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On the uniform convergence of double sine series

by

Péter Kórus and Ferenc Móricz (Szeged)

Abstract. Let a single sine series (∗)
P∞

k=1 ak sin kx be given with nonnegative co-
efficients {ak}. If {ak} is a “mean value bounded variation sequence” (briefly, MVBVS),
then a necessary and sufficient condition for the uniform convergence of series (∗) is that
kak → 0 as k → ∞. The class MVBVS includes all sequences monotonically decreasing
to zero. These results are due to S. P. Zhou, P. Zhou and D. S. Yu. In this paper we
extend them from single to double sine series (∗∗)

P∞
k=1

P∞
l=1 ckl sin kx sin ly, even with

complex coefficients {ckl}. We also give a uniform boundedness test for the rectangular
partial sums of series (∗∗), and slightly improve the results on single sine series.

1. Introduction. Let {ak : k = 1, 2, . . .} be a sequence of nonnegative
real numbers (in symbols: {ak} ⊂ R+), and consider the sine series

(1.1)
∞∑
k=1

ak sin kx.

It is well-known (see, for example, [12, Vol. I, p. 182] that if the sequence
{ak} is monotonically decreasing to zero, then series (1.1) converges for
all x. On the other hand, according to the Cantor–Lebesgue theorem (see,
for example, [1, p. 326]), if (1.1) converges on a set of positive measure, then
ak → 0 as k →∞.

Chaundy and Joliffe [2] (see also [12, Vol. I, p. 182]) proved the following:

Theorem A. If {ak} ⊂ R+ is decreasing , then series (1.1) converges
uniformly in x if and only if

(1.2) kak → 0 as k →∞.

The monotonicity condition in Theorem A was relaxed by a number of
authors (see, for example, the references in [4] and [11]). The following notion
was introduced in [11], and it seems to be the most general one at present.
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A sequence {ak} ⊂ R+ is said to belong to the class MVBVS (= mean value
bounded variation sequences) if there exist constants C and λ ≥ 2, both
depending only on the sequence {ak}, such that

(1.3)
2m∑
k=m

|∆ak| ≤
C

m

[λm]∑
k=[λ−1m]

ak, m ≥ λ,

where [·] means the floor integral part of a real number and

∆ak := ak − ak+1, k = 1, 2, . . . .

The following theorem was proved in [11, Theorem 5].

Theorem B. If {ak} ⊂ R+ belongs to the class MVBVS, then se-
ries (1.1) converges uniformly in x if and only if condition (1.2) is satisfied.

We note that in [11] Theorem B was proved in the following more general
form: If {ak} ⊂ R+ belongs to the class MVBVS, then condition (1.2) is
necessary and sufficient for the uniform convergence of series (1.1), and also
for the continuity of its sum function. The addendum on the continuity of
the sum function is a variant of a theorem of Paley [8] with almost the same
proof. We recall that Paley’s theorem says that if the Fourier coefficients of a
continuous function f are nonnegative, then the Fourier series of f converges
uniformly.

A particular case of the notion of MVBVS was earlier introduced in [9]
as follows. A sequence {ak} ⊂ R+ is said to belong to the class NBVS
(= non-onesided bounded variation sequences) if there exists a constant C,
depending only on {ak}, such that

(1.4)
2m∑
k=m

|∆ak| ≤ C(am + a2m), m = 1, 2, . . . .

The following theorem was also formulated in [11] and supported with a
counterexample.

Theorem C. If {ak} ⊂ R+ belongs to the class NBVS, then it belongs
to MVBVS. The converse is not true.

Clearly, if {ak} ⊂ R+ is a decreasing sequence, then condition (1.4) is
satisfied. Thus, Theorem A is an immediate corollary of Theorems B and C.

An analysis of the proofs in [9] and [11] reveals that the sufficiency part
in Theorem B as well as Theorem C remain valid if we consider sequences
{ck : k = 1, 2, . . .} of complex numbers (in symbols: {ck} ⊂ C) and the sine
series

(1.1′)
∞∑
k=1

ck sin kx,

under appropriately modified conditions.
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Theorem B′. If {ck} ⊂ C is such that

(1.2′) kck → 0 as k →∞,
and there exist constants C and λ ≥ 2 for which

(1.3′)
2m−1∑
k=m

|∆ck| ≤
C

m

[λm]∑
k=[λ−1m]

|ck|, m ≥ λ,

then series (1.1′) converges uniformly in x.

Theorem C′. If {ck} ⊂ C is such that there exists a constant C1 for
which

(1.4′)
2m−1∑
k=m

|∆ck| ≤ C1(|cm|+ |c2m|), m = 1, 2, . . . ,

then condition (1.3′) is satisfied for some constants C and λ ≥ 2.

We call the reader’s attention to the upper limit of summation which is
2m − 1 instead of 2m on the left-hand sides in (1.3′) and (1.4′) (cf. (1.3)
and (1.4)). However, this slight modification does not affect the proofs at all.

Finally, we note that analogous theorems can be proved for the uniform
boundedness of the partial sums of sine series. For example, the scheme
of the proofs of Theorems B and B′ can be modified so as to provide the
following:

Theorem D. If {ck} ⊂ C is such that condition (1.3′) is satisfied and

(1.5) sup
k≥1

k|ck| <∞,

then

(1.6) sup
m≥1

sup
x

∣∣∣ m∑
k=1

ck sin kx
∣∣∣ <∞.

Conversely , if {ck} ⊂ R+ is such that conditions (1.3′) and (1.6) are satis-
fied , then condition (1.5) is also satisfied.

2. Main results. We recall that the double series

(2.1)
∞∑
k=1

∞∑
l=1

γkl

of complex numbers is said to converge in Pringsheim’s sense (see, for ex-
ample, [12, Vol. II, pp. 301–302] if the finite limit of its rectangular partial
sums

m∑
k=1

n∑
l=1

γkl, m, n = 1, 2, . . . ,
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exists as m and n tend to ∞ independently of each other. If, in addition,
each “row series”

∞∑
k=1

γkl, l = 1, 2, . . . ,

and each “column series”
∞∑
l=1

γkl, k = 1, 2, . . . ,

converges, then (2.1) is said to converge regularly (see [3] and also [5]).
The Cauchy convergence criterion for regular convergence reads as fol-

lows (see [5]). The double series (2.1) converges regularly if and only if for
every ε > 0 there exists a natural number m0 = m0(ε) such that

(2.2)
∣∣∣ M∑
k=m

N∑
l=n

γkl

∣∣∣ < ε if max{m,n} > m0, 1 ≤ m ≤M, 1 ≤ n ≤ N.

It is easy to see that it is enough to require (2.2) to hold in the special cases
when either m > m0 and n = 1, or n > m0 and m = 1.

After these preliminaries, let {ckl : k, l = 1, 2, . . .} be a double sequence
of complex numbers (in symbols: {ckl} ⊂ C), and consider the double sine
series

(2.3)
∞∑
k=1

∞∑
l=1

ckl sin kx sin ly.

We use the standard notations for the difference operators:

∆10ckl := ckl − ck+1,l, ∆01ckl := ckl − ck,l+1,

∆11ckl := ∆01(∆10ckl) = ∆10(∆01ckl)
= ckl − ck+1,l − ck,l+1 + ck+1,l+1, k, l = 1, 2, . . . .

We recall that a double sequence {ckl} is said to be monotonically de-
creasing if

(2.4) ckl ≥ 0, ∆10ckl ≥ 0, ∆01ckl ≥ 0, ∆11ckl ≥ 0

for all k, l = 1, 2, . . . . It is clear that if

(2.5) ckl → 0 as k + l→∞,
then we have

(2.6) ∆10cmn =
∞∑
l=n

∆11cml, ∆01cmn =
∞∑
k=m

∆11ckn,

cmn =
∞∑
k=m

∞∑
l=n

∆11ckl, m, n = 1, 2, . . . .
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Consequently, under condition (2.5), the first three inequalities in (2.4) fol-
low from the fourth one.

The second author proved in [6] that if {cjk} ⊂ C is such that condi-
tion (2.5) is satisfied and {cjk} is of bounded variation in the sense that

∞∑
k=1

∞∑
l=1

|∆11ckl| <∞,

then the double series (2.3) converges regularly for all (x, y). In particular,
if the double sequence {ckl} of nonnegative numbers (in symbols: {ckl} ⊂
R+) is monotonically decreasing to zero, then the double sine series (2.3)
converges regularly for all (x, y).

On the other hand, according to the two-dimensional extension of the
Cantor–Lebesgue theorem (see [7]), if series (2.3) converges regularly on a
set of positive (planar) measure, then we necessarily have (2.5).

The two-dimensional extension of the classical theorem of Chaundy and
Joliffe (see Theorem A in Section 1), proved by Zhak and Shnĕıder [10],
reads as follows.

Theorem E. If {ckl} ⊂ R+ is a monotonically decreasing double se-
quence, then the regular convergence of the double sine series (2.3) is uni-
form in (x, y) if and only if

(2.7) klckl → 0 as k + l→∞.

Our goal is to relax the monotonicity condition in Theorem E. To this
end, we introduce the class MVBVDS motivated by (1.3′). A double se-
quence {ckl} ⊂ C is said to belong to the class MVBVDS (= mean value
bounded variation double sequences) if there exist constants C and λ ≥ 2,
both depending only on {ckl}, such that

2m−1∑
k=m

|∆10ckn| ≤
C

m

[λm]∑
k=[λ−1m]

|ckn|, m ≥ λ, n = 1, 2, . . . ,(2.8)

2n−1∑
l=n

|∆01cml| ≤
C

n

[λn]∑
l=[λ−1n]

|cml|, n ≥ λ, m = 1, 2, . . . ,(2.9)

2m−1∑
k=m

2n−1∑
l=n

|∆11ckl| ≤
C

mn

[λm]∑
k=[λ−1m]

[λn]∑
l=[λ−1n]

|ckl|, m, n ≥ λ.(2.10)

Our first main result is a two-dimensional extension of Theorems B
and B′.
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Theorem 1. If {ckl} ⊂ C belongs to the class MVBVDS and condi-
tion (2.7) is satisfied , then the regular convergence of the double sine se-
ries (2.3) is uniform in (x, y).

Conversely , if {ckl} ⊂ R+ belongs to the class MVBVDS and the regular
convergence of (2.3) is uniform in (x, y), then condition (2.7) is satisfied.

In particular, the following corollary of Theorem 1 follows immediately:
If {ckl} ⊂ R+ belongs to the class MVBVDS, then the regular convergence
of the double sine series (2.3) is uniform in (x, y) if and only if condition
(2.7) is satisfied.

To our best knowledge, an extension of Paley’s theorem mentioned in
Section 1 (see [8]) from single to double Fourier series with nonnegative
Fourier coefficients is not known. Thus, regarding the extension of the ad-
dendum to Theorem B in Section 1, on continuity of the sum function of
(2.3), we raise the following problem:

Problem. Is the following claim true or false? If {ckl} ⊂ R+ belongs
to the class MVBVDS, then condition (2.7) is necessary or sufficient for the
continuity of the sum function of the double sine series (2.3).

The introduction of the following class of double sequences of complex
numbers is motivated by (1.4′): {ckl} ⊂ C is said to belong to the class
NBVDS (non-onesided bounded variation double sequences) if there exists a
constant C, depending only on {ckl}, such that

2m−1∑
k=m

|∆10ckn| ≤ C(|cmn|+ |c2m,n|),(2.11)

2n−1∑
l=n

|∆01cml| ≤ C(|cmn|+ |cm,2n|),(2.12)

2m−1∑
k=m

2n−1∑
l=n

|∆11ckl| ≤ C(|cmn|+ |c2m,n|+ |cm,2n|+ |c2m,2n|),(2.13)

m,n = 1, 2, . . . .

Our second main result is a two-dimensional extension of Theorems C
and C′.

Theorem 2. If {ckl} ⊂ C belongs to the class NBVDS, then it belongs
to MVBVDS. The converse is not true.

Clearly, if {ckl} ⊂ R+ is a monotonically decreasing double sequence,
then conditions (2.11)–(2.13) are satisfied. Thus, Theorem E, which was
proved by Zhak and Shnĕıder [10] in another way, is an immediate corollary
of Theorems 1 and 2.
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So far, we have presented sufficient conditions for the regular convergence
of the double sine series (2.3) to be uniform in (x, y). It is of some interest
to observe that the conditions in Theorem 1 can be easily reformulated so
as to guarantee the uniform boundedness of the rectangular sums

(2.14) s(m,M ;n,N ;x, y) :=
M∑
k=m

N∑
l=n

ckl sin kx sin ly,

1 ≤ m ≤M, 1 ≤ n ≤ N.
The reformulated Theorem 1 reads as follows.

Theorem 3. If {ckl} ⊂ C belongs to the class MVBVDS and

(2.15) sup
k,l≥1

kl|ckl| <∞,

then

(2.16) sup
1≤m≤M, 1≤n≤N

sup
x,y
|s(m,M ;n,N ;x, y)| <∞.

Conversely , if {ckl} ⊂ R+ belongs to the class MVBVDS and condition
(2.16) is satisfied, then (2.15) also holds.

The following corollary of Theorem 3 is immediate: If {ckl} ⊂ R+ be-
longs to the class MVBVDS, in particular, if {ckl} is a monotonically de-
creasing double sequence, then a necessary and sufficient condition for the
uniform boundedness of the rectangular sums (2.14) is that the double se-
quence {klckl} is bounded.

We note that each of the theorems and corollaries in this section can
be easily extended to multiple sine series with complex or nonnegative real
coefficients, respectively. However, the technical details become more cum-
bersome.

3. Auxiliary results. To prove Theorems 1–3, we will need four lem-
mas, which may also be useful in other contexts. In addition, we present a
proof of Theorem C′.

Lemma 1. If {ckl} ⊂ C is such that conditions (2.7) and (2.10) are
satisfied , then

(3.1) mn
∞∑
k=m

∞∑
l=n

|∆11ckl| → 0 as m+ n→∞ and m,n ≥ 2λ.

Proof. Given ε > 0, by (2.7) there exists a natural number m1 = m1(ε)
such that

(3.2) kl|ckl| < ε for all m+ n > m1, m, n ≥ 2λ.

Without loss of generality, we may assume that m1 ≥ 4λ.
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Making use of (2.10) and (3.2) gives
∞∑
k=m

∞∑
l=n

|∆11ckl| =
∞∑
i=0

∞∑
j=0

∑
2im≤k<2i+1m

∑
2jn≤l<2j+1n

|∆11ckl|(3.3)

≤ C
∞∑
i=0

∞∑
j=0

1
2i+jmn

[λ2im]∑
k=[λ−12im]

[λ2jn]∑
l=[λ−12jn]

|ckl|

≤ Cε

mn

∞∑
i=0

∞∑
j=0

1
2i+j

[λ2im]∑
k=[λ−12im]

[λ2jn]∑
l=[λ−12jn]

1
kl
.

We have
[λ2im]∑

k=[λ−12im]

1
k
≤ 1

[λ−12im]
+

[λ2im]�

[λ−12im]

dx

x
(3.4)

≤ 1 + ln
[λ2im]

[λ−12im]
≤ 1 + ln(2λ2), i = 0, 1, 2, . . . ,

since
[λ2im]

[λ−12im]
≤ λ2im
λ−12im− 1

≤ 2λ2 for m ≥ 2λ.

Now (3.3), (3.4) and its counterpart with 1/l in place of 1/k yield

mn
∞∑
k=m

∞∑
l=n

|∆11ckl| ≤ Cε(1 + ln(2λ2))2

whenever m + n ≥ m1 and m,n ≥ 2λ. Since ε > 0 is arbitrary, this
proves (3.1).

Lemma 2. Under the conditions of Lemma 1, we have

(3.5) mn

∞∑
k=m

sup
l≥n
|∆10ckl| → 0

and

(3.6) mn

∞∑
l=n

sup
k≥m
|∆01ckl| → 0 as m+ n→∞, m, n ≥ 2λ.

Proof. By (2.6),

sup
l≥n
|∆10ckl| = sup

l≥n

∣∣∣ ∞∑
l1=l

∆11ckl1

∣∣∣ ≤ ∞∑
l=n

|∆11ckl|, k, n = 1, 2, . . . .

Thus, we have
∞∑
k=m

sup
l≥n
|∆10ckl| ≤

∞∑
k=m

∞∑
l=n

|∆11ckl|

and an application of Lemma 1 yields (3.5). A similar argument gives (3.6).
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Lemma 3. If {ckl} ⊂ R+ belongs to the class MVBVDS, then

(3.7) mncmn ≤ (8C + 2)
[λm]∑

k=[m/2λ]

[λn]∑
t=[n/2λ]

ckl, m, n ≥ 2λ,

where the constants C and λ are from (2.7)–(2.9).

Proof. Let m ≥ 2λ and ν be arbitrary natural numbers. Applying in-
equality (2.8) for µ = m+ 1, m+ 2, . . . , 2m gives

cmν =
µ−1∑
k=m

∆10ckν + cµν ≤
µ−1∑
k=m

|∆10ckν |+ cµν(3.8)

≤
2[µ/2]−1∑
k=[µ/2]

|∆10ckν |+ cµν ≤
C

[µ/2]

[λ[µ/2]]∑
k=[λ−1[µ/2]]

ckν + cµν

≤ 2C
m

[λm]∑
k=[m/2λ]

ckν + cµν , m < µ ≤ 2m, ν ≥ 1.

Next, let n ≥ 2λ and µ be arbitrary natural numbers. An analogous
argument, using inequality (2.9) for ν = n+ 1, n+ 2, . . . , 2n, gives

(3.9) cµn ≤
2C
n

[λn]∑
l=[n/2λ]

cµl + cµν , µ ≥ 1, n < ν ≤ 2n.

Finally, let m,n ≥ 2λ be arbitrary natural numbers. A double version
of the above argument, using (2.10) for µ = m + 1,m + 2, . . . , 2m and
ν = n+ 1, n+ 2, . . . , 2n, gives

cmn =
µ−1∑
k=m

ν−1∑
l=n

∆11ckl + cmν + cµn − cµν(3.10)

≤
µ−1∑
k=m

ν−1∑
l=n

|∆11ckl|+ cmν + cµn

≤
2[µ/2]−1∑
k=[µ/2]

2[ν/2]−1∑
l=[ν/2]

|∆11ckl|+ cmν + cµn

≤ C

[µ/2][ν/2]

[λ[µ/2]]∑
k=[λ−1[µ/2]]

[λ[ν/2]]∑
l=[λ−1[ν/2]]

ckl + cmν + cµn

≤ 4C
mn

[λm]∑
k=[m/2λ]

[λn]∑
l=[n/2λ]

ckl + cmν + cµn,

m < µ ≤ 2m, n < ν ≤ 2n.
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If we add up all the inequalities in (3.10), then we obtain

mncmn ≤ 4C
[λm]∑

k=[m/2λ]

[λn]∑
l=[n/2λ]

ckl +m

2n∑
ν=n+1

cmν + n

2m∑
µ=m+1

cµn.

Now making use of (3.8) and (3.9) yields

mncmn ≤ 4C
[λm]∑

k=[m/2λ]

[λn]∑
l=[n/2λ]

ckl + 2C
[λm]∑

k=[m/2λ]

2n∑
ν=n+1

ckν

+ 2C
2m∑

µ=m+1

[λn]∑
l=[n/2λ]

cµl + 2
2m∑

µ=m+1

2n∑
ν=n+1

cµν

≤ (8C + 2)
[λm]∑

k=[m/2λ]

[λn]∑
l=[n/2λ]

ckl,

which is (3.7).

In Section 1, we have noted that the first statement in Theorem C has not
been explicity proved in [11]. Instead, it is only indicated there that the proof
is similar to that of [11, Proposition 3]. For the reader’s convenience, below
we present a proof of the more general Theorem C′. This proof moreover
illustrates the key ingredients of the proof of our Theorem 2 in Section 4.

Proof of Theorem C ′. Let m ≥ 6. We apply inequality (1.4′) for all
integers between m − [m/6] and m + [m/6]. Adding up these inequalities
yields

(3.11)
m+[m/6]∑
i=m−[m/6]

2i−1∑
k=i

|∆ck| ≤ C
m+[m/6]∑
i=m−[m/6]

(|ci|+ |c2i|).

It is easy to see that the term |∆ck| with m ≤ k ≤ 2m − 1 occurs on the
left-hand side of (3.11) at least[

m

6

]
+ 1 ≥ m

6
times.

Furthermore, on the right-hand side of (3.11), the smallest index of the term
|ci| is

m−
[
m

6

]
≥ m

3
,

while the largest index of the term |c2i| does not exceed

2
(
m+

[
m

6

])
≤ 3m;
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and over the range m− [m/6] ≤ i ≤ m+ [m/6], we have

max i ≤ m+
[
m

6

]
< 2
(
m−

[
m

6

])
≤ min 2i.

Keeping these observations in mind, from (3.11) it follows that

(3.12)
m

6

2m−1∑
k=m

|∆ck| ≤ C
3m∑

i=[m/3]

|ci|.

Thus, we have shown that inequality (1.3′) is satisfied with 6C in place of
C and λ = 3. Consequently, {ck} belongs to the class MVBVS.

For the second statement in Theorem C, the counterexample given in
[11, Proposition 4] is recalled in the following

Lemma 4. Let {bk} ⊂ R+ be an arbitrary decreasing sequence. Define

ck :=


0 for 2i ≤ k < 2i + i,
bk for 2i + i ≤ k < 2i+1 − i,
0 for 2i+1 − i ≤ k < 2i+1, i = 1, 2, . . . .

Then the sequence {ck} belongs to the class MVBVS, but not to NBVS.

4. Proofs of Theorems 1–3

Proof of Theorem 1. Part 1. By conditions (2.8) and (2.9), Theorem C′

applies to the single sequences
∞∑
k=1

ckl sin kx, l = 1, 2, . . . ,
∞∑
l=1

ckl sin ly, k = 1, 2, . . . ,

and guarantees that each row series and each column series of the double
series (2.3) converge uniformly in (x, y).

In order to prove the uniform regular convergence of (2.3), we consider
the rectangular sums

s(m,M ;n,N ;x, y) :=
M∑
k=m

N∑
l=n

ckl sin kx sin ly, 1 ≤ m < M, 1 ≤ n < N.

It is enough to consider the case where 0 < x, y < π. Let

(4.1) µ(x) :=
[

1
x

]
and ν(y) :=

[
1
y

]
.

We distinguish the following four cases.
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Case (a): 1 ≤ m < M ≤ µ(x) and 1 ≤ n < N ≤ ν(y). A trivial estimate
gives

|s(m,M ;n,N ;x, y)| ≤ xy
M∑
k=m

N∑
l=n

kl|ckl|(4.2)

≤ 1
µ(x)ν(y)

µ(x)∑
k=1

ν(y)∑
l=1

kl|ckl|.

By (2.7), the double sequence {klckl} boundedly converges to zero. There-
fore, the arithmetic mean on the right-hand side of (4.2) converges to zero
as µ(x), ν(y)→∞.

Case (b): µ(x) < m < M and 1 ≤ n < N ≤ ν(y). This time, we
estimate as follows:

|s(m,M ;n,N ;x, y)| =
N∑
l=n

|sin ly| ·
∣∣∣ M∑
k=m

ckl sin kx
∣∣∣(4.3)

≤
N∑
l=n

ly
∣∣∣ M∑
k=m

ckl sin kx
∣∣∣

≤ 1
ν(y)

ν(y)∑
l=n

l
∣∣∣ M∑
k=m

ckl sin kx
∣∣∣.

Summation by parts gives

(4.4)
M∑
k=m

ckl sin kx =
M−1∑
k=m

D̃k(x)∆10ckl + cMlD̃M (x)− cmlD̃m−1(x),

where D̃k(x) is the conjugate Dirichlet kernel (see, for example, [12, Vol. I,
p. 49]):

D̃k(x) :=
k∑
i=1

sin ix =
cos x2 − cos

(
k + 1

2

)
x

2 sin x
2

.

Using the familiar estimate

|D̃k(x)| ≤ π/x, k = 1, 2, . . . , 0 < x < π,

it follows from (4.3) and (4.4) that

|s(m,M ;n,N ;x, y)| ≤ π

xν(y)

ν(y)∑
l=n

l
{M−1∑
k=m

|∆10ckl|+ |cMl|+ |cml|
}

(4.5)

≤ πm

ν(y)

ν(y)∑
l=n

l
{ ∞∑
k=m

|∆10ckl|+ 2 sup
k≥m
|ckl|

}
.
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By Lemma 2 (cf. (3.5)), the arithmetic mean on the right-hand side of (4.5)
converges to zero as m,n→∞.

Case (c): 1 ≤ m < M ≤ µ(x) and ν(y) < n < N . This is the sym-
metric counterpart of Case (b), and it can be handled analogously. The
corresponding estimate is

(4.6) |s(m,M ;n,N ;x, y)| ≤ πn

µ(x)

µ(x)∑
k=1

k
{ ∞∑
l=n

|∆01ckl|+ 2 sup
l≥n
|ckl|

}
.

By Lemma 2 (cf. (3.6)), the right-hand side of (4.6) converges to zero as
m,n→∞.

Case (d): µ(x) < m < M and ν(y) < n < N . This time, we perform
double summation by parts to obtain

s(m,M ;n,N ;x, y) =
M−1∑
k=m

N−1∑
l=n

D̃k(x)D̃l(y)∆11ckl

+
M−1∑
k=m

D̃k(x)D̃N (y)∆10ckN −
M−1∑
k=m

D̃k(x)D̃n−1(y)∆10ckn

+
N−1∑
l=n

D̃M (x)D̃l(y)∆01cMl −
N−1∑
l=n

D̃m−1(x)D̃l(y)∆01cml

+ cMND̃M (x)D̃N (y)− cmND̃m−1(x)D̃N (y)

− cMnD̃M (x)D̃n−1(y) + cmnD̃m−1(x)D̃n−1(y),

whence it follows that

(4.7) |s(m,M ;n,N ;x, y)| ≤ π2

xy

{M−1∑
k=m

N−1∑
l=n

|∆11ckl|

+
M−1∑
k=m

(|∆10ckN |+ |∆10ckn|) +
N−1∑
l=n

|∆01cMl|+ |∆01cml|)

+ |cMN |+ |cmN |+ |cMn|+ |cmn|
}

≤ π2mn
{ ∞∑
k=m

∞∑
l=n

|∆11ckl|+ 2
∞∑
k=m

sup
l≥n
|∆10ckl|

+ 2
∞∑
l=n

sup
k≥m
|∆01ckl|+ 4 sup

k≥m,l≥n
|ckl|

}
.

By Lemmas 1 and 2, the right-hand side of (4.7) converges to zero as m,n
→∞.
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After these preliminaries, we can prove the uniform regular convergence
of the double sine series (2.3) as follows. By (2.8) and (2.9), Theorem C′

implies the uniform convergence of each row series and each column series
of (2.3).

By (2.7), for any ε > 0 there exists a natural number m1 = m1(ε) ≥ 2λ
such that

(4.8) kl|ckl| < ε for all k, l > m1;

consequently, there exists m2 = m2(ε) ≥ 2λ such that

(4.9)
∣∣∣ 1
mn

m∑
k=1

n∑
l=1

klckl

∣∣∣ < ε for all m,n > m2.

By Lemma 1, there exists m3 = m3(ε) ≥ 2λ such that

(4.10) mn

∞∑
k=m

∞∑
l=n

|∆11ckl| < ε for all m,n > m3.

By Lemma 2, we also have

(4.11) mn

∞∑
k=m

sup
l≥n
|∆10ckl| < ε

and

(4.12) mn
∞∑
l=n

sup
k≥m
|∆01ckl| < ε for all m,n ≥ m3;

consequently, there exists m4 = m4(ε) ≥ 2λ such that

(4.13)
m

N

N∑
l=n

l

∞∑
k=m

|∆10ckl| < ε for all m,n > m4 and N > n;

and

(4.14)
n

M

M∑
k=m

k

∞∑
l=n

|∆01ckl| < ε for all m,n > m4 and M > m.

Let m0 := max{m1,m2,m3,m4}. We claim that

(4.15) |s(m,M ;n,N ;x, y)| < (9π2 + 6π + 1)ε for all (x, y)
whenever M > m > m0 and N > n > m0.

To justify this claim, given 0 < x, y < π, we distinguish nine cases listed
under (i)–(ix). We recall that µ(x) and ν(y) were defined in (4.1).

(i) m0 < m < M ≤ µ(x) and m0 < n < N ≤ ν(y). This was treated
in Case (a). By (4.2), (4.8) and (4.9), we have (4.15) with ε in place of
(9π2 + 6π + 1)ε.
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(ii) µ(x) < m < M and m0 < n < N ≤ ν(y). This was treated in
Case (b). By (4.5), (4.9) and (4.13), we have (4.15) with 3πε.

(iii) m0 < m ≤ µ(x) < M and m0 < n < N ≤ ν(y). This can be
split into two subcases which belong to Case (a) and Case (b), respectively.
Combining it with the previous cases (i) and (ii) gives (4.15) with (3π+1)ε.

(iv) m0 < m < M ≤ µ(x) and ν(y) < n < N . This was indicated in
Case (c), and it is the symmetric counterpart of (ii). Thus, we have (4.15)
again with 3πε.

(v) µ(x) < m < M and ν(y) < n < N . This was treated in Case (d). By
(4.7), (4.8), (4.10)–(4.12), we deduce (4.15) with π2(1 + 2 + 2 + 4)ε = 9π2ε.

(vi) m0 < m ≤ µ(x) < M and ν(y) < n < N . This can be split into
two cases which belong to Case (c) and Case (d), respectively. Combining
it with case (v) and case (ix) below gives (4.15) with (9π2 + 3π + 1)ε.

(vii) m0 < m < M ≤ µ(x) and m0 < n ≤ ν(y) < N . This can be split
into two cases which belong to Case (a) and Case (c), respectively; and it is
the symmetric counterpart of (iii). Thus, we have (4.15) again with (3π+1)ε.

(viii) µ(x) < m < M and m0 < n ≤ ν(y) < N . This can be split into
four subcases which fall under Cases (a)–(d), respectively. Combining it with
the previous cases (i), (ii), (iv) and (v) gives (4.15) with the upper bound
as indicated.

(ix) m0 < m ≤ µ(x) < M and m0 < n ≤ ν(y) < N . This is Case (c),
and it is the symmetric counterpart of (iii). Thus, we have (4.15) again with
(3π + 1)ε.

Now the justification of (4.15) is complete. What we have proved so far is
that the inequality for |s(m,M ;n,N ;x, y)| in (4.15) holds when min{m,n}
> m0. In order to complete the proof of the uniform regular convergence of
the double sine series (2.3), we need to prove an analogous inequality when
just max{m,n} is large enough.

To this end, fix η > 0. We choose ε > 0 in (4.15) to be

ε :=
η

2(9π2 + 6π + 1)
,

and focus on the first m0 row series and the first m0 column series in (2.3).
Each of them converges uniformly in (x, y). Therefore, there exists a natural
number n1 = n1(η) such that

(4.16) |s(m,M ;n,N ;x, y)| < η/2 for all (x, y) whenever
either n1 < m ≤M and 1 ≤ n ≤ N ≤ m0,

or 1 ≤ m ≤M ≤ m0 and n1 < n ≤ N.
Let n0 := max{m0, n1}. Putting together (4.15) and (4.16) yields

|s(m,M ;n,N ;x, y)| < η for all (x, y) whenever
either n0 < m ≤M and 1 ≤ n ≤ N, or 1 ≤ m ≤M and n0 < n ≤ N.
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Taking into account the remark made after (2.2) in Section 2 and that η > 0
is arbitrary, this proves the uniform regular convergence of the double sine
series (2.3).

This completes the proof of Part 1.

Part 2. By (2.8), (2.9) and the uniform convergence of each row series
and each column series (2.3), we may apply the necessity part of Theorem B
to deduce (2.7) when either k →∞ and l is fixed, or vice versa.

It remains to prove (2.7) when both k and l tend to ∞. To this end, we
will apply Lemma 3. Let m,n ≥ 4λ and set

x(m) :=
π

2λm
and y(n) :=

π

2λn
.

Clearly, for all k in the range [m/2λ] ≤ k ≤ [λm] we have

kx(m) ≤ λm π

2λm
=
π

2
and

kx(m) ≥
(
m

2λ
− 1
)

π

2λm
≥ m

4λ
π

2λm
=

π

8λ2
,

since m ≥ 4λ. Likewise,

π

8λ2
≤ ly(n) ≤ π

2
whenever

[
n

2λ

]
≤ l ≤ [λn].

By these inequalities and the assumption that all ckl are nonnegative, it
follows from (3.7) that

(4.17)
[λm]∑

k=[m/2λ]

[λn]∑
l=[n/2λ]

ckl sin kx(m) sin ly(n)

≥
(

sin
π

8λ2

)2 [λm]∑
k=[m/2λ]

[λn]∑
l=[n/2λ]

ckl

≥ 1
8C + 2

(
sin

π

8λ2

)2

mncmn.

Since the regular convergence of the double sine series (2.3) is supposed to
be uniform in (x, y), the fulfillment of (2.7) when k, l→∞ is an immediate
consequence of (4.17).

This completes the proof of Part 2.
Now the proof of Theorem 1 is complete.

Proof of Theorem 2. Part 1. By Theorem C′, conditions (2.11) and (2.12)
imply (2.8) and (2.9), respectively. Thus, in order to prove that the double
sequence {ckl} in question belongs to the class MVBVDS, it remains to
check (2.10).
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To this end, let m,n ≥ 6 be given. We apply inequality (2.13) for all
integers i and j in the ranges

(4.18) m−
[
m

6

]
≤ i ≤ m+

[
m

6

]
and n−

[
n

6

]
≤ j ≤ n+

[
n

6

]
.

Adding up all these inequalities results in

(4.19)
m+[m/6]∑
i=m−[m/6]

n+[n/6]∑
j=n−[n/6]

2i−1∑
k=i

2j−1∑
l=j

|∆11ckl|

≤ C
m+[m/6]∑
i=m−[m/6]

n+[n/6]∑
j=n−[n/6]

(|cij |+ |c2i,j |+ |ci,2j |+ |c2i,2j |).

We observe that for the integers k and l in the ranges

m ≤ k ≤ 2m− 1 and n ≤ l ≤ 2n− 1,

the term |∆ckl| occurs on the left-hand side of (4.19) at least([
m

6

]
+ 1
)([

n

6

]
+ 1
)
≥ mn

36
times.

Furthermore, on the right-hand side of (4.19), the smallest indices of the
term |cij | are

m−
[
m

6

]
≥ m

3
and n−

[
n

6

]
≥ n

3
;

while the largest indices of the term |c2i,2j | do not exceed

2
(
m+

[
m

6

])
≤ 3m and 2

(
n+

[
n

6

])
≤ 3n;

and over the ranges indicated in (4.18), we have

max i ≤ m+
[
m

6

]
< 2
(
m−

[
m

6

])
≤ min 2i,

and analogous inequalities for j.
Taking these observations into account, from (4.19) it follows that

(4.20)
mn

36

2m−1∑
k=m

2n−1∑
l=n

|∆11ckl| ≤ C
3m∑

k=[m/3]

3n∑
l=[n/3]

|ckl|.

Thus, we have shown that the required inequality (2.13) is satisfied with 36C
in place of C and λ = 3. Consequently, {ckl} belongs to the class MVBVDS.

Part 2. Take the sequence {ck} given in Lemma 4 and define the double
sequence {ckl} by setting ckl := ckcl, k, l = 1, 2, . . . . Since {ck} belongs to
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the class MVBVS, we have
2m−1∑
k=m

|∆10ckn| = cn

2m−1∑
k=m

|∆ck|(4.21)

≤ cn
C

m

[λm]∑
k=[λ−1m]

ck =
C

m

[λm]∑
k=[λ−1m]

ckn,

that is, condition (2.8) is satisfied. Condition (2.9) can be proved analo-
gously.

It is also clear that

(4.22)
2m−1∑
k=m

2n−1∑
l=n

|∆11ckl| =
2m−1∑
k=m

|∆ck|
2n−1∑
l=n

|∆cl|

≤ C

m

[λm]∑
k=[λ−1m]

ck ·
C

n

[λn]∑
l=[λ−1n]

cl =
C2

mn

[λm]∑
k=[λ−1m]

[λn]∑
l=[λ−1n]

ckl,

which is (2.10) with C2 in place of C. To sum up, we have proved that {ckl}
belongs to the class MVBVDS.

On the other hand, {ckl} cannot belong to NBVDS. It is easy to see that
none of conditions (2.11)–(2.13) is satisfied. Again, the justification hinges
on the fact that we can factorize both sides of the inequalities in question
exactly in the same way as in the cases of (4.21) and (4.22).

The proof of Theorem 2 is complete.

Proof of Theorem 3. It goes along the same lines as that of Theorem 1
with appropriate modifications.
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[5] F. Móricz, Some remarks on the notion of regular convergence of multiple series,
Acta Math. Acad. Sci. Hungar. 41 (1983), 161–168.

[6] —, Convergence and integrability of double trigonometric series with coefficients of
bounded variation, Proc. Amer. Math. Soc. 102 (1988), 633–640.

[7] —, The Cantor–Lebesgue and Denjoy–Luzin properties for double systems of func-
tions, Anal. Math. 17 (1991), 297–305.

[8] R. E. A. C. Paley, On Fourier series with positive coefficients, J. London Math.
Soc. 7 (1932), 205–208.

[9] D. S. Yu and S. P. Zhou, A generalization of the monotonicity condition and appli-
cations, Acta Math. Hungar. 115 (2007), 247–267.
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