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Optimal Sobolev imbedding spaces
by

RON KERMAN (St. Catharines) and LuBoS PIcK (Praha)

Abstract. This paper continues our study of Sobolev-type imbedding inequalities
involving rearrangement-invariant Banach function norms. In it we characterize when the
norms considered are optimal. Explicit expressions are given for the optimal partners
corresponding to a given domain or range norm.

1. Introduction. Our aim is to further study those rearrangement-
invariant Banach function spaces which are optimal in the Sobolev imbed-
dings considered in [2] and [4].

We begin by briefly describing the content of [4]. Suppose (2 is a bounded
domain in R™, n > 2. Let 9%/0x® := 9“1 T /9zi" ... 9z be a differen-
tial operator of order || := ag + - -+ ay, where o; € Z, U{0},i=1,...,n.
Denote by |D™u| the Euclidean length of the vector, D™u, 1 <m <n — 1,
of all derivatives of u of order m or less, whenever such derivatives exist on
2 in the weak sense. In [4] we considered Sobolev imbedding inequalities of
the form

(1.1) o(u) < Co(|D™ul),

in which ¢ and o are rearrangement-invariant (r.i.) norms (such as those of
Lebesgue, Orlicz and Lorentz) and u belongs to the r.i. Sobolev space

Wme(2):={u: 2 —R:o(|]D"u|) < co};
that is, we investigated when
W™e(£2) — Lo(2) :={f: 2 —>R:0(f) < cx}.

The focus was on cases in which g and/or ¢ is optimal, namely W™¢({2)
cannot be made larger and/or L,({2) cannot be made smaller. Expressions
were given for the optimal partners of p and o in (1.1). They involved related
r.i. norms, g and &, defined at functions on I, := (0, |£2|). Thus, for o, the
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optimal p, called p,, had
|£2]

0s(f) := supc?( S h(s)sm/”_1 ds), f:02—R,
t
the supremum being over all h on I; such that
{teRy:n(t)] > A = {z € 2: /(@) > AH,  AERy;
as usual, Ry := (0, 00). Again, for p, the optimal o, denoted by o,, satisfied
t
(12) oilg) = o (" [ g*(5)ds),  g: Q- R,
0
where a’g and ¢’ are the Kothe dual norms of o, and g discussed in Section 2
below and
g (t) :=inf{A > 0: py(N) <t}, telp,
with
V) =z € 2:lg(@)| > A}, A€ Ry,
is the decreasing rearrangement of g on Ig,.

Proposition 5.2 in [4] proved that the formula for g, can be dramatically
improved if o is optimal in (1.1). There is also a more explicit formula for o,
when p is optimal in (1.1). These expressions, together with precise criteria
for the optimality of ¢ and o in (1.1), are the subject of Theorem A below.

To state the theorem we must, first of all, introduce two supremum op-
erators, namely,

(Sp/mf)(E) =™/ sup s/ (s)

0<s<t
and

(Toym f)(t) = T sup s f(s),  filo — R, te .
t<s<|92|

Observe that for S, /,, [ to be finite one requires
sup sl_m/"f*(s) < 00,
0<s<|92|

or, as we will write, f € Ly, /(n—m),0c({2). Also, one has

(Sn/mf)**(t) ~ (Sn/mf**)(t) ~ (Sn/mf)(t)’ IS m-l—(lﬂ)v telq.
(We recall the notation X ~ Y, which signifies that each of X and Y is dom-
inated by a constant multiple of the other, the constants being independent
of all functions involved. More generally, X <Y means X is no bigger than
a constant times Y, with the constant independent of all functions involved.)
For any measurable subset E of R", we define

M(E):={f: E— R: fis measurable}

and denote by 9, (E) the class of nonnegative functions in M (E).
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THEOREM A. Fiz m,n € Zy, withn > 2 and 1 < m < n — 1. Let
2 be a bounded Lipschitz domain in R™. Then, an r.i. norm o on M, (12),
associated to the r.i. norm g on My (Ig), with Ly(Ig) 2 Ly/mi(Ia), is
optimal in (1.1) for some r.i. norm o on M (12) if and only if

(1.3) Sn/m : Ly (Ia) — Ly (Ia).

In that case,
1

(14)  oo(f) m ot [f™ (1) = fFO) + | f (B dt,  feM(),
0
where f**(t) :=t1 Sf) f*(s)ds.

Again, an r.i. norm o on M, (£2), associated to the r.i. norm & on
My (Ig), is optimal in (1.1) for some r.i. norm o on M4 (£2) if and only if
(1.5) Tom : Le(Ig) — La (1),
in which case

92|
(1.6) 00 (f) ~ a(g f*(s)sm/"—lds), femMm ().
t

In practice, one starts with a Sobolev space, W™2({2), and seeks to find
its optimal imbedding space, L,,(f2). One can then go on to form ¢p := g,
It is readily seen that

W™e(Q) s W™D () < Ly, ()

and, indeed, that W"20({2) is the largest Sobolev space that imbeds into
L;,(£2). Accordingly, we refer to op as the optimal r.i. hull norm for o
n (1.1). Our new description of pp is given in

THEOREM B. Fix m,n € Z4, withn > 2 and 1 <m <n —1. Let (2 be
a bounded Lipschitz domain in R™ and suppose ¢ is an r.i. norm on M, (£2),
associated to the r.i. norm g on My (Ip). Then,

op(f) = i'(f7), feMi(02),
where
w(g) =2 (Sumg™), g€ Mi(ln).
The basic technical result on which the proofs of Theorems A and B

depend is

ProposiTiON C. Fizm,n € Z4, withn > 2 and1 < m <n—1. Let {2 be
a bounded Lipschitz domain in R™ and suppose ¢ is an r.i. norm on M (§2),
associated to the r.i. norm ¢ on My (Ig) satisfying Lz(Ia) 2 Lymai(In)-
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Then,
|£2] |92]
(L7)  op(f)m  sup | ) = fF@)gt (@) d+ | () dt,
0 (Sn/m9)<1 g 0

where f € My (82), g € M ().

The structure of the paper is as follows. Section 2 contains background
material on r.i. norms and an interpolation-theoretic result involving S/,
and T, /,, needed later on. The optimal range, o, corresponding to a given o,
is treated in Section 3, which begins with the proof of Proposition C. Theo-
rems A and B are proved in Section 4.

Theorem A is illustrated in the context of Orlicz spaces in the last sec-
tion, using results from [3]. A property of the so-called level function, f°, of
f € M(Ig,), necessary to obtain (1.4), is proved in an appendix.

Finally, we mention that, in [5], Proposition C turns out to be crucial to
characterizing when the imbedding

We(£2) — Lq(£2)
is compact.

2. Rearrangement-invariant norms. The decreasing rearrangement
defined above satisfies [1, Chapter 2, Theorem 2.2]

|£2]
(2.1) | f@)g(z)da < | Fr(O)g" (1) dt,  f,g € M(02).
(9} 0

The operation of rearrangement is not sublinear, though for the Hardy av-
erage of h*, namely h**(t) .=t~} Sg h*(s)ds, t € I, we have [1, Chapter 2,
Proposition 3.3]

22) (f+9)"@O) <O +g7(), [f,geM (), teln.
DEFINITION 2.1. A rearrangement-invariant (r.i.) Banach function
norm o on M, ({2) satisfies the following seven axioms:

(A1) o(f) >0, with o(f) = 0 if and only if f =0 a.e. on {2;

(A2) o(cf) = co(f), ¢=0;

(A3) o(f +9) < o(f) + o(9);

(A4) fo 7 f implies o(fn) T o(f);

(A5) o(xE) < oo for measurable E C (2, |E| < oc;

(A6) {5 f(z)dx < Cpo(f), with E C 2, |E| < 0o, Cg > 0 independent
of f;

(A7) o(f) = o(g) whenever pf = pg.

According to a fundamental result of Luxemburg [1, Chapter 2, Theo-
rem 4.10], to every r.i. norm g on 9, ({2) there corresponds an r.i. norm, g,
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on M, (1), such that
(2.3) o(f) =o(f), [feM(2)

The basic technique for working with an r.i. norm p involves the Hardy—
Littlewood—Pdlya (HLP) Principle (see [1, Chapter 2, Proposition 4.6]),
which asserts that

() < g™ (), t € Ip, implies o(f) < o(g).
It is based on the following result of Hardy: if f,g,h € M, (Iy,), then

(24)  {f(s)ds<\g(s)ds, telq,
0

0 2] 12
= | fonr )dt < | gt)h*(¢)dt.
0 0

The Kdéthe dual of an r.i. norm ¢ on M (§2) is another such norm, ¢/,
with

d(9) == sup | g(x)h(z)dz, g,h €M ().
Q(h)glg

It obeys the Principle of Duality,

(2.5) o= (d) =0
Further, the Hélder inequality,
| f(@)g(x) de < o(£)d (9),
2

holds for all f, g € 9 (£2), and this inequality is saturated, in the sense that,
given f € M () and € > 0, there exists gg € M, (£2) such that ¢'(gg) = 1
and

| f(@)g0(z) dz > (1 = 2)o(f).

[0}
Finally, o/ = 7.
A smaller functional dual to the r.i. norm g on (1) will also be of
interest to us, namely the down dual norm, g}, defined by

92|

2(9) == sup | g()h*(t)dt, g,h €My (Iq).
o(h)<1

One connection between ¢’ and g/;, observed in [2, p. 312], is
d'(9) = 04(9"), g €M (Io).
Recently, G. Sinnamon [7] proved

(2.6) gal9) =2 (%), geMi(In),
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in which ¢°, referred to as the level function of g, is the (nonincreasing)
derivative of the least concave majorant of Sg g(s)ds, t € Ip. One has
t
(2.7) Sg*(s) ds >
0

S

g°(s)ds~t sup s '\g(y)dy, geM(In).
t<s<|9| 0

O ey

The inequality in (2.7) is almost obvious. The equivalence was pointed out
to us by G. Sinnamon (|8]); a proof of it, due to A. Gogatishvili, appears in
the appendix at the end of this paper.

Corresponding to an r.i. norm g on M, (£2) is the set

Lo($2) := {f € M(2) = o] f]) < o0},

which becomes a Banach space when

[fllL) = e(fD),  f € Lo(82);

indeed, it is a so-called rearrangement-invariant Banach function space, or,
for short, an r.i. space. A detailed treatment of such spaces appears in |1,
Chapters 1 and 2].

The dilation operator Eg, s € Ry, given at f € M (1), t € I, by

(B f)(t) = {f(t/s), 0<t<|fs,

0, |2]s <t < |82,
if s € (0,1), and by
(Esf)(t) := f(t)s), 0<t<|L,
if s € [1,00), is bounded on any r.i. space Lz(I) (|1, Chapter 3, Proposi-

tion 5.11]).
The Lorentz norms, gp 4, with 1 < p < 00, 1 < ¢ < oo, are defined by

[£2]
28 opalf) = (§ (e @rYna) " when g < oo,
0

and

Opoo(f) = sup tYPF(),  f € M(0).
0<t<||

In view of a well-known inequality of Hardy,
19|

Vo (Vrera)” pemoa).
0

0o~ 71l = (§ F(@) dr)
2

We denote L, ,(§2) by Ly 4(£2).
To conclude, we record a special interpolation-theoretic result.
Suppose Xg, X1 and X are r.i. spaces of functions in 9, (£2) satisfying

XoCcXCXy or XpDXDIXj.
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We say that X is an wnterpolation space between Xy and Xy, denoted X &
Int(Xo, X1), if, for any linear operator T,
T:Xg— Xpand T: X1 — X1 implies T:X — X.
For example, if g is any r.i. norm on 9t (§2), then
Li(£2) D Ly(2) D Loo(£2) and Ly(£2) € Int(L1($2), Loo(12));
see [1, Chapter 3, Theorem 2.12].

When Xy and X; are certain Lorentz spaces, there are simple tests for
Ly(£2) € Int(Xo, X7) involving the supremum operators S/, and T, /p,.
More specifically, we have

THEOREM 2.2. Let m,n € Z4 withn > 2 and 1 < m < n—1, and
suppose 2 is a bounded Lipschitz domain in R™. Let o be an r.i. norm on

9ﬁ+((2) Then LQ(Q) D) Ln/m,1(9)7 and
(29) LQ(‘Q) € Int(Ll(“Q)a Ln/m,l(Q))
if and only if (1.3) holds.

Again, given Ly(£2) C Ly /(n—m),1(£2), we have

LQ(Q) € Int(Ln/(n—m),l(Q)’ LOO(Q))

if and only if (1.5) holds.

The “if” parts are consequences of [4, Corollary 3.7 and Theorem 3.12].
The “only if” parts follow by standard arguments (see, for example, [1, Chap-

ter 4, Section 4]) from the endpoint estimates for S/, and T/, in [4,
Lemma 3.5], combined with their “quasisubadditivity” properties

(Sn/m[f+g])(t) = ( n/mf)(t/Z) ( n/mg)(t/Q)
and
(Tn/m[f + g])(t) < (Tn/mf)(t/2) + (Tn/mg)(t/2)7 g€ Sn-i-([(?)a t € lg,
and the boundedness of the dilation operators on every r.i. space.
One readily sees from [4, Theorem A] that
0901 = On/(n—m),1 and Q00 = On/m,1-
Thus, when considering p and o in (1.1) one may safely assume

LQ(‘Q) ) Ln/m,l(‘Q) and LU(Q) C Ln/(n—m),l(“(z)‘

3. The optimal range norm o,. In the first part of this section we
prove Proposition C. The strategy of the proof is as follows. According
o (1.2),
¢

(31)  oyle) = g(tm/"lgg* ds) = Mg), g€ M ().

Thus, we must show X (f) is equivalent to the right side of (1.7).
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We begin with two lemmas essential to the proof.

LEMMA 3.1. Fix b > 0 and set I, :== (0,b). Let g be an r.i. norm on
My (Iy) such that Ly (Ip) & Ly /(n—m),c0(ls). Then,

b |£2]
(32)  p(f):==sup \fr(t)desup s' g (s) + | f7(s)ds,
@l(sn/mg)glo 0<s<t 0
fr9 € My (1),
is also an r.4. norm on M (Iy); in (3.2), cSUPg <y sl=m/mgx(s) =: a(t)

denotes the least concave majorant of supg.s<; st=m/ng*(s) =: B(t), t € I,
and

b b—e
| £*(t) dat) = Jim | (1) da(t).
0 €

Proof. To start, observe that (3(t) is quasiconcave (so B(t) < af(t) <
26(t)) and that ¢'(S,/mg) < oo implies B(b—) = (S, /mg)(b—) < co. Thus,
a(t) is continuous on I, (in fact, locally Lipschitz of order 1) and hence

1—¢
| () dact)
£
is well defined as a (Riemann) Stieltjes integral, for all £ with 0 < & < b/2.
Indeed,

b—e b—e
| rrydaty= | Frone)
hence
b b
V@) da(t) = | fr()n(t) dt,
0 0

where h(t) := da(t)/dt is nonincreasing.
As for p being an r.i. norm, only the subadditivity requires comment.
But, it readily follows once we observe that, given fi, fo € MMy (1), (2.2)

and (2.4) ensure
b b b
V(A + f2)" =\ (fr+ f) (Wh(t) dt < [ (1) + £ (OIR(t) dt
0 2 b 0
= Sf )+ £ () da(t). =
0

LEMMA 3.2. Suppose ¢ is an r.i. norm on M, (§2), associated to the
r.i. norm ¢ on My (1), with Lz(Io) G Lyjmoo(In), and let X be defined as
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n (3.1). Then, N =~ 1 with

|22
T(f) = gt @) dft ) + | () dt
0

( n/mg)gl
for f € M(£2), g € Clg).

Proof. In view of Corollary 3.7 and Theorem 3.13 of [4], we may assume
t

(3.3) Ag) m v (07" g (s)ds), g € M),
0
where
(3.4) l/(h) = @’(Sn/mh**) ~ Q/(Sn/mh), h € f)ﬁ([g),
and
(3.5) Sn/m : L,(Ig) — L,(1p).

We first show that 7 < A. For any f,g € C(Ig), with f*(04) < oo and
f*(|2|—) = 0, we have

92| 192 92| 12t
[ g0 tde< | g't) | —dr(s)yde= | — (g (s)dsdf*(2)
0 0 t 0 0
2] t
_ S _tl—m/ntm/n—l Sg*(s) ds df*(t)
0 0
92| s
< S _tlfm/n sup Sm/nfl Sg*(y) dy df*(t)
0 t<s<|92| 0
13 1 |£2] s
S Mg (e g (s)ds) | T sup s g ) dydr(n)
0 0 t<s<|£2| 0

-1

SAgv( s s g (y) dy)
t<s<|9| 0

92| s
x | =t sup s gt (y) dy df (1)
1£2]
SAg) sup | 7R () df (£) S Mg)T(f),
v(h)<1
in which (3.3), Theorem 3.9 of [4] and (3.4) combined with (3.5) were used

to obtain the fourth last, third last and second last inequalities, respectively.
Thus, 7" < A.
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To prove A < 7/ we show the existence of C' > 0 such that to each g €
M (£2), AM(g) < oo, there corresponds fy € M (£2) satisfying f5(0+) < oo,
f5(1£2]=) =0, 7(fo) < C and
1£2]
| g* () f5 ) dt > C7 A (g).
0
Now, A(g) < oo implies the existence of kg € M (1), with o(ko) < 1, such

that
[£2| t

1
S ko (£)t™/m 1 Sg*(s) dsdt > 3 A(g).
0 0
Take fy such that
|£2|

fo@) =\ ko(s)s™""1ds, telq.
t

Then, for h = h* € M (1) with v(h) < 1,
[£2] |2]
| —tt=m/mhr () dfo(t) = | b (0)kG(E) dt < v(h)V (ko)
0 0

v(h)a(ko) (&' < v implies v/ < p)

S
<G,
and
2 112 I
V fo@yat =\ | ko(s)s™/"Vdsdt = | ko(t)t™/™ dt
0 0 ¢ 0

|£2]
< | ko) dt S o(ko) < C,
0
so 7(fo) < C. Further,

12| 12| 1
Vo fs@ydt =\ g7(t) \ko(s)s™/ ™" ds dt
0 0 t

|£2] ¢

= S Ol 1Sg* Ydsdt > = )\( ).
0
The result will follow by the Principle of Duality once we verify

T(f) = u(f),  feMu(2), f7(0+) <oo, f7(|2]-) =0
where p(f) is defined as in (3.2) with b = |{2|, since u was shown to be
an r.i. norm in Lemma 3.1.
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When g = ¢g* € C(I) with ¢*(0+) < oo,

lim f*(t) csup s/ "g*(s) = lim f*(t) csup s/ "g*(s) = 0,
t—0+ 0<s<t t—|92|- 0<s<t
and, thus, integration by parts yields
|2| |£2]
[ F*()d esup 5"/ () = | — csup st (5) ()
0 0<s<t 0 0<s<t

1

> |ty (1) df* (1),
0
whence

u(f) = 7(f),  feMi(e).
Again,
92|

sup — csup s' g (s) dfF(t)
7( n/mg)<1 o O<s<t

ey

2]
S sup S _tl—m/ntm/n—l csup si— m/n *( )df ()
v(9)<1 g 0<s<t
€|
S sSup S _tl_m/n(sn/mg)(t) d(t)
v(g)<1 0

g

S osup | (S, ) () dFF () by (3.5)
V(Sn/mg)gl 0

|£2]
S sup | 'R () df(2)
r(g)<1 0
[£2]
< | —t'=mingr @) dfr () (9=g" € M (In))
o'( n/mg)<1 0
S T(f)-

To get the second line of the last chain of inequalities, we have used the
quasiconcavity of 5(t) = supg.s<; sl=m/ng(s), t € Ig. m

Proof of Proposition C. In view of Lemma 3.2, o, satisfies

[£2] |92]
(36)  oo(f)~  sup | gty det) + | £ ()

where f € M, (£2) and g € C(I). Define the operator P by
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t
t)=t"'{h(s)ds, heM(Io), te I

According to [4, Theorem 3.12|, L,,(I) is an interpolation space between
Ly /(n—m),1(Ie) and L (Ig), hence Theorem 5.15 in Chapter 3 of [1] ensures

P:L;,(In) = Lo,(I).
This means we can replace f*(t) by f**(¢) and, indeed, by ¢~* Sg f*(s)ds

on the right side of (3.6).
Now, for each € with 0 < e < [£2|/2,

92| - t
S _tl—m/ng*(t) d[t—l S f**(S) d81|
€ 0
[£2]—e ¢
S 1= m/n *( )|:_t72gf**(8) ds _i_tflf**(t)} dt
€ 0
[£2|—€
= tm”P”SWﬂ$—fﬁﬁwﬂf@Mt
€ 0
42| ¢
| g (@) a7t £ (s) ds|
0 0
[£2] t
= § e ) - (o) ds| gt (1)t
0 0
|£2] |£2]
= § e - e § gt (s)smn s a.
0 t

Again, the operator R, /,, defined by
42|
(Roymh)(t) := ™"\ h(s)s™™/"Vds, heMy(Iq),te€lq,
t
satisfies

n
m
and

t

(Rumg")(t/2) = (t/2)™" | g*(s)s~ /" ds
t/2

1—27"Mg (0), g eMi(la). te lo.

v

n
m
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We conclude from the foregoing and (3.4) that

oo(f) ~ 0, (t_l § F4(s )

0
|£2] |£2]
~ osup | () = RO (Rymg ) (@) dt+ | fE(E) dE
v(9)<1 0
|£2] |42]
~  sup | ) = O (ReymgT) () dt+ | () dt
V(Ry/mg*)<1 g 0
|42] |£2]
rosup | ) — SR ()]gt () de+ | () dt
v(g)<1 0

92|

|2
~  osup e = r@)gt ) de+ | dt,
' (Snym9)<1 g 0

with f € M, (£2), g € M, (), as required. =

Our next result is a part of Theorem A which seems to be of independent
interest.

THEOREM 3.3. Let m, n, £2, o and g be as in Theorem A. Then, (1.3)
implies (1.4).

Proof. As a consequence of Proposition C and (1.3) we have, for f €

M4 (o),

|£2] |2]
(3.7) oo(f) = Sup o) = o)t de+ | ) dt
0'(9)<1 ¢ 0
[£2|
~ (@) - oD+ | )t
0

ke
= o((s7P () = D) + | (@)t
0

by (2.6) and the Principle of Duality.
The definition of the level function ensures

t t

Js~m/m(f(s) = £ ()] ds < § (5" [f*(y) = £ @)])°(5) s,

0 0
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from which (2.4) yields
¢ ¢

[s~m/m (57 (s) = £ (s))g™ () ds < § (™" [ () = F*(0)])°(s)g™ (5) ds,

38 g\ ™" ) - £ )] dyyds
0 s

for f € Dﬁ+((2), g < SUIJF(I_Q), te I_Q But, for f € Dﬁ+(!2),

S Sim/nf**(s)— _ S Sfm/nf2gf*(y) dy ds
t S t 0
192 92|
= | ) | s X0 (W) dsdy
0 t
t 92| 92| 92|
= Sf*(y) dy S sTMM2 s 4 S *(y) S T2 ds dy
0 t t Y
0| 92| n t
— * —m/n—2 —n/my—1 %
= Sf(y)Ss dsdy—}—in_}_mt t Sf (s)ds
t Y 0
t
Q7 (s) s, f € My (Tn),
0

n

n-+m

and
[£2] |£2] |2|
Vrew | somim2dsdy — |y~ (y) dy
t Yy t
|£2] |£2]

—m/n—1 px _ n Q—m/n—l *
n+m§y ) ds — —— |2 §f(y)dy

n

|£2]

— Ve () dy
t
|£2] |£2]

Dot ) dy
t

m

_ —m/n—1 px o
= | v f*(y) dy
n-—+m .

n-+m
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2]
Q7 @y dt, f € My (o).
0

n n

() ~

n-—+m n-—+m

Thus,

[£2]
[ sy (s) — £ ()2

S
t

Z_

L ) =L

T n+m n-+m

SO
n

Bt () = £ (8)])

n-+m
|2 |2

; ( [ sm/mlp=(s) - *(s)] d) 2 0latuy) | (s ds

S n-r—-m
t T 0

IN

|92] |92]
ds

o(§ ) - @ ) + | @ by (35) md HLP

S
t 0

N

92|

S o((s™™M 7 (s) = fOD°0) + | £1(8)at

0
Soo(f), feM(2), by (3.7);
here we have used the facts that the operator

€| ds

@H@) =\ f(s)—, feM(ln) telo,

¢
satisfies
Q:Ls(Ip) — Ls(Ip) ifand onlyif P:Ly(Ilp)— Ly(la),
and that
Ly (1) € Int(Ly,/(n—m),00(I2), Loo(102))-
Since one always has
£2]

oo(f) S o) — fFON+ | SOt f e M),

0
because of (3.7) and p(h) > p(h°) (by (2.7) and the HLP Principle), the
proof is complete. =

COROLLARY 3.4. Let m, n, §2, o and 0 be as in Theorem A. Set
(39) T(g) = @l(Sn/mg**)7 g e ?)ﬁ+(.(2)
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Then, T is an r.i. norm on M (2) and
12|

(310)  op(f) = @M@ — fFOD+ | S0 d f e M),
0

Proof. The functional 7 is readily seen to be an r.i. norm such that

Ly(£2) C Ly(£2). Moreover, by (1.3),

Thus, Theorem 3.3 guarantees

[£2]
o ()= T (@) = oD+ | fr@dt, f e My (o).
0
But, from Proposition C,
|£2] |92]
or(f)=sup | ) - fr@)gT (@) dt+ | ) dt
T(Sn/mg)§1 0 0
|£2] |92]
A~ sup S t_m/”[f**(t) — f (t)]g"(t) dt + S fr()dt by (3.11)
T(g)<1 0 0
|£2] |£2]
~ osup N () - @)t () de+ | fr () de
' (Snym9)<1 g 0

by (3.9) and (1.3)

%O'g(f)’ f€m+(9)a
and (3.10) follows. m
REMARK 3.5. Some r.i. norms p require h* in order to compute p(h).
Should this prove difficult for the p = g and h(t) = t="/" [f*(t) — f*(t)]
n (1.4), the first paragraph of the proof of Theorem 3.3, together with (A.1)
below, offers an alternative expression, given P : L5(£2) — L4({2), namely,

s |£2]
wolf) o s 7 Ny ) P dy) + ) S
t<s< 0 0

for f € 9M(£2). Here, the function h to which the norm g is applied is its own
rearrangement.
4. Proofs of Theorems A and B
Proof of Theorem A. By |4, Corollary 3.14],
L@(I_Q) € Int(Ll(I_Q), Ln/m,l(IQ>)-
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Theorem 2.2 then yields
(4.1) Sn/m : L@/(I_Q) — LE/(I_Q),
and this, by Theorem 3.3, implies

2]
(4.2) oo, (f) = o () = fFOD + | f10) e, f e M(2).
0
Further, Proposition 5.2 in [4] guarantees
22|
(4.3) 0r, () = a5( | F1(s)s™/m M ds), [ e M(92).
t

When p is optimal in (1.1), 0 & 0, so (1.3) holds, by (4.1), and (4.2)
becomes (1.4).

Given (1.3), we have (1.4), in view of Corollary 3.4. We claim that (4.3)
and (1.4) together ensure

QUg(f)%Q(f)a fem-‘r(g)a
and, hence, the optimality of ¢ in (1.1). Indeed, for f € M (£2),

kel

2oef) = @< § fr(s)smm ds)

t
LY 2
~ o[y dyds = | ()5 as] )
0 s b
2112
+ | | £y tdsde by (1.4)
0 t
t
ot/ fr(s)s™ ds ),
(e
since
i ; 12|
) Sy dyds = 7 ()5 ds + | ()™ s
0 s 0 )

and

112 @

S S f*(s)sm/"_ldsdt: S f*(S)Sm/"ds

0 t 0

e
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92| t
* ts m/n m/n— m/n— * m/n
SCQ<S f (|Q|) / d3> <™ e (t / 1Sf (s)s™/ ds).
0 0

The operator

t
[ ¢—m/n—1 S f(s)sm/” ds
0
is the associate of the operator R, , in the proof of Proposition C, and

therefore
t

o(tm Y ()5 ds) S alf), f € M),
0

But
t

t—m/n—lgf*(s)sm/n ds >
0

*(t), telp,
n—i—mf() @

whence

t
o(f) ~ (17" ()5 ds) % 00, (), € My(9).
0
The proof of the assertion concerning the optimality of ¢ is similar to the
one for p. Thus, if ¢ is optimal in (1.1), then o ~ 0, and (1.5) holds by [4,
Theorem 3.12[; in that case, (1.7) is satisfied.
Given (1.5), Proposition 5.2 in [4] ensures (1.6). Using (4.2) and (1.6),
we will obtain

Jgo(f) ~ (f)’ feer(Q)v
(1.1). In fact, it suffices to show

f)v f GEUIJr(‘Q)

and thus, the optimality of o in

0o, (f) S0

Now, if 0 < t < |£2]/2, then

1.
(

92| ds
J s s) = £l
t
|£2] s 12|
= Vs Py dyds = | s (s)
t 0 t
12| t 92| s
= Vs s\ )y + § s () dy ds
t 0 t t
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|£2] t 92|
> S §~m/n=2 dsSf*(y) dy + S sTM"2 (s — 1) f*(s) ds
t 0 t
192

— S sTm/M=L % (s) ds
¢

|£2] t |£2|
= S s™m/n=2 dsSf*(y) dy —t S s 15 (s) ds
t 0 t

2t
>t § 572 ds [£77(8) — (1)
t
1 n —m/n| pEk _rx
> 2 ) — )
while if |£2]/2 <t < [§2], then

\%

m/n+1 |£2]
) — £R()] < <\!22\> | rrydt,  femy ().

0
We conclude that when f € M, (£2),
1£2]

00, (f) = 0ot [f (1) = fO) + | fr(8)dt by (4.2)

0

1£2| 1£2|
sa( Lo -rerg) < | roe
12| |£2]
so( [Ty - reny)era)
|£2]

+ | rFwat vy (43)
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since
921 1£2| 92| y
S S h(y) @ Sm/nfl ds = S h(y) Ssm/nfl ds dy
t s y t t
92|
_n | h(y) [y™/™ — ™M) dy
m ooy
92|
n
< 2 m/n—1
< § h(y)y™" " dy
and
[£2] s ds |£2] t |£2] s
S S_ISh(y) dy — = S 572 dsgh(y) dy + S S_QSh(y) dy ds
t 0 5 t 0 t t
t 1£2] dy 1 92|
<t \hy)dy+ | hly) Y i | ny)dy,  hemy(o).
0 t t

Finally, (1.5) and [4, Theorem 3.12] imply, as in the proof of Proposition C,
that

P:Lz(Ig) — Ls(Ig),

which means
t

a(t—l [ 7*(s) ds) ~G(f), feM(Q). n

0
Proof of Theorem B. We know the following:

(4.4) op S o, orequivalently, o < op;
(4.5) o <, orequivalently, ' < o
(4.6) Snym : Ly, (12) = Ly, (In);

(4.7) Spym + Lp(Ig) — Ly (In).

Now, (4.4) and (4.6) yield
1(9) = '(Spym9™) = 0 (Sn/m9™) S 0p(Snmy™) S 0p(g*), g€ M (1),
and, hence, gop < p’. So, keeping (4.5) in mind, we see that
ep SH S e
Since 0,,, = 0,, we conclude o,/ = 0,, that is,
W (82) < L, (92),

which, in view of (4.7) and Theorem A, means u' = gp. =
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5. Examples. We here illustrate Theorem A in the context of Orlicz
spaces.

An Orlicz norm is defined in terms of a Young function A(t) = Sé a(s)ds,
with a(s) increasing on Ry, a(0+) = 0 and lims_. a(s) = oo. Given a
domain 2 C R", the (Luxemburg) Orlicz (r.i.) norm, g4, is defined at f €
M, (Io) by

oa(f) = inf{)\ >0: S A(Jc(t)> dt = S A<f(t)> dt < 1}
A A
I.Q I_Q
and at f € M (£2) by
or = e 0: (0 a1}
Iq
The Kothe norm dual to g4 is equivalent to the Orlicz norm g7, where

A(t) := Sail(s) ds, t>0,
0

is the Young function complementary to A; in fact,

07(9) < dalg) <205(9), g€ M (Ia)

In [3] we determined precisely when S, /m and T/, are bounded be-
tween Orlicz spaces. Theorems B and 5.2 of that paper yield, respectively,
Theorems 5.1 and 5.2 below.

THEOREM 5.1. Let m,n and {2 be as in Theorem A and suppose A is a

Young function whose complementary function, A, satisfies
At) =0, telg, and Ly (2) S Lyjmom)oeo(£2).
Then ¢ = p4 is optimal in (1.1) for some r.i. norm o on M(£2) if and only if

A(s) A(Kt)
S gn/(n—m)+1 ds < tn/(n—m)”’ t> |'Q|
|£2]
Moreover, in that case,
|£2]
ol f) = 0a@ ™[ (0) = 1O+ | fFr0)dt,  f € M(9).
0

THEOREM 5.2. Let m,n and {2 be as in Theorem A and suppose A is a

Young function whose complementary function, A, satisfies

At) =0, teln, and Lyjmeo(2) S Ly (£2).
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Then o = g4 is optimal in (1.1) for some r.i. norm ¢ on M (£2) if and only

of

OSO A(s) s < A(Kt)

gn/m+1 5> n/m t> |Q|
t

Moreover, in that case,
|£2]
or(f) = oa( | fi(s)s™"has), feM().
¢

Appendix. The following result concerning the level function, f°, of an
feMmi(Ip), was communicated to us by G. Sinnamon.

THEOREM A.l. For any f € M (1), the function

q(t) :=1t sup S*ISf(y) dy
t<s<1 0
18 quasiconcave on Ig. Moreover,
t
(A1) a(t) < | £°(s) ds < 2q(0).
0
Proof (A. Gogatishvili). Set f(s) =0 for s > 1 so that

s

q(t) =t sup s_lgf(y) dy, telg.
t<s<oo 0

Since ¢(t)/t is clearly nonincreasing, we need only verify that ¢(¢) is nonde-
creasing to get ¢ quasiconcave on I. But this is readily seen from

s ts
t sup s~ {fly)dy= sup s\ f(y)dy.
t<s<oo 0 1<s<o0 0

Asq(t) > Sé f(y) dy, the least concave majorant of ¢ dominates Sg fly)dy

and hence Sg f°(s) ds. The least concave majorant of a quasiconcave function
q(t) being no greater than 2¢(t), we have the second of the inequalities

in (A.1).
Observe that
t t—1t1 t+12
t ds+t d
Sfo(s)ds: sup 2o S(s)ds il 7S (s) S, 0<t<l1.
0 1 <t,0<ta<oco t1 + 2

Fix sand t witht <s < 1. Set t; =t and t9 = s — t. Then

to§y M f(s)ds+ 11§57 f(s)ds b}
§ t1+t2 . _S(S)f(y)dy:
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whence
alt) < | £°(s) ds

and we are done. =
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