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Bergelson’s theorem for weakly mixing
C∗-dynamical systems

by

Rocco Duvenhage (Pretoria)

Abstract. We study a nonconventional ergodic average for asymptotically abelian
weakly mixing C∗-dynamical systems, related to a second iteration of Khinchin’s recur-
rence theorem obtained by Bergelson in the measure-theoretic case. A noncommutative
recurrence theorem for such systems is obtained as a corollary.

1. Introduction. In 1977 Furstenberg [10] published a very influential
paper where he proved a recurrence theorem for measure preserving dynam-
ical systems (X,Σ, ν, T ), which followed from

(1.1) lim inf
N→∞

1
N

N∑
n=1

ν(V ∩ T−nV ∩ T−2nV ∩ · · · ∩ T−knV ) > 0

where V ∈ Σ with ν(V ) > 0, and led to an alternative proof of Szemerédi’s
Theorem in combinatorial number theory. This approach to Szemerédi’s
Theorem leads to various generalizations of the latter and a field of re-
search now often called Ergodic Ramsey Theory. Recently Niculescu, Ströh
and Zsidó [17] initiated a programme to extend Furstenberg’s result to C∗-
dynamical systems, and more generally to study “noncommutative recur-
rence”; see also [16] and [6].

Meanwhile, much research, e.g. [11, 2, 13], has been done for measure-
theoretic dynamical systems to determine when the lim inf in (1.1), and
generalizations thereof, is in fact a limit (the study of “nonconventional
ergodic averages”), and to find lower bounds for these limits similar to the
lower bound appearing in

(1.2) lim
N→∞

1
N

N∑
n=1

ν(V ∩ T−nV ) ≥ ν(V )2,
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which follows from the mean ergodic theorem, and from which in turn
Khinchin’s recurrence theorem follows. In particular, in [13] it was shown
that (1.1) is indeed a limit, but certain negative results regarding lower
bounds were found in [2].

However, a very interesting theorem was proven by Bergelson [1], which
was later significantly generalized by Host and Kra [12, 13]. Simply put,
they consider averages along cubes in Zq, rather than along arithmetic pro-
gressions as in (1.1). In particular, Bergelson’s Theorem covers the two-
dimensional case, i.e. a square in Z2, which can also be viewed as a second
iteration of (1.2), with the average being of the form

(1.3) lim
N→∞

1
N2

N∑
m=1

N∑
n=1

ν(V ∩ T−nV ∩ T−m(V ∩ T−nV ))

= lim
N→∞

1
N2

N∑
m=1

N∑
n=1

ν(V ∩ T−nV ∩ T−mV ∩ T−(m+n)V )

≥ ν(V )4.

For simplicity the averages in (1.2) and (1.3) were taken over [1, N ]
and [1, N ] × [1, N ] respectively. But in fact, the average in (1.2) can be
taken over [M,N ], and as [1] shows, the average in (1.3) can be taken over
[M,N ]×[M,N ], with the limitN−M →∞ being taken, and the results then
still hold. This provides a uniformity which leads to the relative denseness
in the resulting recurrence theorems, for example in Khinchin’s case for any
ε > 0 the set

{n : ν(V ∩ T−nV ) > ν(V )2 − ε}
is relatively dense (also said to be syndetic) in N = {1, 2, 3, . . . }, i.e. the set
has bounded gaps.

In this paper we study an extension of Bergelson’s Theorem to C∗-
dynamical systems. The main difference of course is that the probability
space (X,Σ, ν) and some abelian algebra of functions on it, like L∞(ν), are
replaced by a unital C∗-algebra A which need not be abelian, and a state ω
on A. We also work with actions of more general abelian groups than Z (in
particular, we have in mind the groups Zn and Rn, but for clarity and gen-
erality we will formulate and prove our results in a more abstract setting).
We follow the basic structure of Bergelson’s proof [1, Section 5]. However,
we will only prove Bergelson’s Theorem for asymptotically abelian (in the
sense of Definition 2.5) weakly mixing C∗-dynamical systems with ω a trace,
so a degree of abelianness is still present in the dynamical system. In order
to get the uniformity mentioned above, we need to restrict further to count-
able groups, and use a stronger form of asymptotic abelianness which we
call “uniform asymptotic abelianness”; see Definition 2.5.
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The main results are Theorem 5.6 and its corollary at the end of the
paper. The rest of the paper systematically builds up the required tools,
including an appropriate “van der Corput lemma” in Section 5, to prove
this theorem.

2. Definitions and notations. In this section we collect some of the
definitions and notations that we will use in the rest of the paper.

The space of all bounded linear operators X → X on a normed space X
will be denoted by B(X). For a C∗-algebra A we will denote the group of
all ∗-isomorphisms A→ A by Aut(A).

For a state ω on a unital C∗-algebra A, i.e. a linear functional on A such
that ω(a∗a) ≥ 0 and ω(1) = 1, we will denote the GNS representation of
(A,ω) by (H, ι), which is a Hilbert space H and a linear mapping ι : A→ H
such that 〈ι(a), ι(b)〉 = ω(a∗b) for all a, b ∈ A and with ι(A) dense in H. Note
that we use the convention that inner products are conjugate linear in the
first slot. The mapping ι can be expressed in terms of a ∗-homomorphism
π : A → B(H) and the formula ι(a) = π(a)Ω where Ω := ι(1) ∈ H.
More generally, π is given by π(a)ι(b) = ι(ab). Furthermore, we note that
‖a‖ω :=

√
ω(a∗a) = ‖ι(a)‖ defines a seminorm on A, and ‖a‖ω ≤ ‖a||.

A state ω will be called tracial or a trace when ω(ab) = ω(ba) for all
a, b ∈ A.

In a group or semigroup G we will use the notations V g := {vg : v ∈ V },
VW := {vw : v ∈ V,w ∈W}, V −1 := {v−1 : v ∈ V } (in groups), etc. for any
V,W ⊂ G and g ∈ G, and we will use multiplicative notation even though
we will only work with abelian groups and semigroups. If Σ is a σ-algebra in
some set, then for any V ∈ Σ we have a σ-algebra Σ|V := {W ∩V : W ∈ Σ}
in V , and we let Σ×Σ or Σ2 denote the product σ-algebra of Σ with itself.
In integrals with respect to the given measure µ we will often write dg with
g being the variable involved, instead of dµ or dµ(g).

Throughout this paper G denotes an abelian second countable locally
compact group with identity e, Borel σ-algebra Σ and (regular) Haar mea-
sure µ, and containing a semigroupK ∈ Σ which possesses a Følner sequence
(Λn) defined as follows:

Definition 2.1. A sequence (Λn) in Σ|K is called a Følner sequence in
K if 0 < µ(Λn) <∞ for n large enough and

lim
n→∞

µ(Λn 4 (Λng))
µ(Λn)

= 0 for all g ∈ K.

(In some cases a Følner sequence (Λ′n) will be constructed from another
Følner sequence, and in such cases (Λ′n) will only be required to be in Σ for
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n large enough.) A Følner sequence (Λn) is called uniform if

lim
n→∞

1
µ(Λn)

sup
g∈Λm

µ(Λn 4 (Λng)) = 0

for m large enough.

We do not require the Følner sequence to exhaust the semigroup (so for
example the sequence Λn = {1, . . . , n} is a Følner sequence in K = G = Z).
Eventually in our final results (Section 5) a semigroup will not be sufficient,
and we will take K = G. We refer to [8] for more details on Følner sequences
in groups. In particular, [8, Theorem 4] considers the existence of Følner
sequences, while [8, Theorem 3], together with [9, Theorems 1 and 2], give
conditions for the existence of a uniform Følner sequence.

Note that since G is both locally compact and second countable, µ is
σ-finite. Second countability and σ-finiteness are of importance, since we
will be working with products of the measure space (G,Σ, µ). For example,
second countability ensures that the product σ-algebra is equal to the Borel
σ-algebra of the product topology. In Section 5 we will also require the
following additional property:

Definition 2.2. A Følner sequence (Λn) in K is said to satisfy the
Tempel’man condition if there is a real number c > 0 such that

µ(Λ−1
n Λn) ≤ cµ(Λn) for n large enough

(in particular Λ−1
n Λn ∈ Σ is required for n large enough).

Now we define the type of dynamical system with which we will be
working:

Definition 2.3. Let ω be a state on a unital C∗-algebra A. Consider a
function τ : G→ Aut(A) : g 7→ τg such that τe is the identity on A, τg ◦τh =
τgh and ω ◦ τg = ω for all g, h ∈ G, and such that K → C : g 7→ ω(aτg(b)) is
(Σ|K)-measurable for all a, b ∈ A. Then we call (A,ω, τ,K) a C∗-dynamical
system. We will consider the following special cases:

(1) Ergodicity and weak mixing, with the latter implying the former:

(1a) If

lim
n→∞

1
µ(Λn)

�

Λn

ω(aτg(b)) dg = ω(a)ω(b) for all a, b ∈ A,

then we will call (A,ω, τ,K) ergodic with respect to (Λn).
(1b) If

lim
n→∞

1
µ(Λn)

�

Λn

|ω(aτg(b))− ω(a)ω(b)| dg = 0 for all a, b ∈ A,

then we will call (A,ω, τ,K) weakly mixing with respect to (Λn).
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(2) If K → R : g 7→ ‖[a, τg(b)]‖ is (Σ|K)-measurable for all a, b ∈ A,
where [a, b] := ab− ba, then:

(2a) We call (A,ω, τ,K) asymptotically abelian with respect to (Λn) if

lim
n→∞

1
µ(Λn)

�

Λn

‖[a, τg(b)]‖ dg = 0 for all a, b ∈ A.

(2b) We call (A,ω, τ,K) uniformly asymptotically abelian with respect to
(Λn) if

lim
n→∞

sup
h∈K

1
µ(Λn)

�

Λnh

‖[a, τg(b)]‖ dg = 0 for all a, b ∈ A.

Whenever we write (A,ω, τ,K), we mean a C∗-dynamical system. In our
final results in Section 5 we will make the further assumption that K = G,
and this will be indicated by simply writing (A,ω, τ,G).

When working with such systems, we can use the GNS representation to
represent τ on H by the formula

Ugι(a) := ι(τg(a))

and then uniquely extending Ug : ι(A) → ι(A) to H for every g ∈ G. This
gives us a representation U : K → B(H) : g 7→ Ug of the semigroup K as
contractions, i.e. UgUh = Ugh and ‖Ug‖ ≤ 1 for all g, h ∈ K (in fact, Ug is
unitary, but this is not essential), and similarly for the whole G instead of
just K. We will consider this U to be the GNS representation of τ , and in
the presence of a GNS representation we will use this notation in the rest
of the paper. Note that UgΩ = ι(τg(1)) = ι(1) = Ω.

Remarks. The terminology in Definition 2.3(2) is not quite standard,
but we will use it consistently in this paper. For simplicity, consider the case
K = G = Z and the Følner sequence in Z given by ΛN = {1, . . . , N}. The
term “asymptotic abelian” (see for example [7]) is often used to describe the
condition

lim
|n|→∞

‖[a, τn(b)]‖ = 0

which for the purposes of these remarks we will refer to as “strong asymp-
totic abelianness”. Note that this condition implies asymptotic abelianness
and uniform asymptotic abelianness in our sense above with respect to (ΛN ).
In fact, if ω is a so-called factor state, then strong asymptotic abelianness
also implies what is known as “strong mixing”, namely

lim
|n|→∞

|ω(aτn(b))− ω(a)ω(b)| = 0

(see [4, Example 4.3.24] for details), and hence weak mixing with respect
to (ΛN ). We can also mention that from the results and discussions
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in [5, Section 5.3.2] regarding infinite temperature KMS states (i.e. at in-
verse temperature β = 0), it follows that if a unital C∗-algebra A has at
least one trace, then it also has a “factor trace” (i.e. a factor state which
is tracial). More concretely, the shift automorphism τ on the C∗-algebra
M =

⊗
j∈ZB(C2) is strongly asymptotically abelian and leaves the trace

ω of M (which happens to be a factor trace [14, Section 11.4]) invariant,
hence (M,ω, τ,Z) is a strongly asymptotic abelian and strongly mixing C∗-
dynamical system.

3. Background. We now discuss a number of results which for the most
part are known, but we formulate and adapt them in a way that will suit our
needs in Section 5. In particular, these results are not stated in their most
general forms, for instance the algebra A need only be a unital ∗-algebra
rather than a C∗-algebra. Some more notation is also introduced.

Definition 3.1. Let S be an abelian semigroup of linear contractions
on a Hilbert space H. A vector x ∈ H\{0} is called an eigenvector with
unimodular eigenvalues (or “unimodular eigenvector” for short) of S if there
exists a function λ : S → C such that |λ(U)| = 1 and Ux = λ(U)x for every
U ∈ S. The closure of the span (finite linear combinations) of the unimodular
eigenvectors of S will be denoted by H0, and its orthogonal complement in
H by Hv, hence H = H0 ⊕ Hv. The elements of H0 are called reversible,
while the elements of Hv are called flight vectors.

An important characterization of Hv in our setting (presented in Sec-
tion 2) is the following:

Proposition 3.2. Consider a representation U : K → B(H) of the
abelian semigroup K as contractions on any Hilbert space H, giving the
semigroup S = {Ug : g ∈ K} in Definition 3.1, such that K → C : g 7→
〈x, Ugy〉 is (Σ|K)-measurable for all x, y ∈ H. Then for y ∈ H we have the
following : y ∈ Hv if and only if

lim
n→∞

1
µ(Λn)

�

Λn

|〈x, Ugy〉| dg = 0 for all x ∈ H.

The regularity of µ is not needed for this result.

This result follows as a special case of the results in [15, Section 2.4], but
with some modifications to the proof of [15, Theorem 2.4.7] to compensate
for the fact that we are using the form limn→∞ µ(Λn)−1 	

Λn
(·) dµ rather than

an abstract invariant mean as [15] does (the fact that (Λn) is Følner and µ
is invariant, plays an important role here). An important example is where
U is a GNS representation of a ∗-dynamical system, and in such cases we
will use the notation H0 and Hv without further explanation. As a corollary
we have the following related characterization of Hv:
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Corollary 3.3. Assume that KK = K. Consider any Følner sequences
(Λ1,n) and (Λ2,n) in K, and a representation U : K → B(H) of K as
contractions on any Hilbert space H such that K × K → C : (g, h) 7→
〈x, Ughy〉 is (Σ × Σ)|K×K-measurable for all x, y ∈ H. Then for y ∈ H we
have the following : y ∈ Hv if and only if

(3.1) lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

|〈x, Ughy〉| dg dh = 0

for all x ∈ H.

Proof. We will apply Proposition 3.2 to K ′ := K × K ∈ Σ × Σ as a
semigroup in the “ambient” group (G′, Σ′, µ′) := (G × G,Σ × Σ,µ × µ).
It is easily established that Λ′n := Λ2,n×Λ1,n gives a Følner sequence in K ′.
Because of second countability, Σ′ is the Borel σ-algebra of G′. As men-
tioned in Proposition 3.2, we need not worry about regularity of µ′, but
that µ′ is invariant can be shown as follows: First prove that {V ∈ Σ′ :
V (g, h), V c(g, h) ∈ Σ′} is a σ-algebra and hence equal to Σ′ for all g, h ∈ G,
where V c := G′ \ V . From this we obtain Σ′(g, h) ⊂ Σ′, and then the right
invariance of µ′ follows by using the definition of a product measure.

Note that since K is abelian, U ′ : K ′ → B(H) defined by U ′(g,h) := Ugh
is a representation of K ′ as contractions. Since KK = K, the semigroups
S := {Ug : g ∈ K} and S′ := {U ′(g,h) : (g, h) ∈ K ′} have the same reversible
vectors H0, and hence the same flight vectors Hv. But then by Proposition
3.2 a y ∈ H is in Hv if and only

lim
n→∞

1
µ′(Λ′n)

�

Λ′n

|〈x, U ′(g,h)y〉| d(g, h) = 0 for all x ∈ H,

which is exactly (3.1) by Fubini’s Theorem.

We have the following mean ergodic theorem: Let H be a Hilbert space
and U : K → B(H) : g 7→ Ug a representation of K as contractions such
that K 3 g 7→ 〈x, Ugy〉 is (Σ|K)-measurable for all x, y ∈ H. Take P to be
the projection of H onto V := {x ∈ H : Ugx = x for all g ∈ K}. Then

lim
n→∞

1
µ(Λn)

�

Λn

Ugx dg = Px for all x ∈ H,

where integrals over sets Λ ∈ Σ|K with µ(Λ) < ∞, of bounded Hilbert
space valued functions f , with 〈f, x〉 measurable for every x in a dense
linear subspace of H, are defined via the Riesz representation theorem, i.e.
〈
	
Λ f dµ, x〉 :=

	
Λ〈f(g), x〉 dg. This integral has several simple properties, for

example if F : K → R is measurable and ‖f‖ ≤ F , then |〈
	
Λ f dµ, x〉| ≤	

Λ |〈f, x〉| dµ ≤ (
	
Λ F dµ)‖x‖, hence ‖

	
Λ f dµ‖ ≤

	
Λ F dµ.
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Note that if (A,ω, τ,K) is ergodic with respect to some Følner sequence,
then from the mean ergodic theorem it follows that it is ergodic with respect
to every Følner sequence inK, since ergodicity is equivalent to the projection
P in any GNS representation being Ω ⊗ Ω = Ω〈Ω, ·〉, i.e. ergodicity is
independent of the Følner net being used, and then we can simply say that
the system is ergodic. By the following result we have a similar situation for
weak mixing:

Proposition 3.4. In the GNS representation of (A,ω, τ,K) we have
CΩ ⊂ H0. Furthermore, (A,ω, τ,K) is weakly mixing with respect to (Λn)
if and only if

(3.2) lim
n→∞

1
µ(Λn)

�

Λn

|〈x, Ugy〉 − 〈x,Ω〉〈Ω, y〉| dg = 0 for all x, y ∈ H,

which in turn holds if and only if dimH0 = 1. In particular , if (A,ω, τ,K) is
weakly mixing with respect to some Følner sequence in K, then it is weakly
mixing with respect to every Følner sequence in K.

Proof. The first equivalence: By setting x = ι(a∗) and y = ι(b), weak
mixing with respect to (Λn) follows immediately from (3.2).

Conversely, consider any x, y ∈ H; then there are sequences (am) and
(bm) in A such that ι(am) → x and ι(bm) → y. Hence K → C : g 7→
〈x, Ugy〉 = limm→∞ ω(a∗mτg(bm)) is Σ-measurable. Now we follow a stan-
dard argument from measure-theoretic ergodic theory (see for example [18,
Theorem 1.23]): Consider any ε > 0, and an m for which ‖ι(am) − x‖ < ε
and ‖ι(bm) − y‖ < ε. From Definition 2.4(2) it follows that there is an N
such that for every n > N ,

1
µ(Λn)

�

Λn

|〈x, Ugy〉− 〈x,Ω〉〈Ω, y〉| dg ≤ (‖x‖+ ‖ι(bm)‖+ ‖ι(am)‖+ ‖y‖+ 1)ε

while ‖ι(am)‖ ≤ ‖x‖ + ε and ‖ι(bm)‖ ≤ ‖y‖ + ε. (Note that the properties
of a Følner sequence have not been used yet.)

The second equivalence: Note that in general CΩ ⊂ H0, since UgΩ = Ω.
As mentioned, K → C : g 7→ 〈x, Ugy〉 is (Σ|K)-measurable, so in particular
for any y ∈ H orthogonal to Ω, (3.2) tells us that

lim
n→∞

1
µ(Λn)

�

Λn

|〈x, Ugy〉| dg = 0 for all x ∈ H.

Hence y ∈ Hv by Proposition 3.2, so H⊥0 ⊂ (CΩ)⊥ ⊂ Hv; but H⊥0 = Hv

by Definition 3.1, hence H0 = CΩ. Conversely, if H0 = CΩ, then for any
x, y ∈ H write x = x0 +xv and y = y0 +yv with x0, y0 ∈ H0 and xv, yv ∈ Hv.
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Then it follows from Proposition 3.2 that

lim
n→∞

1
µ(Λn)

�

Λn

|〈x, Ugy〉 − 〈x,Ω〉〈Ω, y〉| dg

= lim
n→∞

1
µ(Λn)

�

Λn

|〈x, Ugyv〉+ 〈x0, y0〉 − 〈x0, (Ω ⊗Ω)y0〉| dg = 0

as required.

Hence when (A,ω, τ,K) is a C∗-dynamical system which is weakly
mixing with respect to some Følner sequence in K, we will simply call
(A,ω, τ,K) weakly mixing.

4. Preliminary limits. The goal of this section is to prove Proposi-
tion 4.3, which can be viewed as a collection of very simple nonconventional
ergodic averages and is one of the tools used in Section 5. In Lemma 4.1 we
still do not need A to be C∗-algebra, but from Lemma 4.2 onward we start
using the properties of C∗-algebras. Keep in mind that we are still using the
definitions and notations of Section 2.

Lemma 4.1. Let (A,ω, τ,K) be ergodic. Then

lim
n→∞

1
µ(Λ−1

n )

�

Λ−1
n

ω(aτg(b)) dg = ω(a)ω(b) for all a, b ∈ A,

and furthermore (Λ−1
n ) is a Følner sequence in K−1. Hence (A,ω, τ,K−1)

is an ergodic C∗-dynamical system.

Proof. Let I : G→ G : g 7→ g−1. Since µ is a regular Haar measure, we
have µ ◦ I = µ. Note that

ω(aτ(·)(b))|K−1 = ω(τI(·)(a)b)|K−1 = ω(b∗τ(·)(a∗))|K ◦ I|K−1

is (Σ|K−1)-measurable by definition of a C∗-dynamical system and the fact
that I is continuous and therefore measurable, hence (A,ω, τ,K−1) is a
C∗-dynamical system. Now we perform a simple calculation:

lim
n→∞

1
µ(Λ−1

n )

�

Λ−1
n

ω(aτg(b)) dg = lim
n→∞

1
µ(Λn)

�

I(Λn)

ω(τI(g)(a)b) dµ(g)

= lim
n→∞

1
µ(Λn)

�

Λn

ω(τg(a)b) d(µ ◦ I)(g)

= lim
n→∞

1
µ(Λn)

�

Λn

ω(b∗τg(a∗)) dg = ω(b∗)ω(a∗).

Lastly, it is straightforward to establish directly from the definition that
(Λ−1

n ) is a Følner sequence in K−1.
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Lemma 4.2. Let (A,ω, τ,K) be ergodic, with

K ×K → C : (g, h) 7→ ω(aτg(b)τh−1g(c))

(Σ|K × Σ|K)-measurable for all a, b, c ∈ A. Then for any Følner sequences
(Λ1,n) and (Λ2,n) in K, and any GNS representation of (A,ω), we have

(4.1) lim
n→∞

sup
g1,g2∈K

‖Mn,g1,g2(ι(τg(b)τh−1g(c)))− ω(b)ω(c)Ω‖ = 0

for all b, c ∈ A, where we write

Mn,g1,g2(f(g, h)) ≡ 1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,ng1

�

Λ2,ng2

f(g, h) dg dh

(in particular , the symbol g on the left hand side indicates the integration
variable over Λ2,ng2, and h the integration variable over Λ1,ng1).

Proof. Mn,g1,g2(ι(τg(b)τh−1g(c))) exists for n large enough by Fubini’s
Theorem, since (g, h) 7→ ω(aτg(b)τh−1g(c)) = 〈ι(a∗), ι(τg(b)τh−1g(c))〉 pro-
vides the required measurability.

Setting c′ := c− ω(c) we have ω(c′) = 0, and assuming (4.1) holds for c′

instead of c, and keeping in mind the invariance of µ, we have

sup
g1,g2∈K

‖Mn,g1,g2(ι(τg(b)τh−1g(c)))− ω(b)ω(c)Ω‖

≤ sup
g1,g2∈K

‖Mn,g1,g2(ι(τg(b)τh−1g(c
′)))‖

+ |ω(c)| sup
g2∈K

∥∥∥∥ 1
µ(Λ2,n)

�

Λ2,ng2

ι(τg(b)) dg − ω(b)Ω
∥∥∥∥→ 0

in the n limit by the mean ergodic theorem, since (A,ω, τ,K) is ergodic and
K is abelian, so that

sup
g2∈K

∥∥∥∥ 1
µ(Λ2,n)

�

Λ2,ng2

ι(τg(b)) dg − ω(b)Ω
∥∥∥∥

= sup
g2∈K

∥∥∥∥ 1
µ(Λ2,n)

�

Λ2,n

ι(τgg2(b))dg − ω(b)Ω
∥∥∥∥

≤ sup
g2∈K

‖Ug2‖
∥∥∥∥ 1
µ(Λ2,n)

�

Λ2,n

Ugι(b) dg − ω(b)Ω
∥∥∥∥

≤
∥∥∥∥ 1
µ(Λ2,n)

�

Λ2,n

Ugι(b) dg − ω(b)Ω
∥∥∥∥

→ ‖(Ω ⊗Ω)ι(b)− ω(b)Ω‖ = 0.
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Hence we can assume ω(c) = 0. From our hypothesis, h 7→ ω(aτh−1(c)) =
ω(aτe(1)τh−1e(c)) is (Σ|K)-measurable. Also, since A is a C∗-algebra and π
a ∗-homomorphism, we have π(a) ∈ B(H) and ‖π(a)‖ ≤ ‖a‖ for all a ∈ A.
Therefore, since G is abelian,

sup
g1,g2∈K

‖Mn,g1,g2(ι(τg(b)τh−1g(c)))‖

= sup
g1,g2∈K

∥∥∥∥ 1
µ(Λ1,n)µ(Λ2,n)

�

Λ2,ng2

[
π(τg(b))Ug

�

Λ1,ng1

ι(τh−1(c)) dh
]
dg

∥∥∥∥
≤ sup

g1,g2∈K

1
µ(Λ1,n)µ(Λ2,n)

µ(Λ2,ng2)‖b‖
∥∥∥ �

Λ1,ng1

ι(τh−1(c)) dh
∥∥∥

= ‖b‖ sup
g1∈K

1
µ(Λ1,n)

∥∥∥ �

Λ1,n

ι(τ(hg1)−1(c)) dh
∥∥∥

= ‖b‖ sup
g1∈K

1
µ(Λ1,n)

∥∥∥Ug−1
1

�

Λ1,n

ι(τh−1(c)) dh
∥∥∥

≤ ‖b‖ 1
µ(Λ−1

1,n)

∥∥∥ �

Λ−1
1,n

Uhι(c) dh
∥∥∥→ 0

by Lemma 4.1 and the mean ergodic theorem.

Proposition 4.3. Let (A,ω, τ,K) be ergodic. Consider any Følner
sequences (Λ1,n) and (Λ2,n) in K, and use the notation Mn,g1,g2 as in Lem-
ma 4.2.

(1) If
K ×K → C : (g, h) 7→ ω(τh(a)τgh(b)τg(c))

is (Σ|K ×Σ|K)-measurable for all a, b, c ∈ A, then

lim
n→∞

sup
g1,g2∈K

|Mn,g1,g2(ω(τg(a)τgh(b)τh(c)))− ω(a)ω(b)ω(c)| = 0

for all a, b, c ∈ A.
(2) If (A,ω, τ,K) is asymptotically abelian with respect to (Λ1α), ω is

tracial , and

K ×K → C : (g, h) 7→ ω(τh(a1)τg(a2)τgh(a3)τg(a4)τh(a5))

is (Σ|K ×Σ|K)-measurable for all a1, . . . , a5 ∈ A, then

lim
n→∞

Mn,e,e(ω(τh(a1)τg(a2)τgh(a3)τg(a4)τh(a5))) = ω(a5a1)ω(a3)ω(a2a4)

for all a1, . . . , a5 ∈ A.
(3) If (A,ω, τ,K) is uniformly asymptotically abelian with respect to

(Λ1,n), ω is tracial , and

K ×K → C : (g, h) 7→ ω(τh(a1)τg(a2)τgh(a3)τg(a4)τh(a5))
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is (Σ|K ×Σ|K)-measurable for all a1, . . . , a5 ∈ A, then

lim
n→∞

sup
g1,g2∈K

|Mn,g1,g2(ω(τh(a1)τg(a2)τgh(a3)τg(a4)τh(a5)))

− ω(a5a1)ω(a3)ω(a2a4)| = 0

for all a1, . . . , a5 ∈ A.

Proof. (1) Note that ω(τh(a)τgh(b)τg(c)) = ω(aτg(b)τh−1g(c)) and there-
fore the latter has the measurability required in Lemma 4.2, hence

sup
g1,g2∈K

|Mn,g1,g2(ω(τh(a)τgh(b)τg(c)))− ω(a)ω(b)ω(c)|

= sup
g1,g2∈K

|〈ι(a∗),Mn,g1,g2(ι(τg(b)τh−1g(c)))− ω(b)ω(c)Ω〉|

≤ ‖ι(a∗)‖ sup
g1,g2∈K

‖Mn,g1,g2(ι(τg(b)τh−1g(c)))− ω(b)ω(c)Ω‖ → 0.

(3) Note that (g, h) 7→ ω(τh(a)τg(1)τgh(b)τg(c)τh(1)) = ω(aτg(b)τh−1g(c))
is (Σ|K × Σ|K)-measurable by hypothesis, hence we can apply Lemma 4.2
to obtain

sup
g1,g2∈K

|Mn,g1,g2(ω(τh(a1)τg(a2)τgh(a3)τg(a4)τh(a5)))−ω(a5a1)ω(a3)ω(a2a4)|

= sup
g1,g2∈K

|〈ι((a5a1)∗),

Mn,g1,g2(ι(τh−1g(a2)τg(a3)τh−1g(a4)))− ω(a3)ω(a2a4)Ω〉|
≤ ‖ι((a5a1)∗)‖
× sup
g1,g2∈K

‖Mn,g1,g2(ι(τh−1g(a2)τg(a3)τh−1g(a4)− τg(a3)τh−1g(a2a4)))‖

+ ‖ι((a5a1)∗)‖
× sup
g1,g2∈K

‖Mn,g1,g2(ι(τg(a3)τh−1g(a2a4)))− ω(a3)ω(a2a4)Ω‖

→ 0,

since

‖ι(τh−1g(a2)τg(a3)τh−1g(a4)− τg(a3)τh−1g(a2a4))‖
= ‖ι(τh−1g([a2, τh(a3)])τh−1g(a4))‖ ≤ ‖[a2, τh(a3)]‖ ‖a4‖

and then by uniform asymptotic abelianness with respect to (Λ1,n),

sup
g1,g2∈K

‖Mn,g1,g2(ι(τh−1g(a2)τg(a3)τh−1g(a4)− τg(a3)τh−1g(a2a4)))‖

≤ ‖a4‖ sup
g1∈K

1
µ(Λ1,n)

�

Λ1,ng1

‖[a2, τh(a3)]‖ dh→ 0.

(2) As for (3), but without the sup’s.
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5. Main results. Now we will need a bit more structure in our Følner
sequences, namely we will consider Følner sequences (Λn) such that (Λ−1

n Λn)
is also Følner (in such cases Λ−1

n Λn need only be measurable for n large
enough). A simple example of this is Λn := {g ∈ Rq : ‖g‖ < n}, in the group
Rq, since Λ−1

n Λn = Λ2n, which also implies that (Λn) satisfies the Tem-
pel’man condition. Furthermore, in this example (Λn) is uniformly Følner
in Rq. The same is true if we replace Λn by its closure. Another simple ex-
ample with these properties (except for Λ−1

n Λn = Λ2n) is Λn := {0, 1, . . . , n}
in Z, as well as Λn × · · · × Λn in Zq. In each of the results in this section
we will explicitly state which of these properties we are using. Again we
remind the reader that throughout this section we are using the definitions
and notations set up in Section 2, in particular the group G is abelian, and
hence so is the semigroup K.

Lemma 5.1. Assume the existence of a uniform Følner sequence (Λn)
in K, let H be a Hilbert space, and let f : G → H be a bounded function
with 〈f(·), x〉 and 〈f(·), f(·)〉 : G ×G → C Borel measurable for all x ∈ H.
Assume that

γh := lim
n→∞

1
µ(Λn)

�

Λn

〈f(g), f(gh)〉 dg

exists for all h ∈ G. Also assume that we have the following limit (the
given iterated integral automatically exists for m large enough, by the other
assumptions):

(5.1) lim
m→∞

1
µ(Λm)2

�

Λm

�

Λm

γh−1
1 h2

dh1 dh2 = 0.

(1) Then it follows that

lim
n→∞

1
µ(Λn)

�

Λn

f dµ = 0.

(Note that the regularity of µ is not required here.)
(2) Assume furthermore that µ is the counting measure (i.e. µ(Λ) is

the number of elements in the set Λ ∈ Σ, which means that Λn is a finite
nonempty set for n large enough) and that

lim
n→∞

sup
g1∈K

∣∣∣∣ 1
µ(Λn)

�

Λng1

〈f(g), f(gh)〉 dg − γh
∣∣∣∣ = 0 for all h ∈ G.

Then

lim
n→∞

sup
g1∈K

∥∥∥∥ 1
µ(Λn)

�

Λng1

f dµ

∥∥∥∥ = 0.

(The integrals in (2) are in fact finite sums, but for consistent notation we
use integral signs.)



248 R. Duvenhage

Proof. Part (1) was proved in [3] following the basic structure of a proof
of a special case given in [11], without assuming K is abelian. We now give
an outline of this proof, but at appropriate points we also show the minor
modifications needed to prove (2). We present it in several steps, with more
details of each step to be found in [3].

(a) For m large enough, one obtains

lim
n→∞

∥∥∥∥ 1
µ(Λn)

�

Λn

f dµ− 1
µ(Λn)

1
µ(Λm)

�

Λn

�

Λm

f(gh) dh dg
∥∥∥∥ = 0,

and because K is abelian we find that

lim
n→∞

sup
g1∈K

∥∥∥∥ 1
µ(Λn)

�

Λng1

f dµ− 1
µ(Λn)

1
µ(Λm)

�

Λng1

�

Λm

f(gh) dh dg
∥∥∥∥ = 0,

since∥∥∥∥ 1
µ(Λn)

�

Λng1

f dµ− 1
µ(Λn)

1
µ(Λm)

�

Λng1

�

Λm

f(gh) dh dg
∥∥∥∥

≤ b1
µ(Λn)

sup
h∈Λm

µ((Λng1)4 (Λng1h)) =
b1

µ(Λn)
sup
h∈Λm

µ(Λn 4 (Λnh))

where b1 is an upper bound for ‖f(K)‖ .
(b) For any Λ1, Λ2 ∈ Σ|K with µ(Λ1), µ(Λ2) <∞ we have∥∥∥ �

Λ2

�

Λ1

f(gh) dh dg
∥∥∥2
≤ µ(Λ2)

�

Λ1

�

Λ1

�

Λ2

〈f(gh1), f(gh2)〉 dg dh1 dh2,

and in particular these iterated integrals exist.
(c) We also have

(5.2) lim
n→∞

1
µ(Λn)

�

Λn

〈f(gh1), f(gh2)〉 dg = γh−1
1 h2

for all h1 ∈ K and h2 ∈ G. However, if

lim
n→∞

sup
g1∈K

∣∣∣∣ 1
µ(Λn)

�

Λng1

〈f(g), f(gh)〉 dg − γh
∣∣∣∣ = 0

for all h ∈ G, then since K is abelian, we in fact obtain

(5.3) lim
n→∞

sup
g1∈K

∣∣∣∣ 1
µ(Λn)

�

Λng1

〈f(gh1), f(gh2)〉 dg − γh−1
1 h2

∣∣∣∣ = 0
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for all h1 ∈ K and h2 ∈ G, as follows:∣∣∣∣ 1
µ(Λn)

�

Λng1

〈f(gh1), f(gh2)〉 dg − γh−1
1 h2

∣∣∣∣
≤ µ((Λng1)4 (Λng1h1))

µ(Λn)
b2 +

∣∣∣∣ 1
µ(Λn)

�

Λng1

〈f(g), f(gh−1
1 h2)〉 dg − γh−1

1 h2

∣∣∣∣
where b2 is an upper bound for (g, h1, h2) 7→ |〈f(g), f(gh−1

1 h2)〉|. But
µ((Λng1) 4 (Λng1h1)) = µ(Λn 4 (Λnh1)), since K is abelian. (Note that
the uniformity of the Følner sequence was not required here.)

(d) Next, from (5.2) and Lebesgue’s Dominated Convergence Theorem,
it follows that

lim
n→∞

1
µ(Λn)

�

Λ

�

Λ

�

Λn

〈f(gh1), f(gh2)〉 dg dh1 dh2 =
�

Λ

�

Λ

γh−1
1 h2

dh1 dh2

for Λ ∈ Σ|K with µ(Λ) <∞.
In the case of (2), and assuming (5.3) in the case of a sequence, we have

instead

lim
n→∞

sup
g1∈K

∣∣∣∣ 1
µ(Λn)

�

Λ

�

Λ

�

Λng1

〈f(gh1), f(gh2)〉 dg dh1 dh2−
�

Λ

�

Λ

γh−1
1 h2

dh1 dh2

∣∣∣∣ = 0,

which is proven as follows: Since here Λ × Λ is a finite set and µ is the
counting measure, integrability over Λ× Λ is no problem, and then

lim
n→∞

sup
g1∈K

∣∣∣∣ 1
µ(Λn)

�

Λ

�

Λ

�

Λng1

〈f(gh1), f(gh2)〉 dg dh1 dh2 −
�

Λ

�

Λ

γh−1
1 h2

dh1 dh2

∣∣∣∣
≤

�

Λ×Λ
lim
n→∞

sup
g1∈K

∣∣∣∣ 1
µ(Λn)

�

Λng1

〈f(gh1), f(gh2)〉 dg dh1 dh2 − γh−1
1 h2

∣∣∣∣ d(h1, h2).

(e) Lastly, combining (a), (b) and (d) with (5.1), we obtain the required
results.

As a corollary, we have a “two-parameter” van der Corput lemma which
will be used in the proof of Corollary 5.4:

Corollary 5.2. Assume the existence of uniform Følner sequences
(Λ1,n) and (Λ2,n) in K, let H be a Hilbert space, and let f : G2 → H
be a bounded function with 〈f(·), x〉 and 〈f(·), f(·)〉 : G2 × G2 → C Borel
measurable for all x ∈ H. Assume that

γ(g′,h′) := lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

〈f(g, h), f(gg′, hh′)〉 dg dh
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exists for all g′, h′ ∈ G, that G×G→ C : (g′, h′) 7→ γ(g′,h′) is Borel measur-
able, and that

(5.4) lim
m→∞

1
µ(Λ1,m)µ(Λ2,m)

�

Λ−1
1,mΛ1,m

�

Λ−1
2,mΛ2,m

|γ(g,h)| dg dh = 0

where we also assume that Λ−1
1,mΛ1,m and Λ−1

2,mΛ2,m are Borel for m large
enough.

(1) Then it follows that

lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

f(g, h) dg dh = 0.

(2) Assume furthermore that µ is the counting measure (in particular G
is countable), and that

lim
m→∞

sup
g1,g2∈K

∣∣∣∣ 1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,ng1

�

Λ2,ng2

〈f(g, h), f(gg′, hh′)〉 dg dh− γ(g′,h′)

∣∣∣∣
= 0

for all g′, h′ ∈ G. Then

lim
n→∞

sup
g1,g2∈K

∥∥∥∥ 1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,ng1

�

Λ2,ng2

f(g, h) dg dh
∥∥∥∥ = 0.

Proof. We use a product as in Corollary 3.3’s proof. It is easily shown
than Λ′n := Λ2,n × Λ1,n gives a uniform Følner sequence in K ′ := K × K
viewed as a semigroup in the ambient group (G′, Σ′, µ′) := (G × G,
Σ×Σ,µ×µ). Since G is second countable, the product σ-algebra Σ′ is in fact
the Borel σ-algebra of G′. Note that (Λ′m)−1Λ′m = (Λ−1

2,mΛ2,m)× (Λ−1
1,mΛ1,m),

hence by Fubini’s Theorem and [3, Lemma 2.8] we have∣∣∣∣ 1
µ′(Λ′m)2

�

Λ′m

�

Λ′m

γ(h1,h2)−1(h3,h4) d(h1, h2) d(h3, h4)
∣∣∣∣

≤ 1
µ(Λ1,m)µ(Λ2,m)

�

Λ−1
1,mΛ1,m

�

Λ−1
2,mΛ2,m

|γ(g,h)| dg dh

for m large enough, hence (5.4) implies (5.1) for the product group G′. Now
simply apply Lemma 5.1 and Fubini’s Theorem.

From now on we specialize to the case G = K.

Lemma 5.3. Let (A,ω, τ,G) be ergodic with ω tracial , and such that

(5.5) G×G→ C : (g, h) 7→ ω(τh(a1)τg(a2)τgh(a3)τg(a4)τh(a5))
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is Σ ×Σ-measurable for all a1, . . . , a5 ∈ A. Assume the existence of Følner
sequences (Λ1,n) and (Λ2,n) in G such that (Λ−1

1,nΛ1,n) and (Λ−1
2,nΛ2,n) are also

Følner in G. Consider the GNS representation of (A,ω) and any a, b, c ∈ A
with at least one of ι(a), ι(b) or ι(c∗) in Hv. Set xg,h := ι(τgh(a)τg(b)τh(c)).
Write

γg′,h′ ≡ lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

〈xg,h, xgg′,hh′〉 dg dh

for all g′, h′ ∈ G.

(1) If (A,ω, τ,G) is asymptotically abelian with respect to (Λ1,n), then

(5.6) γg′,h′ = ω(a∗τg′h′(a))ω(b∗τg′(b))ω(τh′(c)c∗),

giving a Σ ×Σ-measurable mapping G×G→ C : (g, h) 7→ γg,h such that

lim
n→∞

1
µ(Λ−1

1,nΛ1,n)µ(Λ−1
2,nΛ2,n)

�

Λ−1
1,nΛ1,n

�

Λ−1
2,nΛ2,n

|γg,h| dg dh = 0.

(2) If (A,ω, τ,G) is uniformly asymptotically abelian with respect to
(Λ1,n), then

lim
n→∞

sup
g1,g2∈G

∣∣∣∣ 1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,ng1

�

Λ2,ng2

〈xg,h, xgg′,hh′〉 dg dh− γg′,h′
∣∣∣∣ = 0

for all g′, h′ ∈ G.

Proof. (1) Since

〈xg,h, xgg′,hh′〉 = ω(τh(c∗)τg(b∗)τgh[a∗τg′h′(a)]τg[τg′(b)]τh[τh′(c)]),

(5.6) follows from Proposition 4.3(2). Note that [(g, h) 7→ ω(a∗τgh(a))] =
[ω(a∗τ(·)(a)) ◦ ((g, h) 7→ gh)] is Σ × Σ-measurable, since (g, h) 7→ gh is
measurable and (A,ω, τ,G) is a C∗-dynamical system. Similarly for (g, h) 7→
ω(b∗τg(b)) and (g, h) 7→ ω(τh(c)c∗) = ω(cτh(c∗)). So G × G → C : (g, h) 7→
γg,h is Σ ×Σ-measurable. Hence

Jn ≡
1

µ(Λ−1
1,nΛ1,n)µ(Λ−1

2,nΛ2,n)

�

Λ−1
1,nΛ1,n

�

Λ−1
2,nΛ2,n

|γg,h| dg dh

exists by Fubini’s Theorem for n large enough, and clearly Jn ≥ 0. We
consider the three cases ι(a) ∈ Hv, ι(b) ∈ Hv and ι(c∗) ∈ Hv separately:
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For ι(a) ∈ Hv we have

Jn ≤
‖b‖2‖c‖2

µ(Λ−1
1,nΛ1,n)µ(Λ−1

2,nΛ2,n)

�

Λ−1
1,nΛ1,n

�

Λ−1
2,nΛ2,n

|ω(a∗τgh(a))| dg dh

=
‖b‖2‖c‖2

µ(Λ−1
1,nΛ1,n)µ(Λ−1

2,nΛ2,n)

�

Λ−1
1,nΛ1,n

�

Λ−1
2,nΛ2,n

|〈ι(a), Ughι(a)〉| dg dh

→ 0

in the n limit, according to Corollary 3.3, since (Λ−1
1,nΛ1,n) and (Λ−1

2,nΛ2,n)
are Følner in G, and note that (g, h) 7→ 〈ι(a1), Ughι(a2)〉 = ω(a∗1τgh(a2)) is
Σ×Σ-measurable by the same argument as above, hence (g, h) 7→ 〈x, Ughy〉
is Σ × Σ-measurable for all x, y ∈ H by considering sequences in ι(A)
converging to x and y (as in Proposition 3.4’s proof).

In much the same way for ι(b) ∈ Hv we have

Jn ≤
‖a‖2‖c‖2

µ(Λ−1
1,nΛ1,n)µ(Λ−1

2,nΛ2,n)

�

Λ−1
1,nΛ1,n

�

Λ−1
2,nΛ2,n

|ω(b∗τg(b))| dg dh

=
‖a‖2‖c‖2

µ(Λ−1
2,nΛ2,n)

�

Λ−1
2,nΛ2,n

|〈ι(b), Ugι(b)〉| dg → 0

in the n limit according to Proposition 3.2. The case ι(c∗) ∈ Hv is similar
to ι(b) ∈ Hv, but using ω(τh(c)c∗) = ω(cτh(c∗)).

(2) This follows directly from Proposition 4.3(3), the formula for
〈xg,h, xgg′,hh′〉 given in (1)’s proof, and (5.6), since G is a group and hence
uniform asymptotic abelianness implies asymptotic abelianness with respect
to (Λ1,n).

Corollary 5.4. Assume the situation in Lemma 5.3, but suppose in-
stead of (5.5) that

G2 ×G2 → C : (g, h, j, k) 7→ ω(τh(a1)τg(a2)τgh(a3)τjk(a4)τj(a5)τk(a6))

is Σ2 ×Σ2-measurable for all a1, . . . , a6 ∈ A. Assume furthermore the exis-
tence of uniform Følner sequences (Λ1,n) and (Λ2,n) in G satisfying the Tem-
pel’man condition and such that (Λ−1

1,nΛ1,n) and (Λ−1
2,nΛ2,n) are also Følner

in G.

(1) If (A,ω, τ,G) is asymptotically abelian with respect to (Λ1n) then

lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

xg,h dg dh = 0.
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(2) If µ is the counting measure and (A,ω, τ,G) is uniformly asymptot-
ically abelian with respect to (Λ1,n), then

lim
n→∞

sup
g1,g2∈G

∥∥∥∥ 1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,ng1

�

Λ2,ng2

xg,h dg dh

∥∥∥∥ = 0.

Proof. The mapping (5.5) can be expressed as

(g, h) 7→ (g, h, g, h) 7→ ω(τh(a1)τg(a2)τgh(a3)τgh(1)τg(a4)τh(a5)),

which by the hypothesis is Σ × Σ-measurable as required in Lemma 5.3,
since in any topological space y 7→ (y, y) is continuous in the product
topology. Now simply apply Corollary 5.2 and the Tempel’man condition
to f(g, h) = xg,h, noting that ‖f(g, h)‖ ≤ ‖τgh(a)τg(b)τh(c)‖ ≤ ‖a‖ ‖b‖ ‖c‖,
so f is bounded, and

(g, h) 7→ 〈f(g, h), ι(d)〉 = ω(τh(c∗)τg(b∗)τgh(a∗)τje(1)τj(1)τe(d))

is Σ2-measurable, hence so is (g, h) 7→ 〈f(g, h), x〉 for all x ∈ H, since ι(A)
is dense in H, while

(g, h, j, k) 7→ 〈f(g, h), f(j, k)〉 = ω(τh(c∗)τg(b∗)τgh(a∗)τjk(a)τj(b)τk(c))

is Σ2 ×Σ2-measurable.

Proposition 5.5. Assume the situation in Corollary 5.4, and also that
(A,ω, τ,G) is weakly mixing , but now set

xg,h(a, b, c) := ι(τgh(a)τg(b)τh(c))

and
L(a, b, c) := ω(a)ω(b)ω(c)

for all a, b, c ∈ A.

(1) If (A,ω, τ,G) is asymptotically abelian with respect to (Λ1,n), then

lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

xg,h(a, b, c) dg dh = L(a, b, c)Ω

for all a, b, c ∈ A.
(2) If µ is the counting measure, and (A,ω, τ,G) is uniformly asymptot-

ically abelian with respect to (Λ1,n), then

lim
n→∞

sup
g1,g2∈G

∥∥∥∥ 1
µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

xg,h(a, b, c)− L(a, b, c)Ω
∥∥∥∥ = 0

for all a, b, c ∈ A.

Proof. Write a0 := ω(a)1 and av := a − a0. Then by Proposition 3.4,
ι(a0) = ω(a)Ω ∈ H0 and ι(av) ∈ Hv, since 〈Ω, ι(av)〉 = ω(1∗av) = 0. Simi-
larly for b and c, so in particular xg,h(a0, b0, c0) = L(a, b, c)Ω. Furthermore,
ι(c∗0) = ω(c)Ω ∈ H0 and 〈ι(c∗v), Ω〉 = ω(cv1) = 0 so ι(c∗v) ∈ Hv.



254 R. Duvenhage

(1) By Corollary 5.4(1) we then have

lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

xg,h(a, b, c) dg dh

= lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

xg,h(a0, b0, c0) dg dh

= L(a, b, c) lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

Ω dg dh = L(a, b, c)Ω.

(2) Similarly by Corollary 5.4(2), but switching to summation notation
and also using the triangle inequality, we have

lim
n→∞

sup
g1,g2∈G

∥∥∥∥ 1
µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

xg,h(a, b, c)− L(a, b, c)Ω
∥∥∥∥

≤ lim
n→∞

sup
g1,g2∈G

∥∥∥∥ 1
µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

xg,h(a0, b0, c0)− L(a, b, c)Ω
∥∥∥∥

= 0.

This proposition in itself is interesting. If we translate all the require-
ments to a measure-theoretic system, (1) reduces to L2 convergence of the
following nonconventional ergodic average:

lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

(f1 ◦ Tgh)(f2 ◦ Tg)(f3 ◦ Th) dg dh

=
(�
f1 dν

)(�
f2 dν

)(�
f3 dν

)
for f1, f2, f3 ∈ L∞(ν) where ν is a probability measure on some measur-
able space and with Tg an invertible measure preserving transformation of
this probability space, keeping in mind that the GNS representation is now
simply given by the set inclusion ι : L∞(ν)→ L2(ν). Similarly for (2).

Now we arrive at the main result of this paper:

Theorem 5.6. Let (A,ω, τ,G) be a weakly mixing C∗-dynamical system
with ω tracial , and such that

G2 ×G2 → C : (g, h, j, k) 7→ ω(τh(a1)τg(a2)τgh(a3)τjk(a4)τj(a5)τk(a6))

is Σ2 ×Σ2-measurable for all a1, . . . , a6 ∈ A. Assume the existence of uni-
form Følner sequences (Λ1,n) and (Λ2,n) in G satisfying the Tempel’man
condition and such that (Λ−1

1,nΛ1,n) and (Λ−1
2,nΛ2,n) are also Følner in G.
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(1) If (A,ω, τ,G) is asymptotically abelian with respect to (Λ1,n), then

lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

ω(τgh(a)τg(b)τh(c)d) dg dh = ω(a)ω(b)ω(c)ω(d)

for all a, b, c, d ∈ A.
(2) If µ is the counting measure (in particular , G is countable), and

(A,ω, τ,G) is uniformly asymptotically abelian with respect to (Λ1,n), then

lim
n→∞

sup
g1,g2∈G

∣∣∣∣ 1
µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

ω(τgh(a)τg(b)τh(c)d)

− ω(a)ω(b)ω(c)ω(d)
∣∣∣∣ = 0

for all a, b, c, d ∈ A.

Proof. This follows easily from Proposition 5.5, namely for (1) we have

lim
n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

ω(τgh(a)τg(b)τh(c)d) dg dh

=
〈
ι(d∗), lim

n→∞

1
µ(Λ1,n)µ(Λ2,n)

�

Λ1,n

�

Λ2,n

xg,h(a, b, c) dg dh
〉

= 〈ι(d∗), L(a, b, c)Ω〉 = ω(d)ω(a)ω(b)ω(c),

and similarly for (2), using∣∣∣∣ 1
µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

ω(τgh(a)τg(b)τh(c)d)− ω(a)ω(b)ω(c)ω(d)
∣∣∣∣

=
∣∣∣∣〈ι(d∗), 1

µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

xg,h(a, b, c)− L(a, b, c)Ω
〉∣∣∣∣

≤ ‖ι(d∗)‖
∥∥∥∥ 1
µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

xg,h(a, b, c)− L(a, b, c)Ω
∥∥∥∥

and Proposition 5.5’s notation.

Note that the measurability of the G2×G2 → C function in this theorem
can be ensured by for example making the standard assumption that g 7→
τg(a) is continuous. From Theorem 5.6 we can derive the following recurrence
result:

Corollary 5.7. Consider the situation in Theorem 5.6 and let ε > 0
be given. Consider any a, b, c, d ∈ A.



256 R. Duvenhage

(1) If (A,ω, τ,G) is asymptotically abelian with respect to (Λ1,n), then
there is an n0 ∈ N such that for every n > n0,

|ω(τgh(a)τg(b)τh(c)d)| > |ω(a)ω(b)ω(c)ω(d)| − ε
for some g ∈ Λ2,n and some h ∈ Λ1,n.

(2) If µ is the counting measure, and (A,ω, τ,G) is uniformly asymp-
totically abelian with respect to (Λ1,n), then there is an n ∈ N such that for
every g1, g2 ∈ G we have

(5.7) |ω(τgh(a)τg(b)τh(c)d)| > |ω(a)ω(b)ω(c)ω(d)| − ε
for some g ∈ Λ2,ng2 and some h ∈ Λ1,ng1, i.e. the set of (g, h)’s for which
(5.7) holds is relatively dense in G×G.

Proof. We only prove (2), since (1)’s proof is similar. By Theorem 5.6(2)
there exists an n such that

1
µ(Λ1,n)µ(Λ2,n)

∑
h∈Λ1,ng1

∑
g∈Λ2,ng2

|ω(τgh(a)τg(b)τh(c)d)|

> |ω(a)ω(b)ω(c)ω(d)| − ε
for all g1, g2 ∈ G, from which the result follows. Also keep in mind that
relative denseness of a set E in G × G is often defined in the following
equivalent way: FE = G × G for some finite set F in G × G, in this case
F = (Λ2,n × Λ1,n)−1.

In the case of a countable group, Corollary 5.7(2) therefore says that we
“regularly” have recurrence. In the more general situation, Corollary 5.7(1)
is not quite as strong; however, keep in mind that the intervals Λ1 = [0, 1],
Λ2 ∈ [1, 3], Λ3 ∈ [3, 6], . . . give a uniform Følner sequence with the required
properties in G = R, so in this case Corollary 5.7(1) says that from a certain
interval onward, we do get recurrence in each interval, but with the intervals
steadily growing in size. Similarly in G = Rq, where for example we can use
a sequence of balls as at the beginning of this section, but shifted so that
they do not overlap.

Acknowledgments. I thank Conrad Beyers, Anton Ströh and Johan
Swart for useful conversations, and an anonymous referee for indicating
points that needed clarification.
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