (2) simpler. For
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example, C∗-algebras and JB∗-triples satisfy Pełczyński’s property (V ) (cf.
[29, Corollary 6], [8] and Remark 10). Furthermore, as a consequence of the
little Grothendieck inequalities for C∗-algebras and JB∗-triples, prehilbertian
seminorms associated to the algebraic structure are enough to bound every
operator from a C∗-algebra or a JB∗-triple into a Hilbert space. Indeed, given
a positive functional φ in the dual of a C∗-algebra A, the law z 7→ ‖z‖2φ :=
1
2φ(z∗z+zz∗) defines a prehilbertian seminorm on A. The little Grothendieck
inequality guarantees the existence of a universal constant G > 0 such that
for each operator T from a C∗-algebra A to a Hilbert space there exists a
norm-one positive functional φ in A∗ such that

‖T (z)‖ ≤ G‖T‖ ‖z‖φ
for all z ∈ A (see [32, 15]). Therefore, the (algebra) Strong∗-topology on A is
the topology generated by all the seminorms ‖ · ‖φ, where φ is any positive
functional in A∗.

Every C∗-algebra belongs to a more general class of complex Banach
spaces called JB∗-triples. A JB∗-triple is a complex Banach space E
equipped with a continuous triple product

{·, ·, ·} : E × E × E → E, (x, y, z) 7→ {x, y, z},
which is bilinear and symmetric in the outer variables and conjugate linear
in the middle one and satisfies:

(a) (Jordan identity)

L(x, y){a, b, c} = {L(x, y)a, b, c} − {a, L(y, x)b, c}+ {a, b, L(x, y)c}
for all x, y, a, b, c ∈ E, where L(x, y) : E → E is the operator given
by L(x, y)z = {x, y, z};

(b) for each x ∈ E, the map L(x, x) is a hermitian operator with non-
negative spectrum;

(c) ‖{x, x, x}‖ = ‖x‖3 for all x ∈ E.

Every C∗-algebra is a JB∗-triple with respect to

{x, y, z} :=
1
2

(xy∗z + zy∗x).

The Banach space L(H,K) of all bounded linear operators between two
complex Hilbert spaces H,K is also an example of a JB∗-triple with respect
to {R,S, T} = 1

2(RS∗T + TS∗R).
When φ is any element in the dual of a JB∗-triple, E, and y is a norm-one

element in E∗∗ such that φ(y) = ‖φ‖, then the mapping

x 7→ ‖x‖ϕ := (ϕ{x, x, y})1/2 = (ϕL(x, x)y)1/2

induces a prehilbertian seminorm on E whose values are independent of the
choice of y. By the little Grothendieck inequality, there exists a universal
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constant G > 0 such that for each operator T from E to a Hilbert space
there exist two norm-one positive functionals φ1, φ2 in E∗ such that

‖T (z)‖ ≤ G‖T‖ ‖z‖
φ1,φ2

for all z ∈ E, where ‖z‖φ1,φ2 denotes
√
‖z‖2φ1

+ ‖z‖2φ2
(see [5, 20, 23]).

Due to the above reasons, the classes of C∗-algebras and JB∗-triples are
appropriate settings to apply Theorem 1 and Corollary 4. There are other
reasons to specialise our study to that setting. We shall show that the joint
Strong∗-to-norm continuity of a multilinear operator can be seen, in this
case, as a property of C∗- and JB∗-summability.

Let us recall the concepts of C∗- and JB∗-triple-summing operators.
Pisier [32] introduced the following definition: an operator T : A→ X from
a C∗-algebra to a Banach space is said to be q-C∗-summing if there exists
a constant C such that for every finite sequence (a1, . . . , an) of self-adjoint
elements in A,

(3)
( n∑
i=1

‖T (ai)‖q
)1/q

≤ C
∥∥∥( n∑

i=1

|ai|q
)1/q∥∥∥,

where, for each x ∈ A, we write |x| =
(
xx∗+x∗x

2

)1/2. The smallest constant
C satisfying the above inequality is denoted by Cq(T ).

The following definition is taken from [21]. Let E be a JB∗-triple and
Y a Banach space. An operator T : E → Y is said to be 2-JB∗-triple-
summing if there exists a positive constant C such that for every finite
sequence (x1, . . . , xn) of elements in E we have

(4)
n∑
i=1

‖T (xi)‖2 ≤ C
∥∥∥ n∑
i=1

L(xi, xi)
∥∥∥.

The smallest constant C for which (4) holds is denoted C2(T ).
We can now define the C∗-algebra and JB∗-triple versions of 2-dominated

multilinear operators (see for instance [31]).

Definition 11. Let A1, . . . , An be C∗-algebras (or JB∗-triples) and let
X be a Banach space. A multilinear operator T : A1× · · · ×An → X is said
to be 2-C∗-dominated (respectively 2-JB∗-triple-dominated) if there exists
a positive constant C satisfying

(5)
( k∑
i=1

‖T (x1
i , . . . , x

n
i )‖2/n

)n/2
≤ C

∥∥∥( k∑
i=1

|x1
i |2
)1/2∥∥∥ · · · ∥∥∥( k∑

i=1

|xni |2
)1/2∥∥∥

for every collection {(xji )ki=1 ⊂ Aj : j = 1, . . . , n} of finite sequences of
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self-adjoint elements (respectively, the inequality

(6)
( k∑
i=1

‖T (x1
i , . . . , x

n
i )‖2/n

)n
≤ C

∥∥∥ k∑
i=1

L(x1
i , x

1
i )
∥∥∥ · · · ∥∥∥ k∑

i=1

L(xni , x
n
i )
∥∥∥

is satisfied for every collection of finite sequences {(xji )ki=1 ⊂ Aj : j =
1, . . . , n}.)

The smallest constant C satisfying the above inequality is denoted by
D2(T ).

If T is 2-C∗-dominated, then clearly the elements appearing in (5) can
be considered in Ai instead of (Ai)sa by a simple change in the constant.

Every 2-dominated multilinear operator defined on the cartesian product
of n C∗-algebras (respectively, JB∗-triples) is 2-C∗-dominated (respectively,
2-JB∗-triple-dominated), but the converse is in general false (cf. Remark 1.2
in [32]).

Remark 12. Every C∗-algebra A can be equipped with a structure of
JB∗-triple with product {a, b, c} := 1

2(ab∗c + cb∗a). Let (xi)ki=1 be a finite
sequence of elements in A. By [21, Remark 3.2], we have

(7)
∥∥∥ n∑
i=1

|xi|2
∥∥∥ ≤ ∥∥∥ n∑

i=1

L(xi, xi)
∥∥∥ ≤ 2

∥∥∥ n∑
i=1

|xi|2
∥∥∥.

Given C∗-algebras A1, . . . , An, a Banach space X, and a multilinear operator
T : A1 × · · · ×An → X, the inequalities (7) show that T is 2-C∗-dominated
if and only if it is 2-JB∗-triple-dominated.

Our next goal is a multilinear extension of Pietsch’s factorization theorem
for C∗-algebras and JB∗-triples. We shall extend ideas and techniques orig-
inated in [32], [10] and [21]. We need some previous results and definitions.
A collection Γ of real functions defined on a set K is called concave if, given
f1 . . . , fm in Γ and positive real numbers α1, . . . , αm such that

∑m
i=1 αi = 1,

there exists f ∈ Γ satisfying f(x) ≥
∑m

i=1 αifi(x) for all x ∈ K. It can be
easily seen that Γ convex implies Γ concave. The main tool needed later is
the following Ky Fan lemma (see, for instance, [30, E.4]):

Lemma 13. Let K be a compact convex subset of a linear topological
Hausdorff space, and let Γ be a concave collection of lower semicontinuous
convex real functions f on K. Suppose that for every f ∈ Γ there exists
x ∈ K with f(x) ≤ C (constant). Then we can find x0 ∈ K such that
f(x0) ≤ C for all f ∈ Γ simultaneously.

Let us also briefly recall some notions pertaining to numerical range. For
each norm-one element u in a Banach space X, the states of X relative to u,
D(X,u), are defined to be the non-empty, convex, and weak∗-compact subset
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of X∗ given by
D(X,u) := {Φ ∈ BX∗ : Φ(u) = 1}.

For each x ∈ X, the symbol V (X,u, x) will stand for the numerical range of
x relative to u, that is, V (X,u, x) := {Φ(x) : Φ ∈ D(X,u)}. The numerical
radius of x relative to u, v(X,u, x), is given by

v(X,u, x) := max{|λ| : λ ∈ V (X,u, x)}.
It is well known that a bounded linear operator T on a complex Banach

space X is hermitian if and only if V (BL(X), IX , T ) ⊆ R (cf. [7, Corollary
10.13]).

We can now state the desired factorization theorem.

Theorem 14. Let E1, . . . , En be JB∗-triples, let X be a Banach space
and let T : E1 × · · · × En → X be an n-linear operator. The following
statements are equivalent :

(a) T is jointly S∗(E1, E
∗
1)× · · · × S∗(En, E∗n)-to-norm continuous.

(b) There exist a positive constant C and norm-one functionals φ1
i , φ

2
i in

E∗i such that

‖T (x1, . . . , xn)‖ ≤ C‖T‖ ‖x1‖
φ1
1,φ

2
1

· . . . · ‖xn‖
φ1
n,φ

2
n

for every (x1, . . . , xn) ∈ E1 × · · · × En.
(c) T is 2-JB∗-triple-dominated.

Proof. (a)⇒(b). By Theorem 1 and Remark 3 statement (a) is equivalent
to T factorizing through the cartesian product of n Hilbert spaces. The little
Grothendieck inequality for JB∗-triples ensures the existence of a positive
constant C and norm-one functionals φ1

i , φ
2
i ∈ E∗i such that

‖T (x1, . . . , xn)‖ ≤ C‖T‖ ‖x1‖
φ1
1,φ

2
1

· . . . · ‖xn‖
φ1
n,φ

2
n

for every (x1, . . . , xn) ∈ E1 × . . .× En, which gives (b).
(b)⇒(c). For j ∈ {1, . . . , n}, let us take a finite sequence (xji )

k
i=1 ⊂ Ej .

Let φ1
j , φ

2
j be the norm-one functionals in E∗j given by (b) and let zkj be a

norm-one element in E∗∗j with φkj (z
k
j ) = 1. Then( k∑

i=1

‖T (x1
i , . . . , x

n
i )‖2/n

)n/2
≤ C‖T‖

( k∑
i=1

‖x1
i ‖2/n

φ1
1,φ

2
1

· . . . · ‖xni ‖2/n
φ1
n,φ

2
n

)n/2
≤ C‖T‖

( k∑
i=1

‖x1
i ‖2

φ1
1,φ

2
1

)1/2
· . . . ·

( k∑
i=1

‖xni ‖2
φ1
n,φ

2
n

)1/2

(via Hölder’s inequality)
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= C‖T‖
(
φ1

1

k∑
i=1

L(x1
i , x

1
i )(z

1
1) + φ2

1

k∑
i=1

L(x1
i , x

1
i )(z

2
1)
)1/2

· . . .

. . . ·
(
φ1
n

k∑
i=1

L(xni , x
n
i )(z

1
n) + φ2

n

k∑
1

L(xni , x
n
i )(z

2
n)
)1/2

≤
√

2C‖T‖
∥∥∥ k∑
i=1

L(x1
i , x

1
i )
∥∥∥1/2
· . . . ·

∥∥∥ k∑
i=1

L(xni , x
n
i )
∥∥∥1/2

.

(c)⇒(a). For every 1 ≤ j ≤ n we define Kj := D(L(Ej), IdEj ). Clearly,
Kj is a weak∗-compact subset in L(Ej)∗.

Set K = K1×· · ·×Kn. For any families (x1
i )
k
i=1 ⊂ E1, . . . , (xni )

k
i=1 ⊂ En,

we define the convex function f
x1
i
,...,xn

i

: K → R by

f
x1
i
,...,xn

i

(Φ1, . . . , Φn)

=
k∑
i=1

(
n‖T (x1

i , . . . , x
n
i )‖2/n −D2(T )1/n

n∑
j=1

Φj(L(xji , x
j
i ))
)
.

Define now the set

Γ := {f
x1
i
,...,xn

i

: k ∈ N, (x1
i )
k
i=1 ⊂ E1, . . . , (xni )

k
i=1 ⊂ En} ⊂ C(K,R).

Let k1, k2 ∈ N, (x1
i )
k1
i=1, (y

1
j )
k2
j=1 ⊂ E1, . . . , (xni )

k1
i=1, (y

n
j )k2j=1 ⊂ En, and 0 <

t < 1. It is not hard to see that tf
x1
i
,...,xn

i

+ (1 − t)f
y1
j
,...,xn

j

= f
z1
l
,...,xn

l

∈ Γ ,
where, for each m = 1, . . . , n, we define

zm1 , . . . , z
m
k1+k2 = t1/2xm1 , . . . , t

1/2xmk1 , (1− t)
1/2ym1 , . . . , (1− t)1/2ymk2 .

This shows that Γ is convex and hence concave in the terminology of [30,
E.4]. We claim that for every f

x1
i
,...,xn

i

∈ Γ there exists (Φf1 , . . . , Φ
f
n) ∈ K

such that f(Φf1 , . . . , Φ
f
n) ≤ 0. Indeed, by Sinclair’s theorem (see [7, Theorem

11.17]),

(8) ‖S‖ = sup
Φ∈Kj

|Φ(S)|

for every hermitian operator S on Ej . The operator Sj =
∑k

i=1 L(xji , x
j
i ) is

hermitian, thus there exists Φfj ∈ Kj such that∥∥∥ k∑
i=1

L(xji , x
j
i )
∥∥∥ = Φfj

( k∑
i=1

L(xji , x
j
i )
)

=
k∑
i=1

Φfj (L(xji , x
j
i )).

Since (Φf1 , . . . , Φ
f
n) ∈ K, we have
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f
x1
i
,...,xn

i

(Φf1 , . . . , Φ
f
n)

=
k∑
i=1

(
n‖T (x1

i , . . . , x
n
i )‖2/n −D2(T )1/n

n∑
j=1

Φfj (L(xji , x
j
i ))
)

=
k∑
i=1

n‖T (x1
i , . . . , x

n
i )‖2/n −D2(T )1/n

n∑
j=1

∥∥∥ k∑
i=1

L(xji , x
j
i )
∥∥∥.

As a consequence of the generalized means inequality (see for instance
[16, p. 17]) we know that

n
n∏
j=1

b
1/n
j ≤

n∑
j=1

bj

for every b1, . . . , bn ≥ 0. Therefore

f
x1
i
,...,xn

i

(Φf1 , . . . , Φ
f
n)

≤
k∑
i=1

n‖T (x1
i , . . . , x

n
i )‖2/n − nD2(T )1/n

n∏
j=1

∥∥∥ k∑
i=1

L(xji , x
j
i )
∥∥∥1/n

=
k∑
i=1

n‖T (x1
i , . . . , x

n
i )‖2/n − nD2(T )1/n

( n∏
j=1

∥∥∥ k∑
i=1

L(xji , x
j
i )
∥∥∥)1/n

≤ 0.

By the Ky Fan lemma there exists an element (Φ0
1, . . . , Φ

0
n) ∈ K such

that f
x1
i
,...,xn

i

(Φ0
1, . . . , Φ

0
n) ≤ 0 for every f

x1
i
,...,xn

i

∈ Γ . Thus,

k∑
i=1

n‖T (x1
i , . . . , x

n
i )‖2/n ≤ D2(T )1/n

k∑
i=1

n∑
j=1

Φ0
j (L(xji , x

j
i ))

for any families (x1
i )
k
i=1 ⊂ E1, . . . , (xni )

k
i=1 ⊂ En. When specialised to the

case k = 1, the above inequality implies that

(9) n‖T (x1, . . . , xn)‖2/n ≤ D2(T )1/n
n∑
j=1

Φ0
j (L(xji , x

j
i ))

for every (x1, . . . , xn) ∈ E1 × · · · × En.
We claim that T factors through the cartesian product of n Hilbert

spaces. Indeed, for every element x in a JB∗-triple E, the operator L(x, x)
is hermitian with non-negative spectrum. In particular, for each state Φ ∈
D(L(E), IdE), the law x 7→ |||x|||Φ := (ΦL(x, x))1/2 defines a prehilbertian
seminorm on E. If we set N := {x ∈ E : |||x|||Φ = 0}, then the quotient E/N
can be completed to a Hilbert space HΦ. Let us denote by Qj the natural
quotient map from Ej to HΦ0

j
. Clearly, ‖Qj(xj)‖ = |||xj |||Φj . The claim will

follow from the inequality
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(10) ‖T (x1, . . . , xn)‖ ≤ D2(T )1/2
n∏
j=1

|||xj |||Φ0
j
.

In order to see the latter we may assume that T (x1, . . . , xn) 6= 0, other-
wise (10) is trivial. If |||xj0 |||Φ0

j0
= 0 for some j0, then |||λxj0 |||Φ0

j0
= 0 for

every λ > 0. Then (9) gives

λ2/nn‖T (x1, . . . , xn)‖2/n ≤ Θ,
where Θ is a constant (not depending on λ), which is impossible. Therefore,
we may also assume that |||xj |||Φ0

j
> 0 for every 1 ≤ j ≤ n. When in (9) we

replace xj with xj = xj/|||xj |||Φ0
j
, we get the desired inequality (10).

The appropriate version of the above result in the setting of C∗-algebras
now follows from the above theorem together with the little Grothendieck
inequality for C∗-algebras.

Theorem 15. Let A1, . . . , An be C∗-algebras, let X be a Banach space
and let T : A1 × · · · × An → X be an n-linear operator. The following
statements are equivalent :

(a) T is jointly S∗(A1, A
∗
1)× · · · × S∗(An, A∗n)-to-norm continuous.

(b) There exist a positive constant C and norm-one positive functionals
φi in E∗i such that

‖T (x1, . . . , xn)‖ ≤ C‖T‖ ‖x1‖
φ1
· . . . · ‖xn‖

φn

for every (x1, . . . , xn) ∈ A1 × · · · ×An.
(c) T is 2-C∗-dominated.

Let T : A1 × · · · × An → X be a multilinear operator on the cartesian
product of n C∗-algebras. Inspired by the definition of multiple summing
multilinear operators, we shall say that T is multiple 2-C∗-summing if there
is a positive constant C such that for any k1, . . . , kn ∈ N and (xjij )

kj
ij=1 ⊂ Aj ,

1 ≤ j ≤ n, we have( n∑
j=1

kj∑
ij=1

‖T (x1
i1 , . . . , x

n
in)‖

2
)1/2
≤ C

∥∥∥( k1∑
i1=1

|x1
i1 |

2
)1/2∥∥∥ · · · ∥∥∥( kn∑

in=1

|xnin |
2
)1/2∥∥∥.

In the same way, we could define the absolutely 2-C∗-summing operators.
It is natural to ask whether in Theorem 15, 2-C∗-dominated operators

can be replaced with multiple 2-C∗-summing (or absolutely 2-C∗-summing)
operators. The following example shows that the answer is, in general, neg-
ative.

Example 16. By Theorem 3.1 in [6] every trilinear form

T : `∞ × `∞ × `∞ → C
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is multiple 2-summing and hence multiple 2-C∗-summing. Corollary 4.16 in
[9] yields a surjective operator q : `∞ → `2. Let (bn)n ⊂ `∞ be a bounded
sequence such that q(bn) = hn, where (hn) denotes the canonical basis in `2.
We define V : `∞ × `∞ × `∞ → C, V (a, b, c) :=

∑∞
n=1 anq(b)nq(c)n, where,

for each x in `∞, q(x)n denotes the nth coordinate of q(x). We have seen
that V is multiple 2-C∗-summing. We claim that V is not 2-C∗-dominated.
Indeed, otherwise, by Theorem 15, there would exist a positive constant C
and norm-one positive functionals φ1, φ2, φ3 in `∗∞ such that

‖V (a, b, c)‖ ≤ C‖V ‖ ‖a‖
φ1
‖b‖

φ2
‖c‖

φ3
≤ C‖a‖

φ1
‖b‖ ‖c‖

for all a, b, c ∈ `∞. Let (en) denote the canonical basis of `∞. It is well known
that (en) is Strong∗-null, thus the above inequality implies

1 = ‖T (en, bn, bn)‖ ≤ ‖en‖φ1
→ 0,

which is impossible.
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